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Abstract. Consumer–resource systems with linear arrays of substitutable resources form
the conceptual basis of much of present-day competition theory. However, most analyses of
the limiting similarity of competitors have only employed consumer–resource models as a
justification for using the Lotka-Volterra competition equations to represent the interaction.
Unfortunately, Lotka-Volterra models cannot reflect resource exclusion via apparent
competition and are poor approximations of systems with nonlogistic resource growth. We
use consumer–resource models to examine the impact of exclusion of biotic resources or
depletion of abiotic resources on the ability of three consumer species to coexist along a one-
dimensional resource axis. For a wide range of consumer–resource models, coexistence
conditions can become more restrictive with increasing niche separation of the two outer
species. This occurs when the outer species are highly efficient; in this case they cause
extinction or severe depletion of intermediate resources when their own niches have an
intermediate level of separation. In many cases coexistence of an intermediate consumer
species is prohibited when niche separation of the two outer species is moderately large, but
not when it is small. Coexistence may be most likely when the intermediate species is closer to
one of the two outer species, contrary to previous theory. These results suggest that
competition may lead to uneven spacing of utilization curves. The implications and range of
applicability of the models are discussed.

Key words: coexistence; competition coefficient; consumer–resource system; interspecific competition;
limiting similarity; Lotka-Volterra model; nonlinearity.

INTRODUCTION

The concept of limiting similarity, as introduced by
MacArthur and Levins (1967), states that two compet-
itors have to be separated by some minimum distance in
a one-dimensional niche space for coexistence with a
third, intermediate competitor to be possible. However,
subsequent work (May 1974, Roughgarden 1974) on
similar Lotka-Volterra models showed that this conclu-
sion depended on the assumption that the intermediate
species had the same carrying capacity as the two outer
species. Permitting a greater carrying capacity of the
intermediate species allowed coexistence for any degree
of separation of the outer species, but the range of
relative carrying capacities permitting coexistence was
very narrow when the niche separation of the outer
species was relatively small. (Niche separation is
measured as the distance on the resource axis between
the means of the two utilization curves.) This result
suggested that the limiting similarity of MacArthur and
Levins was not an absolute prohibition on coexistence of
sufficiently similar species. The idea of an absolute limit

(where coexistence was impossible for small enough
niche separations) was given another justification by
May and MacArthur (1972). They added stochasticity to
the same Lotka-Volterra system (see also May 1973,
1974), and suggested that environmental variability
made indefinite coexistence impossible for sufficiently
small niche separations of three or more species
arranged along a one-dimensional niche axis. However,
subsequent work again showed that none of these
models had rigorously demonstrated the existence of a
firm limit beyond which coexistence was impossible, or
even highly unlikely (Abrams 1975, 1976, 1977, 1980b,
1983, Turelli 1978, 1981). In particular, the analysis of
stochastic models of May and MacArthur had made
unwarranted assumptions about the applicability of
linear approximations that led directly to the conclusion
of an absolute limit to similarity. While these reanalyses
of the May–MacArthur models have gone unchallenged
in the literature, they have been ignored by some recent
authors who have discussed limiting similarity (e.g.,
Scheffer and van Nes 2006, May et al. 2007). Thus, the
current state of the theory of coexistence of three
competitors along a one-dimensional niche axis may be
summarized as follows: Coexistence of all three is
possible for any separation of the outer species in the
array, but coexistence occurs over a narrower range of
consumer carrying capacities (i.e., efficiencies) as the
niche separation of the outer species become smaller.
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Because there did not appear to be any absolute limit
to similarity for competitors that were linearly arrayed
in niche space, Abrams (1983) proposed that the term
‘‘limiting similarity’’ should instead be used to describe
the system-specific relationships between similarity and
the range of conditions (parameter values) allowing
coexistence. This conception of limiting similarity will be
described here as a similarity–coexistence relationship.
Regardless of how the term ‘‘limiting similarity’’ is
defined, there seems to be nearly universal agreement
that the range of conditions (i.e., the extent of parameter
space) allowing coexistence decreases monotonically
with decreasing niche separation of adjacent consumer
species (e.g., May 1974, Abrams 1983). A recent analysis
of many-species coexistence concluded that, while an
absolute limit did not exist, ‘‘. . . the idea of shrinking the
possibility of coexistence with increasing similarity is
general’’ (Meszéna et al. 2006:79).
MacArthur realized that it was necessary to determine

