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José M. Álvarez-Castro∗1, Michael Kopp∗2,

and Joachim Hermisson#2

December 16, 2008

1 Swedish University of Agricultural Sciences, Department of Animal Breeding and Genet-
ics, SE-75007 Uppsala, Sweden, current address: University of Santiago de Compostela,
Department of Genetics, Avda Carvalho Calero s/n, 27002 Lugo, Spain
2University of Vienna, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9, A-1030 Vienna,
Austria
∗These authors have contributed equally to this article
#Corresponding author, phone: +43 1 4277 50648, fax: +43 1 4277 9506,
email: joachim.hermisson@univie.ac.at

We study a two-locus model of a quantitative trait with a continuum-of alle-
les and multilinear epistasis that evolves under mutation, selection, and genetic
drift. We derive analytical results based on the so-called House of Gauss ap-
proximation for the genetic variance, the mean phenotype, and the mutational
variance in the balance of the evolutionary forces. The analytical work is com-
plemented by extensive individual-based computer simulations. We find that (1)
analytical results are accurate in a large parameter space; (2) epistasis always
reduces the equilibrium genetic variance, as predicted in earlier studies that
exclude drift; (3) large-scale stochastic fluctuations and non-equilibrium phe-
nomena like adaptive inertia can strongly influence the evolution of the genetic
architecture of the trait.
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1 Introduction

Epistasis, the interaction among gene effects on phenotype, has traditionally played only
a minor role in quantitative genetics. Indeed, the additive model of a quantitative trait,
introduced by Fisher (1918) has dominated the literature in the last century. In this classical
framework, epistasis only appears as a statistical correction term that can often be ignored
in practical applications. In the last decade, however, the advent of molecular and statistical
tools for the study of gene networks and quantitative trait loci (QTL) has started to change
the picture. As the complex developmental or metabolic pathways connecting the genes
that underlay a phenotypic trait were increasingly better understood, also the potential
evolutionary importance of gene interactions was re-discovered as a research issue (Wolf
et al. 2000).

Several new frameworks have been developed to include epistasis into genetic models, fol-
lowing two main strategies. On the one hand, new models in the context of QTL analysis
extend the statistical approach to epistasis (Kao and Zeng 2002; Yang 2004; Zeng et al.
2005; Álvarez-Castro and Carlborg 2007). On the other hand, the availability of estimates
from real data made it clear that a conceptually different way of modeling – called “phys-
iological” or “functional” – is necessary, where model parameters for epistasis correspond
to the interactions between specific genes rather than to statistical averages (Cheverud and
Routman 1995; Hansen and Wagner 2001; Rice 2002; Barton and Turelli 2004; Liberman
and Feldman 2006; Álvarez-Castro and Carlborg 2007).

Various evolutionary questions are addressed with epistatic models. Part of these questions
concern classical issues, such as the maintenance of genetic variation (Hermisson et al.
2003) or the predicted selection response (Carter et al. 2005), where the effect of epistasis
can be studied relative to the traditional additive-effect model. In addition, there are new
issues that can only be addressed in an epistatic model, like the evolution of the genetic
architecture, i.e. the change of allelic effects at a focal locus due to changes in the genetic
background (Hermisson et al. 2003; Hansen et al. 2006; Kopp and Hermisson 2006; Liberman
and Feldman 2006), see also Hansen (2006) for a review. In this context, the evolution of
small mutational effects is referred to as mutational robustness. The idea of a robust genetic
architecture that is buffered against deleterious mutations picks up the classical theme of
canalization (Waddington 1953) and has seen a lot of recent research activity (reviewed in
de Visser et al. 2003; Flatt 2005).

In this article, we present a comprehensive study of a minimal model of epistasis with two
loci, which both allow for a continuum of alleles. We extend previous work on this system by
Hermisson et al. (2003) in four directions. First, we present an improved analytical approx-
imation for the genetic variance in mutation-selection balance. The results are based on the
recently developed “House of Gauss” approximation (Waxman 2003; Hermisson and Wagner
2004), which unifies and extends the classical House of Cards (Turelli 1984) and Gaussian
(Lande 1976a) approximations that hold in complementary regions of the parameter space.
We extend this approach to an epistatic model, where we can also derive predictions on
the evolution of genetic architecture. As a second extension, we add genetic drift to the
model. We derive analytical predictions using a stochastic version of the House of Gauss
approximation and compare these to results from extensive individual-based simulations.
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Third, we study the effect of linkage among loci. Finally, we also discuss the transient
behavior of the model, such as the time that is needed before an evolutionary equilibrium
is reached. We find that selective constraints in the epistatic model can lead to adaptive
inertia that substantially slows down the approach to the equilibrium points even in large
populations.

2 Model and analytical results

The model follows Hermisson et al. (2003). We consider a quantitative trait in a randomly
mating diploid population with equivalent sexes. Ignoring gene-environment interactions,
the genotypic value is given by the following map

x = xopt + y1 + y2 + εy1y2 . (1)

xopt is the optimal trait value, which we choose as our reference. Neglecting dominance, the
single-locus variables yi = ai + a∗i are determined additively by the maternal and paternal
effects. We allow for a continuum of alleles at both loci, ai, a

∗
i ∈ R. Also the epistasis

parameter ε is arbitrary, but is constrained to the same value for all alleles at the interacting
loci. The model is thus a (simple) case of the multilinear epistasis model by Hansen and
Wagner (2001).

Mutation at the ith locus occurs at a diploid (twice the haploid) rate ui and adds a random
increment δi to the single-locus variable yi. The distribution ρ(δi) of δi is assumed to be
symmetric with mean zero and variance γ2

i . We assume weak stabilizing selection with a
quadratic fitness function,

w(x) = 1− s(x− xopt)2 . (2)

To avoid negative fitness values, we restrict the phenotype space to |x−xopt| ≤ 1/
√

s. Note
that we are not interested in an absolute value for the trait (which is arbitrary), but rather
its distance from the optimal phenotype, |x−xopt|. By an appropriate choice of a reference
point for trait measurements, and a rescaling of the model parameters γ2

i and ε, we can
always set xopt = 0 (cf Hansen and Wagner 2001; Hermisson et al. 2003). In this case, |x|
is a direct measure for this distance. Since the model with xopt = 0 is symmetric under the
mapping y1,2 → −y1,2, x → −x, and ε → −ε, we can focus on positive ε ≥ 0.

Following Hermisson et al. (2003), we introduce the epistasis factor for the ith locus (i = 1, 2)
as

fi :=
∂

∂yi
x = 1 + εy3−i. (3)

With epistasis, mutational effects at each locus depend on the genetic background. This
background-effect is captured by the epistasis factor. The effect of a mutation of size δi

on the phenotype x is δifi. The average selection coefficient of a mutation at locus i is (to
leading order in s)

∫ (
w(x)− w(x + δifi)

)
ρ(δi)dδi = −s

∫ (
x2 − (x + δifi)2

)
ρ(δi)dδi = sγ2

i f2
i . (4)
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Epistasis factors can be represented in vector form as

f = ∇x = 1 + Ey (5)

where y is the vector with components y1 and y2, 1 is the unit vector, ∇x denotes the
gradient of x with respect to the locus variables, and E is the epistasis matrix (Rice 1998)

E =


0 ε

ε 0


 , Eij =

∂2x

∂yi∂yj
. (6)