whether this model was consistent with more mechanis-
tic models of resource consumption. Shortly after his
seminal work with Levins, he derived a Lotka-Volterra
model as an approximation to an explicit consumer–
resource model (MacArthur 1968, 1970, 1972). This
allowed him to relate the competition coefficients of the
Lotka-Volterra model to the degree of overlap in the
spectrum of utilized resources. The importance of a
consumer–resource approach was reemphasized by
several early studies showing that different consumer–
resource models could lead to different conclusions
regarding coexistence and similarity–competition rela-
tionships than did the MacArthur models (Abrams
1975, 1977, Schoener 1976). In his derivation, MacAr-
thur made the tacit assumption that consumers were not
efficient enough to cause extinction of any resources. It
was pointed out by Hsu and Hubbell (1979) and Abrams
(1980b) that such extinctions could occur. Subsequent
work showed that, when resources do become extinct,
many predictions of the Lotka-Volterra model are
changed (Abrams 1998, 2001, Abrams and Nakajima
2007, Abrams et al. 2008a, b). However, the impact of
such exclusion on the question of limiting similarity in a
continuous linear niche space has not been examined. In
this article we will use consumer–resource models similar
to those introduced by MacArthur (1968, 1970, 1972) to
determine: (1) whether an absolute limit to similarity
exists; and (2) whether the range of consumer param-
eters allowing coexistence always declines as consumer
species become more similar in their resource use. We
pay particular attention to scenarios with high consumer
efficiencies. Following MacArthur and Levins (1967), we
examine cases with two or three competing consumer
species.

THE MODEL

Most of our analysis treats a consumer–resource
model nearly identical in form to the one considered by
MacArthur (1970, 1972); the model has a linear array of

three consumer species where the two outer species are
equivalent except for the position of their utilization
curves. A continuous linear array of logistically growing
resources is used by the consumer species, each of which
has independent linear functional responses to the
resources it consumes. The utilization curve plots the
relative value of the slope of a given consumer’s
functional response to each resource against the resource
parameter that determines that slope (e.g., size of a food
item); here the utilization function is denoted by C, and
resource position by x. Utilization curves having several
different shapes are explored. We extend previous work
by considering some systems in which resource growth is
not logistic. For all models, the dynamics of consumers
and resources at position x are described by

dRðxÞ
dt

¼ fx½RðxÞ% &
X3

i¼1

Ciðx; yiÞNiRðxÞ ð1aÞ

dNi

dt
¼ Ni bi

R
Ciðx; yiÞRðxÞdx & di

! "
: ð1bÞ

Here R(x) is the density of resources at position x on the
resource axis, and Ni is the density of consumer species i.

The resource use phenotype of consumer i is yi, which
denotes the position of its utilization curve on the
resource axis. The resource utilization curve for con-
sumer species i is Ci(x, yi), its resource conversion
efficiency is bi (assumed identical for all resources), and
its per capita death rate is di. The integral in Eq. 1b is
taken over the range of resource used by consumer
species i, and it represents the total resource intake rate.
The resource at position x has an instantaneous
population growth rate in the absence of consumption
that is described by fx. In MacArthur’s model (1970),
and in the initial analysis here, fx is assumed to be a
logistic function with parameters that are independent
of x (i.e., fx ¼ rR(x)[1 & R(x)/K ]. The identical growth
functions allow both K and r to be scaled to one by
measuring resource density in units of K and time in
units of 1/r. Throughout this article, yi gives the smallest
resource (the minimum x) that is utilized by consumer i,
and the utilization curve is only positive for x between yi
and yi þ 1. In this analysis, the consumer species are
assumed to have identical shapes for their utilization
curve, so we drop the subscript i on C. In most of the
analysis, the utilization curve is given by the bell-shaped
function, C(x, yi)¼30(x& yi)

2(1& (x& yi))
2 for values of

x between yi and yi þ 1; C ¼ 0 elsewhere. The curve is
scaled (here by a factor of 30) so the total area under the
curve is one; this makes the standard deviation ;0.189.
An alternative utilization curve with a parabolic shape is
also studied; this is given by C(x, yi)¼ 6(x& yi)(1& (x&
yi)) for values of x between yi and yi þ 1, and C ¼ 0
elsewhere (the standard deviation is ;0.224). We avoid
the more commonly used Gaussian curves because of the
biological implausibility of the long tails of this function
(Wilson 1975), although we have repeated all of the
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work using a truncated Gaussian curve with a standard

deviation of 0.189. The assumptions that C is indepen-

dent of i and that the nonzero range of C is finite allow

the niche ‘‘separation’’ between species i and j to be

measured by jyi & yjj. The above assumptions about K,

b, and C imply that d , 1 is required for a consumer to

exist, since b (here set equal to one) multiplied by the

maximum intake rate (the integral of CK, which is one)

must be greater than the per capita mortality rate. These

assumptions also imply that d is equal to the ratio of the

per capita resource intake rate when the consumer

population is at equilibrium and the intake rate when

the consumer population density is close to zero.
Therefore, d measures the minimum resource intake
required for population growth, and a low d implies a
high efficiency of resource use.
We will quantify the ability of a species to coexist with

others by the range of mortality rates that allows mutual
invasion of the intermediate and outer species; this range
will be referred to as the ‘‘coexistence bandwidth’’
(following Armstrong 1976; see also Abrams and Holt
2002). Mortality divided by conversion efficiency gives
the resource intake rate producing zero population
growth, so either parameter would yield the same
measure of coexistence bandwidth. Here we only
provide results using the mortality rate. In most of the
analysis, we assume the two outer consumer species have
an identical death rate, d1, and the middle species has a
death rate d2. The coexistence bandwidth is then the
range of values of d2 that allow coexistence of all three
consumers. Values of d2 that lie above this range result
in exclusion of the middle species, while d2 below this
range produces exclusion of both outer species. An
absolute limit to similarity occurs if the coexistence
bandwidth is zero for a range of niche separations of the
outer species.
MacArthur and Levins (1967) examined coexistence

with an intermediate species whose utilization curve was
equidistant from each of the two resident species. They
assumed this was the point at which coexistence was
most likely to occur. Here we explore this scenario, but
also explore the full range of niche positions for the
intermediate species. We calculated the equilibrium
resource and consumer densities numerically using
Mathematica 6.0.0 (Wolfram 2007). Results by Chesson
(1990) and Haygood (2002) show that these equilibria
will always be globally stable. These findings also justify
the mutual invasion approach we use to determine
coexistence.

RESULTS

Our results show how the coexistence bandwidth is
affected by the mortality rate of the outer consumers
and by the functional forms of both the utilization
curves and resource growth. For logistic resource
growth, we are particularly interested in determining
the impact of death rates that are low enough to produce
resource exclusion. Fig. 1 shows the coexistence
bandwidth for logistic resources that have identical
growth parameters, and for consumers that have the
bell-shaped utilization curve described in the paragraph
following Eq. 1. The x-axis of the figure gives the niche
separation of the two outer species. The middle species is
assumed to be exactly intermediate between the outer
species. The three panels are based on different mortality
rates (d ¼ 0.05, 0.10, and 0.20) for the outer species. In
Fig. 1A the coexistence bandwidth is zero when the two
outer species have resource separations between ;0.57
and 0.65; for this range of separations it is impossible for
the exactly intermediate species to exist regardless of its

FIG. 1. The maximum (solid lines) and minimum (dashed
lines) mortality rates of an exactly intermediate species (species
2), which allow it to coexist with two otherwise equivalent
species (species 1 and 3) having the resource utilization curve
separation given by the x-axis. The calculations assume logistic
resource growth, and all consumer species have a bell-shaped
utilization curve with a range of one unit on the resource axis
[C(x, yi) ¼ 30(x & yi)