We denote population averages (over a single generation) by angled parentheses 〈. . .〉, but we
will also use the over-bar as abbreviation for single letters, i.e. 〈ai〉 = āi. It will be convenient
to calculate with whole-locus (diploid) quantities. Due to equivalence of the sexes, and
assuming Hardy-Weinberg proportions throughout, the whole-locus cumulants are just twice
the corresponding haploid ones. In particular, we have ȳi = 2āi and Vi = 2Var[ai] for the
means and variances of the locus reference effects yi. In the stochastic version of the model,
we denote averages over replicates by E[·].
The statistical properties of the trait and of fitness can be expressed in terms of the epistasis
factors. Assuming linkage equilibrium, the following relations have been established in
Hermisson et al. (2003):

x̄ =
1
2

(
f̄

tE−1f̄ − 1tE−11
)

= (f̄1f̄2 − 1)/ε (7)

where f t denotes the transpose and E−1 is the inverse epistasis matrix. The genetic variance
VG can be decomposed into an additive (VA) and epistatic (VAA) part, which read

VG = VA + VAA = f̄2
1 V1 + f̄2

2 V2 + ε2V1V2 , (8)

and the mutational variance is given by

Vm = u1γ
2
1〈f2

1 〉+ u2γ
2
2〈f2

2 〉, (9)

where (i = 1, 2)
〈f2

i 〉 = f̄2
i + ε2V3−i (10)

is the mean squared epistasis factor, which measures the epistatic effect of the genetic
background on variance components. The mutation load L can be expressed in terms of
the phenotypic mean and variance as L = s(x̄2 + VG). In mutation-selection balance, the
variance in fitness equals the negative population mean effect of mutation on fitness. For a
multilinear trait and quadratic stabilizing selection, we therefore obtain

Var[w] = −s
∑

i=1,2

ui

∫ (
〈(x + δifi)2〉 − 〈x2〉

)
dδi (11)

= −s
∑

i=1,2

ui

∫ (
2δi〈xfi〉 − δ2

i 〈f2
i 〉

)
dδi (12)

= s
∑

i=1,2

uiγ
2
i 〈f2

i 〉 = sVm (13)
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where we use that the average mutational effect is zero. We thus find that the variance in
fitness is proportional to the mutational variance of the trait.

The per-generation change of the means and variances of the single locus reference effects,
ȳi and Vi, is twice the change of the corresponding haploid quantities, which is given by
the Price equations. We assume linkage equilibrium, weak mutation and selection, and an
infinite population size. The whole-locus changes then read

∆ȳi = 2∆āi = 2Cov
(
ai, w

)
,

∆Vi = 2∆Var[ai] = 2Cov
(
(ai − āi)2, w

)
+ uiγ

2
i . (14)

From (14), the following relations for the change of the means and the variances of the locus
reference effects may be derived (Turelli and Barton 1990; Hermisson et al. 2003),

∆ȳi = Vi
∂

∂ȳi
w̄ + C3,i

∂

∂Vi
w̄ = −2sVi

(
x̄f̄i +

∑

j 6=i

εijVj f̄j

)
− sC3,i〈f2

i 〉 , (15)

∆Vi = (V 2
i + C4,i)

∂

∂Vi
w̄ + C3,i

∂

∂ȳi
w̄ + uiγ

2
i (16)

= −s(V 2
i + C4,i)〈f2

i 〉 − 2sC3,i

(
x̄f̄i +

∑

j 6=i

εijVj f̄j

)
+ uiγ

2
i . (17)

For the two-locus model, εij = ε and the sums run only over a single term. C3 and C4

denote the third and fourth cumulant of the distribution of yi. In equilibrium, C3 vanishes
due to symmetry and the dynamic equation for the means reduces to an eigenvalue equation
(Hermisson et al. 2003)

EVf̄ = −x̄f̄ , (18)

where the variance matrix V is diagonal (due to linkage equilibrium), and the elements on
the diagonal are the locus components V1, V2. There are two standard approximations for the
fourth order cumulant. In the Gaussian approximation (Lande 1976b), a normal distribution
for the allelic values at all loci is assumed, and thus C4 = 0. Predictions from the Gaussian
approximation are valid in the limit of small mutational effects and large mutation rates,
where one can show that V 2 À C4 (Bürger 2000). The opposite limit with few mutations
of large effect defines the domain of the House-of-Cards (HC) approximation (Turelli 1984).
Here, we can set V 2

i ≈ 0 and approximate the fourth cumulant as C4,i = Viγ
2
i .

In Hermisson et al. (2003), results based on the Gaussian and HC approximations were given.
A simple framework that extends these approximations and works for the whole parameter
range has recently been suggested by Waxman (2003) and Hermisson and Wagner (2004). In
the so-called House-of-Gauss (HG) approximation (Hermisson and Wagner 2004), we follow
the HC approximation and set C4,i = Viγ

2
i , but we do not ignore V 2

i . For a single locus, the
HG framework reproduces a functional form for the equilibrium genetic variance that was
first derived by Waxman (2003) as the exact solution of a continuum-of-alleles model with
a special shape of the mutational-effect distribution,

ρ(δ) =
δ

γ2 sinh[πδ/
√

2γ2]
. (19)
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This distribution is symmetric with variance γ2 and kurtosis 1 and does not deviate much
from a Gaussian in its appearance. For a general distribution of mutational effects, the HG
scheme works as a convenient approximation that can also be extended to include epistasis.
In particular, we find for our model

∆Vi = −s(V 2
i + Viγ

2
i )〈f2

i 〉+ uiγ
2
i . (20)

If we define gi := sγ2
i , this has the equilibrium solution (for ∆Vi = 0)

Vi =
γ2

i

2

(√
1 + 4ui/(gi〈f2

i 〉)− 1
)

. (21)

In the absence of epistasis (ε = 0 and fi = 1), equation (4) shows that gi is the average
selection coefficient. With epistasis, selection is background dependend and the average
marginal effect on fitness of a mutation at the ith locus becomes gi〈f2

i 〉, which enters (21).

To determine the equilibrium values of 〈f2
i 〉, we need to employ the equilibrium condition

for the locus means. From equation (18), we obtain f2
1 /f2

2 = V2/V1 and

x̄ = −ε
√

V1V2 (22)

where condition (7) determines the negative sign of x̄. From (18, 10, 7) we then also obtain,
for ε 6= 0,

〈f2
1 〉 =

√
V2/V1 = 〈f2

2 〉−1. (23)

Equations (22) and (23) fix the position of the population on the phenotype- (and fitness-
) landscape. Figure 1 shows that this landscape forms a hyperbolic ridge of high fitness
around the contour of the optimal phenotype x = 0. According to Eq. (22), the equilibrium
mean phenotype deviates slightly from this optimum, in the direction of the flatter slope of
the ridge. Movement of the population along the ridge changes the locus effects in opposite
directions. Consequently, Eq. (23) shows that a large scaling factor 〈f2

1 〉 for the first locus
in equilibrium corresponds to a small scaling factor 〈f2

2 〉 at the second locus, and vice versa.
As we discuss below, movement of the population along the ridge can be interpreted as
evolution of the genetic architecture.

We can use (23) to eliminate the epistasis factors from the equations for V1,2 (eq. 21). To
this end, it is convenient to define a variable

z :=
γ2

γ1

√
V1

V2
=

√
g2V1

g1V2
(24)

We then obtain from Eq. (21) and Eq. (23)

V1 =
γ2
1z

2
√

g1g2

(√
g1g2z−2 + 4u1

√
g1g2z−1 −√g1g2z

−1
)

(25)

and for V2 the same equation with γ2
1 and u1 replaced by γ2

2 and u2, and z replaced by z−1.
From these two expressions, and using Eq. (24), we can express

√
V1V2 in two ways as

√
V1V2 =

1
2s

(√
g1g2z−2 + 4u1

√
g1g2z−1 −√g1g2z

−1
)

(26)

=
1
2s

(√
g1g2z2 + 4u2

√
g1g2z −√g1g2z

)
(27)
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Figure 1: Graphical representation of the fitness landscape (i.e., the map from the locus effects y1

and y2 to fitness) in the presence of epistasis. The solid line corresponds to the optimal phenotype.
Darker colors signify decreasing fitness. Note that the landscape is symmetric with respect to the
diagonal y1 = y2.