2(1 & (x & yi)]
2 for values of x between yi

and yiþ 1; C¼ 0 elsewhere). Each panel of the figure illustrates
a different mortality rate for the outer two species. The
coexistence ranges for mortalities higher than 0.20 are similar
in shape to those shown in panel C. Per capita mortality, d, is
measured as a fraction of the maximum mortality allowing
existence in the absence of competition. Niche separation is
measured relative to the width (range) of the utilization curve
for a given species.
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efficiency. If we assume a truncated Gaussian curve with
the same standard deviation, this range is reduced to
0.58–0.63. Fig. 1B, C show that the pattern in Fig. 1A is
dependent on low mortalities (high efficiencies). Panels
B and C indicate that coexistence of the intermediate
species is possible for some range of mortalities of the
middle species, although that range may be quite narrow
for some separations of the outer species (e.g., separa-
tion close to 0.55 in Fig. 1B, which assumes d ¼ 0.1).
Fig. 2 shows the distributions of resource abundances

produced by the two outer species; these distributions
reveal how the coexistence bandwidths in Fig. 1 arise.
Fig. 2A, which assumes a niche separation of 0.6, shows
the resource abundance distribution for three mortality
rates. When d ¼ 0.05 resources are extinct over an
interval of length 1.08 centered on the midpoint between

the two outer consumers. Extinction is due to the high
combined consumption of these resources by the two
outer consumer species. An exactly intermediate con-
sumer would therefore not have any resources available
within its range; this condition is obviously sufficient to
prevent invasion of the middle species. The other two
consumer mortality rates illustrated in Fig. 2A allow
positive densities for a range of intermediate resources,
which permits invasion by an intermediate consumer
that has a low enough mortality rate. For a low
mortality of the outer consumers (e.g., d ¼ 0.05), their
niche separation determines which resources are extinct
at equilibrium. If the utilization curves of the outer
species are separated by ,0.57 units, then the interval of
extinct resources is ,1 in width. In this case a central
species can invade and survive on the resources available

FIG. 2. The equilibrium resource abundances when the two outer consumers are at equilibrium in sympatry for the system
described in Fig. 1. The outer consumers are located symmetrically on either side of the niche position at the middle of the x-axis
(0.3 in Panel A and 0.5 in Panel B). Panel A assumes a niche separation of 0.6 and illustrates resource densities for three different
mortality rates. Panel B assumes a mortality of d¼ 0.05 and presents resource densities for three different separations. In Panel A,
only the mortality of 0.05 produces a range of extinct resources with a span .1 on the resource axis. In Panel B, only a separation
of 0.6 produces this result. Resource abundance is measured relative to a maximum abundance of 1. See Fig. 1 for an explanation of
niche separation and mortality.
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in the tails of its utilization curve. If the two outer
species are separated by an interval longer than 0.65, an
isolated range of extant resources exists around the
midpoint between the ranges of the two outer species.
This central set of resources allows invasion of a
sufficiently efficient middle species. Thus, 0.57–0.65 is
the range of outer-curve separations for which there is
an ‘‘absolute’’ limit to similarity for an exactly interme-
diate species when d¼ 0.05. Fig. 2B examines the impact
of consumer niche separation on the resource abundance
distribution, given d¼ 0.05. Too small a separation (0.4)
only produces a relatively short interval of the resource
axis where resources are extinct, while too large a
separation (0.8) allows the existence of resources that are
close to midway between the maxima of the two
utilization curves.

Coexistence becomes more difficult with increasing
niche separation when the upper boundary of the
coexistence region decreases more rapidly than the
lower boundary. In Fig. 1 this occurs for separations
large enough that the lower boundary is close to zero
(i.e., when the outer species are relatively immune to
exclusion by the intermediate one). The upper boundary
decreases because, as the separation of the outer species
expands, the increase in total population size of the two
outer species exceeds the decrease in the sum of their
utilization constants, C. This phenomenon is reversed at
high separations, when the population sizes of the outer
species approach their carrying capacities. The lower
boundary of the coexistence region hits zero (and
therefore cannot decrease further) when each outer
species is able to exist on the resources that it uses
exclusively, and therefore cannot be excluded by the
intermediate species, regardless of its efficiency. Under
previous analyses of the Lotka-Volterra model (e.g.,
May 1973, 1974), the lower boundary of the coexistence
region always decreased more rapidly than the upper
boundary at low niche separations. In addition, neither
boundary reached zero. These features are consequences
of the inability of the Lotka-Volterra model to reflect

resource exclusion and the absence of exclusive resourc-
es when the utilization curves have infinite tails.
The qualitative features of Fig. 1 do not depend