Equating (26) and (27), we obtain after some transformations

(u1z
−1 − u2z)2 −√g1g2(u1 − u2)(z − z−1) = 0 . (28)

This is a fourth order equations in z, which can be solved analytically with Mathematica, but
the solution is usually a lengthy expression and therefore not shown here. In the Gaussian
limit, where ui À gi, we find z = zG =

√
u1/u2 for u1 ≥ u2. For the full system, the

equilibrium is z ≥ zG. In fact, the HC solution formally corresponds to z = ∞ if u1 6= u2,
(cf. Hermisson et al. 2003). For equal mutation rates, u1 = u2, we see from Eq. (28) that
z = 1 is the unique solution.

It is possible to include genetic drift into our formalism. If Ne is the diploid effective
population size, this leads to an additional term −Vi/2Ne in the dynamical equation for the
variances (20) since drift reduces genetic variation. Explicit formulas and all derivations are
given in the Appendix. As in the House-of-Gauss (HG) case (21), we obtain a “Stochastic
House-of-Gauss” (SHG) approximation for the variance components (A2) as a function of
the average squared epistasis factor. An analogous calculation as for infinite population size
again leads to a quartic equation for the parameter z.

From the solution for z in the infinite or finite population size case, predictions for the
equilibrium values of all statistical quantities follow easily. In particular, we obtain the
locus components for the variances from Eq. (25), and all epistasis factors from equations
(23) and (10). One may note that the equilibrium values for z, Vi and the epistasis factors
are all independent of the interaction parameter ε, given that ε 6= 0. This can be understood
as follows. Epistasis, in this model, relaxes the constraint of the additive model, where both
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G γ
√

u
s SG

√
1+2ΘG−1

4Nes

HC u
s SHC 2Neuγ2

G+1

HG γ2

2

(√
1 + 4u

sγ2 − 1
)

SHG γ2

2G

(√
G2 + 2G(1 + Θ) + 1−G− 1

)

Table 1: Analytical predictions for the variance V of the single-locus reference effects yi in the case
of identical loci (i.e., equal mutation rates and mutational variances; u1 = u2 = u, γ2

1 = γ2
2 = γ2).

Θ = 4Neu and G = 2Nesγ
2. The mean phenotype is given by x̄ = −εV and the total genetic variance

by VG = 2V − ε2V 2. Setting ε = 0 gives the equations for the additive case. (S)G: (Stochastic)
Gaussian approximation; (S)HC: (Stochastic) House-of-Cards approximation; (S)HG: (Stochastic)
House-of-Gauss approximation. The stochastic versions are derived in the Appendix.

locus effects are fixed. Evolution uses this additional degree of freedom to drive the loci to
an equilibrium where the single-locus quantities only depend on the model parameters ui,
γ2

i , and s (for smaller ε, the population evolves further out on the fitness ridge). Also the
equilibrium mutational variance is a function of z,

Vm = u1γ
2
1〈f2

1 〉+ u2γ
2
2〈f2

2 〉 = γ1γ2(u1z
−1 + u2z), (29)

and therefore independent of ε. In contrast, the phenotype mean and the equilibrium genetic
variance depend explicitly on ε, see Eq. (24) and Eq. (8). For equal loci (equal mutation
rates and mutational variances), we obtain simple explicit expressions for all equilibrium
values. Table 1 summarizes the key results from the HG and SHG formalism in comparison
with the deterministic and stochastic versions of the previous Gaussian (G) and House-of-
Cards (HC) approximations.

In all calculations above, complete linkage equilibrium among the loci was assumed. This is
generally a good approximation if recombination is much stronger than selection. For the
additive model, even moderate levels of linkage have little effect on the equilibrium quantities
(cf Bürger 2000, p. 248ff). Since linkage disequilibria can result from epistasis, however, this
is far less clear if there are epistatic interactions among loci. In order to study the effects of
weak linkage, we can follow the standard approach and calculate the leading order correction
terms to the linkage equilibrium solution. We measure linkage disequilibrium between the
two loci by the correlation of their allelic values, ρ12 = C12/

√
V1V2, where C12 = Cov[y1, y2]

is the covariance. If r is the recombination rate, the change among generations of C12 is
∆C12 = −rC12 +∆sC12. Even for a simple two-locus model, the selection response ∆sC12 is
a complicated expression that involves multiple products of higher-order cumulants. In the
quasi-linkage-equilibrium approximation (Turelli and Barton 1990), the selection response
is approximated by its linkage equilibrium counterpart, ∆LE C12, which can take a much
simpler form. We focus on the deterministic model. The selection response for C12 at
mutation-selection balance of the epistatic model assuming linkage-equilibrium then reads
(compare Eq. 17)

∆LE C12 =
〈

δw

δy1δy2

〉

LE

V1V2 = −s
(
f̄1f̄2 + εx̄

)
V1V2 = −s

(
1 + 2εx̄

)
V1V2, (30)

where we make use of the fact that all cross-locus cumulants and all cumulants of order
three vanish at this point. The quasi-linkage equilibrium approximation for the correlation
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follows as

ρ12 ≈ ∆LE C

r
√

V1V2
= −s

(
1 + 2εx̄

) √V1V2

r
. (31)

As expected, this value is negative for the additive model (ε = 0) and also for moderate
epistasis. Interestingly, since x̄ = −ε

√
V1V2 + O[C] < 0, linkage disequilibrium is reduced

by epistasis on the level of the trait. This can be understood by noting that linkage dise-
quilibria result from epistasis for fitness, which is always present under stabilizing selection,
even for the additive model. In our model, fitness epistasis is measured by the derivative
εw := ∂w/(∂y1∂y2). Eq. (30) shows that εw = −s(1 − 2ε2

√
V1V2), i.e. epistasis on the

phenotypic level reduces (the absolute value of) fitness epistasis. This can be understood as
a consequence of the slight shift of the population mean in the direction of the more shallow
slope of the fitness landscape.

3 Simulation results

To test the validity and accuracy of the analytical approximations, we performed stochastic
individual-based computer simulations. In the simulations, populations consisted of N
individuals, with each individual being defined by a set of diploid two-locus genetic effects
(i.e., allelic values). For each generation, we first computed the phenotypes of all the
individuals, based on their genetic effects, using (1). Second, the fitnesses were computed
using (2). Third, N pairs of individuals were selected for reproduction, using their fitnesses
as weights and assuming equal numbers of males and females. Each selected pair produced
one offspring, accounting for recombination and mutation. Mutations occurred at rate
ui (i = 1, 2) per individual locus, and their additive effects were taken from a normal
distribution with mean zero and variance γ1 = γ2 = γ2.

The above procedure ensures that the effective population size Ne equals the actual pop-
ulation size N , because mating pairs are sampled randomly and each pair has exactly one
offspring. Thus, the number of offspring per individual is identical to the number of mat-
ings it participates in, which follows an (approximate) Poisson distribution with mean and
variance 2. Ne then follows from Eq. (E4) in Bürger (2000, page 363).

Simulations were run in the following way: In the initial populations, all reference effects
were set to zero, unless otherwise stated. For each parameter combination, we ran 10 repli-
cate simulations with 1, 200, 000 generations for cases with equal locus parameters (u1 = u2

and γ2
1 = γ2

2), or 3, 000, 000 generations for cases with unequal locus parameters. From
these simulations, we sampled relevant statistics every 1000 generations, starting at gener-
ation 200, 000 (equal loci) or 1, 000, 000 (unequal loci), when most populations had reached
a state of equilibrium (exceptions are pointed out in the text). The sampled data were then
used for further analysis. In all cases shown, the strength of selection was set to s = 0.01.

Equilibrium mean phenotype and genetic variance

As reference for the effect of epistasis, we start with a brief evaluation of the (S)HG ap-
proximation in the additive model. Figures 2 A1 and A2 show the results and predictions
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for the equilibrium genetic variance VG in a large population (Ne = 10000). The HG pre-
dictions fit the simulations very well. In particular, HG provides much better predictions
than the previous approximations (HC and G) for the whole parameter range. We use two
types of error bars in Figure 2 (as well as in Fig. 3 and 8). Upward error bars indicate the
standard deviation across generations. They thus mark the range where we can expect to
find the population in mutation-selection-drift equilibrium. Downward error bars measure
the standard deviation of replicate means and thus the precision of our point estimates. In
Figure 2, these error bars are too small to be perceived (but see e.g. Fig. 3 D3). In the
additive model, the predicted mean phenotype always coincides with the optimum, x̄ = 0,
and the simulation results are very close to this value (not shown).

Figures 2 B1 and B2 show the effect of a small population size (Ne = 1000) and com-
pares the SHG approximation to the stochastic versions of the previous Gaussian and HC
approximation. The improvement is similar to the one for a large population, although
slight deviations of the simulation results from the predictions are now visible. Compar-
ison with the deterministic HG approximation shows the impact of drift on the average
value of VG across generations. The upward error bars, which cover also the deterministic
approximation, indicate a considerably larger standard deviation than for Ne = 10000.

Figure 3 shows the effect of epistasis on the equilibrium values of x̄, VG and Vm. For the
phenotypic mean, the analytical theory predicts a slight deviation in the negative direction,
that is, in the direction where the slope of the fitness ridge is shallower (see also Rice
1998). Figures 3 A1 and B1 show that the HG predictions fit the simulation results very
well for large population sizes. According to the analytical results, epistasis leads to a
slight reduction of the equilibrium genetic variance by a term ∼ ε2V 2. This is confirmed
by simulations. In particular, Figures 3 A2 and B2 show that the HG prediction for large
populations are again very precise. Additional results for a larger range of the epistais
parameter ε are presented in Figure A1 the Appendix. Note that the upward error bars for
the standard deviation among generations are usually larger than the predicted epistasis
effect, for both x̄ and VG, even for Ne = 10000.

In rows C and D of Figure 3 the same results are shown for a small population (Ne = 1000).
Genetic drift plays a much greater role with epistasis than without epistasis, as evidenced by
the large standard deviations (both among replicate means and across generations). Note
also that, for small population sizes, the SHG prediction is considerably less accurate with
epistasis than without epistasis (compare Fig. 3 C2 and D2 to Fig. 2 B1 and B2). This
happens because the SHG approximation only accounts for averages among replicates, but
ignores the variances. In particular, for equal loci, the approximation is consistent with
the population being at the symmetric point of its optimal contour (with equal reference
effects, y1 = y2), where the genetic variance is minimized. Simulated and real populations
will instead fluctuate along the iso-phenotype contour, reaching areas where the slope of
the phenotype landscape is steeper, and the genetic variance larger. A similar effect does
not occur in the additive model since, in this case, the phenotype (and fitness) landscape
is translationally invariant along the contour y1 + y2 = 0. The better fit of the stochastic
Gaussian (SG) approximation for some parameter values (Fig. 3 C2) is a result of fortuitous
cancellation of error terms.

The right-most column of Figure 3 shows the mutational variance Vm. The prediction from
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Figure 2: Genetic variance VG as a function of the per locus mutation rate u in the additive model
(ε = 0) for both large (Ne = 10000) and small (Ne = 1000) populations and for two different values of
γ2, the variance of the mutational effects. In (A1), we also show the mean genetic variance in a model
with complete linkage (r = 0). Results are averages over 10 simulation runs (see main text). Upward
error bars show the average standard deviation over time. The standard deviation of the replicate
means (downward error bars) is too small to be visible at this scale. Lines show the predictions from
the various deterministic and/or stochastic approximations. In (B2), the deterministic HG coincides
with the stochastic G (this is because 1/(2Nes) = γ2).

11



-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  0.00025  0.0005  0.00075  0.001

–x

u

Ne = 10000, γ2 = 0.025

(A1)

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  0.00025  0.0005  0.00075  0.001

–x

u

Ne = 10000, γ2 = 0.05

(B1)

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  0.00025  0.0005  0.00075  0.001

–x

u

Ne = 1000, γ2 = 0.025

(C1)

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  0.00025  0.0005  0.00075  0.001

–x

u

Ne = 1000, γ2 = 0.05

(D1)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.00025  0.0005  0.00075  0.001

VG

u

(A2)G
HC
HG
obs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.00025  0.0005  0.00075  0.001

VG

u

(B2)G
HC
HG
obs

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.00025  0.0005  0.00075  0.001

VG

u

(C2)HG
SG
SHC
SHG
obs

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.00025  0.0005  0.00075  0.001

VG

u

(D2)HG / SG
SHC
SHG
obs

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0  0.00025  0.0005  0.00075  0.001

Vm

u

(A3)

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0  0.00025  0.0005  0.00075  0.001

Vm

u

(B3)

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0  0.00025  0.0005  0.00075  0.001

Vm

u

(C3)

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0  0.00025  0.0005  0.00075  0.001

Vm

u

(D3)

Figure 3: Simulation results for the model with identical loci and epistasis. The plots show the
phenotypic mean x̄, the genetic variance VG, and the mutational variance Vm as a function of the
per locus mutation rate u in large (Ne = 10000) and small (Ne = 1000) populations for ε = 2 and
two different values of γ2. Upper error bars show mean standard deviations over time, whereas lower
error bars, if visible, show the standard deviation over the 10 replicate means (see Fig. 2 for further
details). In the first row, diamonds show the mean observed values in a model with complete linkage
(r = 0, cf. Fig. 5). In the right-most column, the open circles show the means of the “corrected”
mutational variance Ṽm as defined in eq. (32) (see text).
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the HG approximation is Vm = 2uγ2 (for both the deterministic and stochastic versions).
The observed values are consistently above this estimate. The reason is again that the
approximations neglect stochastic fluctuations of the population around the average equi-
librium position. Fluctuations occur mostly along the iso-phenotype contour of x̄ (compare
Fig. 9 below for the case of unequal loci). In contrast to x̄, the epistasis factors 〈f2

i 〉 are
very variable on this contour. According to Eq. (23), fluctuations in 〈f2

1 〉 and 〈f2
2 〉 are

negatively correlated. For equal loci (and using Eq. 23) we can write the mutational vari-
ance as Vm = uγ2(〈f2

1 〉 + 〈f2
1 〉−1). Fluctuations thus have a non-linear effect on Vm and

introduce a bias. We can (partly) account for this effect by using the Taylor expansion
E[〈f2

1 〉−1] ≈ (1/E[〈f2
1 〉]) + (Var[〈f2

1 〉])/(E[〈f2
1 〉])3 to obtain “corrected” values for Vm

Ṽm = Vm − uγ2 Var[〈f2
1 〉]

(E[〈f2
1 〉])3

(32)

(open circles in Figure 3) which fit the prediction more closely, at least as long as the
deviations are not too big (for N = 10000). Note that these “corrected” values are not a
better version of Vm, but merely demonstrate why the observed Vm is typically greater than
2uγ2.

Finally, Figures 4 and 5 show the effects of linkage on the equilibrium quantities. From
Figure 4, we see that (negative) linkage disequilibrium is indeed weaker in the equilibrium
of the epistatic model than in the additive model. Consequently, the effect of linkage on the
equilibrium genetic variance and the phenotype mean is very small. Effects are stronger for
high mutation rates, but generally only visible for tight linkage (r . 0.001, Fig. 5). Results
for complete linkage (r = 0) are also added to Figures 2 and 3. Note the much smaller effect
of linkage on the genetic variance VG in the epistatic case.

The evolution of genetic architecture under epistatic selection

For an additive trait, optimization of the mean phenotypic trait value is the sole target of
selection. Consequently, the population simply evolves uphill the fitness landscape until the
mean phenotype matches the optimum. In contrast, there is a second evolutionary target
on an epistatic landscape. Selection aims to buffer deleterious alleles that segregate in the
population (Rice 1998; Hermisson et al. 2003). The consequences can be seen in Figure 6,
i.e. there is selection for the reduction of the genetic variance VG. Since selection for the
optimization of the mean phenotype is generally stronger, a population that starts far off the
equilibrium will first evolve toward and actually reach the equilibrium phenotype contour.
With epistasis, this one is close to – but not the same as – the optimal phenotype. In a
second phase, selection for buffering of deleterious alleles in the standing genetic variation
then moves the population along the contour. For equal mutation rates, the equilibrium is
the symmetric point of the iso-phenotype contour, which is usually quickly reached. For
unequal mutation rates, selection drives the population into one of the branches of the
high-fitness ridge. Locus effects evolve in opposite directions: whereas the locus with the
higher mutation rate is buffered and evolves small mutational effects, mutational effects at
the locus with the lower mutation rate increase.

In order to compare simulation results for the evolution of genetic architecture with the
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Figure 4: Linkage disequilibrium in the model with equal loci, measured as the correlation ρ12

between y1 and y2, the additive effects of the two loci. (A) Additive model (ε = 0), (B) model with
epistasis (ε = 2). Other parameters were γ2 = 0.025 and Ne = 10000. Note that all correlations are
negative, but are shown here on a positive logarithmic scale. Unlike in Fig. 2, 3 and 8, error bars
only show the standard deviation of replicate means (corresponding to lower error bars in the above
Figures). The dotted lines are the predictions from the quasi-linkage equilibrium approximation (31)
for (from bottom to top) r = 0.5, r = 0.1, r = 0.01, and r = 0.001 (for smaller r, the approximation
cannot be applied).
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Figure 5: The effect of linkage in the model with identical loci and epistasis. The plots show the
phenotypic mean x̄ (A), the genetic variance VG (B), and the mutational variance Vm (C) as a
function of the recombination rate r, for various values of the per-locus mutation rate u in a large
population (Ne = 10000) for ε = 2 and γ2 = 0.025 (cf., Fig. 3 A1-A3). Values for r = 0 (which
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above Figures).
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Figure 6: Approach of the equilibrium phenotype contour from different initial conditions. The plots
show trajectories for the evolution of the locus reference effects y1 and y2 from three different starting
values. Light grey: Generations 0 to 1000; dark grey: generations 1000 to 5000; black: generations
5000 to 100000. The solid line is the equilibrium contour and the open circle the predicted equilibrium
point. The dotted line is the main diagonal. In (B), the additional dotted line shows the contour of
the optimal phenotype x = 0. Samples were taken every 10 generations for the first 5000 generations
and every 100 generations for subsequent generations. Starting values: (A) y1 = 1.5, y2 = 0.5; (B)
y1 = 0.5, y2 = 0.5; (C) y1 = 0.5, y2 = 1.5; Parameters: γ2 = 0.025, µ1 = 0.001, µ2 = 0.00025, ε = 2,
Ne = 10000.

analytical predictions, we introduce a variable transformation for the phenotype landscape.
In the original coordinate system, spanned by the mean locus effects ȳ1 and ȳ2, evolution
(in the extended second phase) occurs along a curved contour. This poses a problem when
coordinates ȳi are averaged over time and/or replicates: even if all individual data points
are on the contour, the average might deviate from it. To solve this problem, we describe
the position of a population on the landscape by its mean phenotype x̄ (which fixes the
iso-phenotype contour) and by its distance (arc-length) α along this contour from the main
diagonal (see Fig. 7). Averages can then be calculated on this scale, before being back-
transformed to the ȳ1, ȳ2 coordinate system. Formal transformation rules are given in the
appendix.

Figure 8 A-D shows the mean phenotypes, arc lengths, and the genetic and mutational
variances in simulations of a large population with different values of γ2 and ε. Signif-
icant deviations from the HG approximation occur only if the per-locus mutation rates
are very different. In this case, the population needs to evolve a large distance along the
iso-phenotype contour (compare Fig. 7 B). While x̄ and VG have (almost) converged to
the predicted equilibrium values, the population does not reach the predicted arc length
α within 3, 000, 000 generations (see Fig. 9 A2). Although the mutational variance Vm is
determined by the position of the population on the epistatic landscape (in particular by
the arc length α), the simulation results deviate more strongly from the analytical predic-
tions. The reason is that Vm, in contrast to α, depends non-linearly on fluctuations of the
population along the iso-phenotype contour. As explained above for the case of equal loci,
this introduces an upward shift of the simulated data. As in the case of equal locus effects,
there is hardly any effect of moderate linkage r ≥ 0.001 on the results. For comparison,
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Figure 7: An illustration of the arc length of a genotype. In (A), the arc length corresponding to an
equilibrium point in the ȳ1, ȳ2 plane (thick dot) is marked by the thick line (parameters: Ne = 10000,
γ2 = 0.05, ε = 2, u1 = 0.001, u2 = 0.0001). The thin line is the iso-phenotype contour and the
dotted line the main diagonal. (B) shows the predicted equilibrium points for (from right to left)
u2 = 0.0001, 0.00025, 0.0005, 0.00075, 0.001 and the other parameters the same as in (A). This
corresponds to (D2) in Fig. 8.

results for complete linkage are added in Figure 8 A. Smaller population size leads to a large
increase of all standard errors (Fig. 8E). As in the case of equal loci, the SHG approximation
slightly under-estimates the average VG (see Figure 8 E3).

Figure 9 shows the evolutionary trajectories of typical example populations for different
parameter values. We observe that evolution along the iso-phenotype contour is very slow,
but punctuated by larger jumps. Slow evolution is not due to weak selection relative to
genetic drift: increase in population size does not strongly affect the speed of evolution
(see Fig. 9 A1-A3). The reason is rather that evolution on a narrow ridge of the epistatic
landscape is only possible if fine-tuned mutations at both loci contribute. Epistasis thus
creates “adaptive inertia” due to the need of correlated evolution (Baatz and Wagner 1997,
see discussion below). Population size mainly affects the frequency of the stochastic jumps
along the contour. These occur when a slightly deleterious mutation at the second locus
(with smaller mutation rate) fixes due to drift and is then compensated by a large change
at the first locus (with higher mutation rate). Stochastic jumps and adaptive inertia can
combine to large-scale fluctuations of the population with extended excursions (up to 106

generations in Fig. 9 B2) far away from the predicted equilibrium values.

A central prediction of Hermisson et al. (2003) for the evolution of the genetic architecture
was that canalization (buffering of mutational effects) evolves for the locus with the higher
mutation rate, while the locus with the smaller mutation rate is decanalized. In particular,
the contribution to the mutational variance of a locus with a higher mutation rate is pre-
dicted to be smaller than the contribution of the locus with lower mutation rate. This is
indeed found in all simulations with unequal mutation rate, even in the presence of evolu-
tionary inertia (Fig. 8 A4-E4, open and closed triangles). An example for the evolution of
the per-locus mutational variances is shown in Figure 10 A. Starting at a symmetric point
on the phenotype landscape, Vm is initially dominated by the locus with the higher mutation
rate. As the genetic architecture evolves, a crossing of the locus contributions occurs after
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Figure 8: Mean phenotype x̄, arc length α, genetic variance VG and mutational variance Vm in
simulations with unequal loci. u1 = 0.001 is held constant, whereas u2 takes values of 0.0001,
0.00025, 0.0005, 0.00075 and 0.001 (note the logarithmic scale of the horizontal axis). The lower
(thick) error bars are the standard deviations of the 10 replicate means. The upper (thin) error
bars show the standard deviations over time, averaged over all replicates. For Ne = 10000, the solid
line is the prediction from the HG approximation. For Ne = 1000, the solid line is the prediction
from the SHG, and the dotted line the prediction from the HG. In the first row, diamonds show
the mean observed values in a model with complete linkage (r = 0). In the right-most column, the
closed triangles show the mutational variance due to locus 1, and the open triangles the mutational
variance due to locus 2. Note that the locus with the lower mutation rate (locus 2) evolves to have
the higher mutational variance.

18



 0  2  4  6 0

 2

 4

 6

 500

 1000

 1500

 2000

 2500

 3000

(A1) 		N = 1000,
	u2 = 0.0001

t ×
10

3

y1

y2

 0  2  4  6 0

 2

 4

 6

 500

 1000

 1500

 2000

 2500

 3000

(A2)

t ×
10

3

		N = 10000,
	u2 = 0.0001

y1

y2

 0  2  4  6 0

 2

 4

 6

 500

 1000

 1500

 2000

 2500

 3000

(A3)

t ×
10

3

		N = 100000,
	u2 = 0.0001

y1

y2

 0  2  4  6 0

 2

 4

 6

 500

 1000

 1500

 2000

 2500

 3000

(B1)

t ×
10

3

		N = 1000,
	u2 = 0.0005

y1

y2

 0  2  4  6 0

 2

 4

 6

 500

 1000

 1500

 2000

 2500

 3000

(B2)
t ×

10
3

		N = 10000,
	u2 = 0.00025

y1

y2

 0  2  4  6 0

 2

 4

 6

 500

 1000

 1500

 2000

 2500

 3000

(B3)

t ×
10

3

		N = 10000,
	u2 = 0.0005

y1

y2

Figure 9: Examples of the evolutionary trajectory of populations in the ȳ1, ȳ2 plane for γ2 = 0.05
and ε = 1. The vertical axis is time in 1000 generations. The solid vertical line marks the predicted
equilibrium point according to the HG (Ne ≥ 10000) or SHG (Ne = 1000) approximation. The
dashed line is the corresponding iso-phenotype contour (at this resolution, it is indistinguishable
from the x = 0 contour). The dotted line is the diagonal ȳ1 = ȳ2. The gray shading is a projection
of the data onto the t = 0 plane. (A1) to (A3) show “adaptive inertia” for three different population
sizes and a small mutation rate at locus 2. (B1) and (B2) demonstrate stochastic fluctuations around
(and sometimes far off) the predicted equilibrium, whereas (B3) shows a more regular behavior.

on the order of 104 − 105 generations, depending on the mutation rates, see Figure 10 B.

4 Summary and Discussion

The House of Gauss approximation: Our simulations show that in the absence of epistasis
both the HG and the SHG approximations provide highly accurate predictions for the genetic
variance in mutation-selection (and drift) balance (Figure 2). This result holds for basically
the entire parameter space of biological interest, from small to large mutation rates and/or
locus effects. In contrast, validity of the classical HC and G approximations (and their
stochastic variants) are each restricted to complementary subsets of the parameter space.
While the G is adequate when mutation rates are high or mutational effects are low, the HC
covers the cases where mutations are rare and have relatively big effects (see Bürger 2000).
In the additive case, HG and SHG consistently out-perform the better one of the previous
approximations. The largest relative improvement is seen at the border that separates the
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Figure 10: (A) The dynamics of the per-locus mutational variances Vm,i in the first 500, 000 gener-
ations of an example simulation with Ne = 10000, γ2 = 0.025, ε = 1, u1 = 0.001, and u2 = 0.00025.
The dotted lines are the predictions from the HG approximation. Note the crossing of the variances
around generation 100, 000. (B) The time to the first crossing of the per-locus mutational variances,
for u1 = 0.001, different values of u2/u1 and the other parameters as in (A). Data are means (filled
circles), standard deviations (error bars) and medians (diamonds) from 100 replicated simulation
runs.

HC and the G regimes, i.e. for u/s ≈ γ2.

With epistasis, the HG approximation constitutes a clear improvement over the combination
of HC and G approximation that was used in Hermisson et al. (2003). For large populations
(Ne ≥ 10000), the HG values for the mean phenotype and the equilibrium genetic variance
are very accurate (Figure 3). Also the predicted position on the phenotype ridge (arc
length α) fits well to the asymptotic long-term averages in the simulation runs (Figure 8).
For small populations, a consistent deviation of the SHG approximation from the numerical
values appears that is not seen in the additive case. The reason is that epistasis leads to
an extended variance of the population-averaged observables (VG, Vm, x̄) among replicates
and across generations. This variance is neglected in all stochastic approximations. For the
mutational variance Vm, which has a strong non-linear dependence on stochastic fluctuations
of the population around the equilibrium points (i.e., along the contour), deviations are even
visible for larger populations.

The limitations of the HG approximation, and of any analytical point estimate of evolu-
tionary observables in mutation-selection-drift balance, are most obvious for the epistatic
model with unequal locus mutation rates. The simulation results show extended stochastic
excursions of the population away from the predicted equilibrium points (Figure 9). As
explained above, large-scale fluctuations may lead to shifts in the averages across genera-
tions and replicates. More fundamentally, with excursions lasting for tens of thousands of
generations, equilibrium predictions by simple point estimators are only of limited value
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(see also the discussion of adaptive inertia below).

Genetic variance and mean phenotype: Both our analytical and numerical results confirm
the predictions of Hermisson et al. (2003) for the effect of epistasis on the phenotypic mean
and the equilibrium genetic variance. In particular, the phenotype mean deviates from
the optimal phenotype in the direction of antagonistic epistasis (the shallower slope of the
fitness ridge). The genetic variance in the epistatic model is reduced relative to the standard
additive one (Figure 3). In the model with genetic drift, these qualitative predictions are
confirmed even for cases where stochasticity and evolutionary inertia are dominant.

All effects of epistasis are usually small second-order corrections. For example, epistasis
reduces the genetic variance VG of the additive model by a term proportional to ε2V 2

G.
Larger effects of epistasis are therefore only seen for large ε À 1 (see also Figure A1 in the
Appendix). Since part of the genetic variance VG = VA + VAA is due to epistatic variance
VAA, which increases proportional to ε2 (eq. 8), the reduction in VG is entirely due to a
reduction in the additive component VA. For very large epistasis, the equilibrium VA in the
model tends to zero. The population then crosses over to a different type of equilibrium,
where VA = 0 and VG = VAA increases with further increase of ε (see the Appendix for
details). A vanishing VA is, however, usually not observed in natural traits. Since the
number of potential interactions sharply increases with the number of loci, the combined
effect of epistasis may be more prominent in a multi-locus model (Hermisson et al. 2003). In
any case, since the effect on VG is always negative, epistasis can never be a factor to explain
high levels of genetic variance in mutation-selection-drift balance. (In the Appendix this is
confirmed also in the presence of additional dominance terms, see Figure A2.)

We find that, with epistasis, linkage disequilibria have an even smaller effect on the equilib-
rium quantities than in the additive model. Even for quite strong linkage (r ≈ 0.001) almost
no deviations from the predicted linkage equilibrium results are seen. The reason is that
disequilibria result from epistasis for fitness, which also exists in the additive model with
stabilizing selection. Additional epistasis on the level of the trait introduces an additional
degree of freedom that is used by the population to deviate (slightly) from the phenotypic
optimum to the flatter and less curved side of the fitness landscape. As a consequence,
epistasis for fitness is slightly reduced.

Evolution of the genetic architecture: A direct consequence of gene interactions is that
allelic (or mutational) effects at epistatic loci can evolve due to changes in the genetic
background. In our minimal two-locus model, the genetic background of each locus is given
by the allelic state at the other locus. There is a single degree of freedom for the evolution of
the genetic architecture. Figure 1 shows that the fitness landscape forms a hyperbolic ridge
around the isocline of the optimal phenotype. As the population moves along this ridge,
the locus effects evolve in opposite directions. Note that, in the absence of higher-order
epistasis, the epistasis parameter ε itself cannot evolve. A complementary model has been
studied by Liberman and Feldman (2006, 2007), where single-locus effects are fixed, but
epistasis between the two loci can evolve due to mutations at a modifier locus.

A classical expectation is that epistatic traits under stabilizing selection should evolve mu-
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tational robustness or canalization (Wagner et al. 1997). A canonical measure of the degree
of canalization is the mutational variance of a trait. A minimum in Vm corresponds to max-
imal canalization. In the present model, the maximal canalization that can be achieved on
the fitness ridge corresponds to the point where both locus components of the mutational
variance are equal, Vm,1 = Vm,2. The main result of Hermisson et al. (2003), however, was
that evolution does not maximize canalization on the level of the trait. Instead, strong
buffering only evolves at the locus with the higher mutation rate. In particular, for u1 > u2,
the locus effects are predicted to evolve such that the opposite relation holds for the locus-
specific mutational variances, i.e. u1γ

2
1〈f2

1 〉 < u2γ
2
2〈f2

2 〉. This means that the population is
expected to move to a quite eccentric position on the ridge where variation in the locus with
larger u keeps the population on the ridge and at high fitness, but variation in the other
locus would push it down the slope. The same qualitative prediction follows from the more
precise (S)HG formalism above.

To some extent, our numerical results confirm these expectations. In particular, evolution
of the genetic architecture does occur and buffering of the locus with the larger mutation
rate is the driving force. A quick approach of the fitness ridge is followed by a (slow)
movement on the ridge in the predicted direction (Figure 6). Also the inversion in the order
of locus mutational variances is clearly seen and still happens in a time-frame (≤ 100000
generations) of evolutionary relevance (Fig. 10). Nevertheless, there is often no convergence
to the equilibrium points even after millions of generations. In particular, if mutation rates
are low and differ strongly among loci, we observe a high degree of adaptive inertia, where
the population gets almost stuck in its approach of the equilibrium points.

We use the term “adaptive inertia” in the sense of Baatz and Wagner (1997). It refers to
a slowing-down of the adaptive process not as a result of weak selection, but because of
variational constraints. In the case of Baatz and Wagner (1997), these constraints result
from deleterious pleiotropic effects: Their “corridor model” describes selection on two traits,
one under directional selection and the other one under stabilizing selection. In a two-
dimensional plot spanned by the two traits, the fitness landscape thus forms an ascending
ridge. Baatz and Wagner (1997) assume that all mutations have effects on both traits.
Since the effects on the trait under stabilizing selection are almost always deleterious (i.e.
they lead off the ridge), progress in the adaptation of the trait under directional selection
is slowed or even stopped. Also in our model, approach to the equilibrium points is only
possible on a narrow fitness ridge with steep slopes. Single mutations tend to push the
population off the ridge. In contrast to the corridor model, variational constraints arise
from epistasis rather than from pleiotropy. In fact, for progress on the ridge, fine-tuned
changes at both loci are necessary. This becomes difficult, in particular, if the locus with
the (anyway) smaller mutation rate (locus 2 in the examples) evolves such that almost all
mutations are strongly selected against.

The analogy to Baatz and Wagner (1997) can be made even closer if we think of the trait
and its genetic architecture as of two different traits. There is then an almost necessary
pleiotropic relation between both traits. And evolution of an optimal genetic architecture
is slowed by deleterious side-effects of the mutations on the trait value itself. Our results
show that adaptive inertia then naturally results even in a continuum-of-alleles model.

Adaptive inertia does not itself depend on population size. In smaller populations, how-
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ever, fixation of sub-optimal mutations at the low-mutation-rate locus due to drift becomes
possible. Compensatory evolution at the locus with the larger mutation rate then leads to
large jumps of the evolutionary trajectory along the ridge. As a result, we obtain an irreg-
ular pattern, where long phases of stasis (dominated by inertia) are punctuated by large
stochastic jumps.

Stochasticity and inertia have a much larger effect on the mutational variance than on the ge-
netic variance and the phenotype mean. Figure 6 shows that evolution to the iso-phenotype
contour is very fast. Once the contour is reached, the mean phenotype is almost invariable
(apart from small stochastic fluctuations). Also VG has almost reached its equilibrium value
once the population is on the contour, although there is a slight and slow decrease as the
population evolves along the ridge (not shown). The same result holds for the mutation
load L = s(x̄2 + VG).

In sharp contrast, major changes of Vm and its locus components occur in this later phase
of the adaptive process. Since the mutational variance depends on the precise position of
the population on the fitness ridge, it is strongly influenced by adaptive inertia, stochastic
jumps, and large-scale fluctuations. This is a consequence of the fact that evolution of the
genetic architecture (resp. of Vm) is not itself a target of selection, but only a by-product of
selection for optimal x̄ and reduced VG. Interestingly, the same finding of slow convergence
and stochastic behavior holds for the variance in fitness, which (by Eq. 12) is proportional
to Vm.

Our results show the potential for the evolution of genetic architecture, but also clear limits.
On the one hand, there is a robust trend for the evolution of buffering, in particular at loci
with higher mutation rates. On the other hand, adaptive evolution of the genetic architec-
ture is slowed by inertia. Although we have analyzed these phenomena in a minimal model
of only two loci, they should play a similar role in more general multi-locus models. Indeed,
if a trait is under selective constraint (e.g. due to stabilizing selection) evolution of its
genetic architecture will often only be possible by compensatory mutations at multiple loci.
Adaptive inertia may then be an important factor to limit the evolutionary optimization of
the genetic architecture of a quantitative trait.
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6 Appendix

Calculations for finite population size Our formalism in the main text assumes an infinite
population size. Following Hermisson and Wagner (2004), we can extend the HG approx-
imation to include genetic drift. For finite populations, we need to consider the averages
across replicates in the dynamical equations (15) and (17). To a leading order approxima-
tion, we ignore all variances and covariances across replicates, i.e., we set E[V 2

i ] = E[Vi]2,
E[x̄f̄i] = E[x̄]E[f̄i], etc. Analogous assumptions are made in the well-known stochastic
versions of the Gaussian and HC approximations (e.g. Bürger 2000, p. 269). For notational
simplicity, we denote replicate averages again by Vi ≡ E[Vi], etc. Since genetic drift has
no directional effect on the locus means, we then recover the eigenvalue equation (18) in
mutation-selection-drift equilibrium. Since drift removes genetic variance from a population,
it enters the dynamical equation for the variance (17). If Ne is the diploid variance-effective
population size (2Ne number of haploids), this effect can be approximated by an additional
term −V/2Ne (Bürger 2000). We can then define a stochastic version of the HG approxi-
mation for the epistatic model as

E[∆Vi] ≈ −s(V 2
i + Viγ

2
i )〈f2

i 〉+ uiγ
2
i −

Vi

2Ne
. (A1)

In mutation-selection-drift equilibrium, E[∆Vi] = 0, this leads to the “Stochastic House-of-
Gauss” (SHG) approximation for Vi,

Vi =
γ2

i

2Gi〈f2
i 〉

(√
G2

i 〈f2
i 〉2 + 2(1 + Θi)Gi〈f2

i 〉+ 1−Gi〈f2
i 〉 − 1

)
, (A2)

where Θi = 4Neui is the standard population mutation parameter and Gi = 2Nesγ
2
i = 2Negi

measures the selection strength. Like in Eq. (21), the selection strength at each locus,
Gi〈f2

i 〉, depends on the epistatic effect of the genetic background (here: the other locus),
which is captured by 〈f2

i 〉. We then obtain from Eq. (A2) and Eq. (23)

V1 =
γ2
1z

2
√

G1G2

(√
G1G2z−2 + 2(1 + Θ1)

√
G1G2z−1 + 1−

√
G1G2z

−1 − 1
)

(A3)

and for V2 the same equation with γ2
1 and Θ1 replaced by γ2

2 and Θ2, and z replaced by
z−1. Using Eq. (24), we can again express

√
V1V2 in two ways as

√
V1V2 =

1
4Nes

(√
(
√

G1G2z + 1)2 + 2Θ2

√
G1G2z −

√
G1G2z − 1

)
(A4)

=
1

4Nes

(√
(
√

G1G2z−1 + 1)2 + 2Θ1

√
G1G2z−1 −

√
G1G2z

−1 − 1
)
. (A5)

and we obtain the following equation for z,

Θ1(Θ1+2)z−2+Θ2(Θ2+2)z2−2
√

G1G2(Θ1−Θ2)(z−z−1)−2(Θ1+Θ2+Θ1Θ2) = 0. (A6)

Note that the infinite-size limit (28) can be reproduced from (A6) by considering only the
leading order terms proportional to N2

e .
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Calculation of arc lengths In the following, we describe how to calculate the arc lengths.
Consider a population on the epistatic landscape. Its position on the landscape is described
by the average locus effects (reference effects) ȳ1 and ȳ2. Due to the selective constraint,
evolution (and stochastic fluctuations) of the population mostly occur along the fitness ridge,
which is a curved (hyperbolic) line in the (ȳ1, ȳ2) plane. As a consequence, averages over
replicates or across generations in the ȳi will introduce a bias and an apparent shift of the
population off the fitness ridge. An alternative parametrization that avoids this problem is
to use the mean phenotype x̄ and the arc-length α along the iso-phenotype contour. The
iso-phenotype contour that corresponds to x̄ is defined by the formula

y2 =
x̄− y1

1 + εy1
. (A7)

The intersection of this contour with the main diagonal y1 = y2 is at y1 = y2 = (
√

1 + εx̄−
1)/ε. The arc length α from this point to the point (ȳ1, ȳ2) is given by

α(ȳ1, ȳ2) =
∫ ȳ1

√
1+εx̄−1

ε

√
1 +

(1 + εx̄)2

(1 + εy1)4
dy1, (A8)

where we use the linkage-equilibrium value of the mean phenotype, x̄ = ȳ1 + ȳ2 + εȳ1ȳ2.

Large epistasis The HG approximation gives an accurate approximation for the phenotype
mean x̄ and the genetic variance VG over a wide range of parameter values. In particular,
the influence of the strength of epistasis is shown in Figure A1. With increasing epistasis,
the population deviates ever more strongly from the optimal phenotype contour in the di-
rection of the flatter slope of the fitness landscape. As a consequence, the deviation of the
mean phenotype from the optimum, |x̄|, increases and the genetic variance VG decreases.
For very strong epistasis (ε = 8 and ε = 16 in Figure A1), however, this trend is limited
or even reversed. The reason is a peculiarity of the model that has already been discussed
by Hermisson et al. (2003). It is easy to see that the phenotype (and fitness) landscape
of the model is point symmetric with respect to (y1, y2) = (−1/ε,−1/ε). At this point
the landscape is completely flat in the direction of both loci, we have f1 = f2 = 0 and
x = −1/ε. Once the mean phenotype of the population has reached this point, it will not
move any further even for stronger epistasis. In a flat landscape, the additive component
VA of the genetic variance is zero, i.e. all genetic variance stems from the epistatic compo-
nent. Formally, the population crosses over to a different stable equilibrium, called VA = 0
equilibrium in Hermisson et al. (2003). The HG predictions for this equilibrium can easily
be derived. Assume equal loci, for simplicity. From f̄ = 0, we then obtain x̄ = −1/ε from
(7) and 〈f2〉 = ε2V from (10). Inserting 〈f2〉 into (21), we can solve for V , yielding

V =
γ2

4

(√
1 +

8u

sγ2
− 1

)
(A9)

and obtain VG (and everything else) from this solution. The predictions are included as
dashed lines in Figure A1. They produce a reasonable fit with the simulation data. Since
natural traits usually do not have a vanishing additive genetic variance, this parameter
regime may be of little practical relevance, however.
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Figure A1: Equilibrium mean phenotype x̄ and genetic variance VG as a function of the epistasis
parameter ε. Parameters at both loci are equal, with γ2 = 0.05 and mutation rate as indicated. The
population size is Ne = 10000. Error bars are as in Fig. 2. The solid line is the prediction for the
HG approximation. For large epistasis, transition to the VA = 0 equilibrium occurs (dashed line; see
appendix text for details).
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Figure A2: The effect of “dominance” in the model with identical loci and epistasis. The plots
show the genetic variance VG as a function of the dominance parameter δ for various values of the
the per-locus mutation rate u in a large population (Ne = 10000) for ε = 2 and γ2 = 0.05 (cf., Fig. 3
B1-B3). Note that error bars for the mean standard deviation over time are not shown. Error bars
for the standard deviation of replicate means (corresponding to lower error bars in Fig. 2, 3 and 8)
are too small to be visible. The horizontal dotted lines show the HG predictions for VG at δ = 0.

Dominance We can extend the model to include interactions within a locus, or dominance,
by adding terms proportional to y2

1 and y2
2,

x = xopt + y1 + y2 + εy1y2 + δ(y2
1 + y2

2) . (A10)

It turns out that this model is no longer analytically tractable within our framework, even
in the absence of epistasis, ε = 0. The formal reason is that the equilibrium distribution
at both loci is no longer symmetric. Therefore, the odd cumulants of thrid and higher
order no longer vanish in linkage equilibrium. To check the stability of our results to the
inclusion of dominance, we have performed limited additional simulations. As shown in
Figure A2, the equilibrium genetic variance is most strongly affected for large mutation
rates and positive values of the dominance parameter δ. In contrast, negative values of δ
have at most a slight effect. Note that the simulation results support our general observation
that gene interactions tend to reduce the equilibrium variance relative to the additive case.
On a global scale, inclusion of quadratic dominance terms leads to strong changes of the
phenotype and fitness landscape. For example, if the dominance parameter is δ = 1, the
iso-phenotype contours (and hence the fitness ridge) are no longer curved, but are straight
lines parallel to y2 = −y1. Since the fitness landscape is translationally invariant in this
direction, there is also no selective force to drive the population along the ridge. Our
results for adaptive inertia can no longer apply in such a case. In contrast, the curvature of
phenotype and fitness contours becomes stronger for negative δ.
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