sensitively on utilization curve shape. Similar results for
truncated Gaussian curves were mentioned in the first
paragraph of the Results section. Table 1 presents some
results comparing the utilization curves used in Figs. 1
and 2 with results for the parabolic utilization curve
given previously. For both utilization curves, the
consumer mortality must be lower than some threshold
value for the interval of extinct resources to be wider
than the range of the utilization curve for the
intermediate species; the length of the interval increases
with decreasing mortality. Similarly, for both utilization
curves, the range of niche separations for the outer
species resulting in extinct resource over a sufficient
interval increases as the mortality rate of the outer
species decreases. The figures presented in Table 1 show
that the parabolic utilization curve produces an absolute
limit to similarity over a wider range of mortality rates
and, for a given mortality rate, produces limits over a
wider range of consumer niche separations. The
curvature of the utilization function determines how
far apart the two outer curves must be before the
resources halfway between the maxima of the two curves
have positive densities. Curves characterized by negative
second derivatives, like the parabola, increase the range
of niche separations where the resources are extinct
(Table 1; Abrams et al. 2008a). Conversely, if the
utilization curves have positive second derivatives at all
positions on the resources axis, as in the Laplace
distribution (Roughgarden 1974) and similar distribu-
tions in Abrams et al. (2008b), then much lower
mortalities are required to produce an absolute limit.
The limit to similarity at low mortality rates reflected

in Fig. 1A and Table 1 differs significantly from the
absolute limit predicted by much of the previous
literature. In the present case, coexistence of two
competitively similar but displaced ‘‘outer’’ consumer
species with an exactly intermediate consumer is possible
when the two outer species have utilization curves that

TABLE 1. Mortalities and niche separations producing an absolute limit to similarity for two
different utilization curves C(x, y).

Mortality rate
Separations producing ranges of
extinct resources .1 unit in width

Maximum width of range
of extinct resources

Model 1; bell-shaped; C(x, y) ¼ 30 (x & y)2[1 & (x & y)]2

0.06 0.63 1.0
0.05 0.57–0.65 1.08
0.025 0.43–0.73 1.30
0.0125 0.33–0.79 1.46

Model 2; parabolic; C(x, y) ¼ 6(x & y)[1 & (x & y)]

0.07 0.67–0.68 1.01
0.05 0.53–0.74 1.21
0.025 0.35–0.82 1.47
0.0125 0.24–0.88 1.64

Note:Niche separation is measured as the distance on the resource axis between the means of the
two utilization curves. See The model and the Results sections for further explanation.
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are either very close to each other, or highly displaced,
but not for intermediate separations. In other words,
there is both a limiting similarity and a limiting
dissimilarity of the outer species where coexistence with
an exactly intermediate third species becomes possible.
The coexistence bandwidth at low to moderate separa-
tions is rather narrow in all panels of Fig. 1, but it is
difficult to translate this into a probability of coexistence
of three species. The range of mortalities allowing
coexistence at some moderately small separations
represents a significant fraction of mortality rate for
the outer species, suggesting that coexistence is not
difficult. However, the upper limit of that range is
generally much lower than mortality of the outer species
(e.g., for a niche separation of 0.25 in Fig. 1A). This
suggests that an intermediate species that is able to
coexist is not likely to be closely related to the outer
species.
So far we have only considered coexistence when the

intermediate species is exactly midway between the outer
species. We now examine situations when the interme-
diate species has a utilization curve closer to that of one
of the two outer species. Numerical results show that
coexistence is always possible for some range of niche
positions of the intermediate species. Fig. 3A is based on
the same system as Fig. 1A (d¼ 0.05) for a separation of
0.6 between the two outer species. However, Fig. 3A
shows that three-species coexistence is possible when the
utilization curve of the intermediate species is located
asymmetrically with respect to the outer species. This
figure is representative of all the examples we have
examined in which an equidistant intermediate species is
always excluded. In all of these cases, coexistence is
possible for a range of niche separations close to either
resident, and impossible for a range of separations close
to the midway point between the two outer species. An
asymmetrical location close to one outer species allows
the intermediate consumer access to some nonextinct
resources. Because it has fewer resources available, the
intermediate species must be more efficient than the
outer species (d2 , d1). However, the maximum
bandwidth within the zone of coexistence is character-
ized by d2 much lower than d1, again suggesting that a
coexisting intermediate species would usually not be
closely related to the outer ones. Fig. 3B presents the
range of mortalities allowing coexistence calculated
assuming that no resources go extinct. Here the
bandwidth is always nonzero and is maximized at the
midway point (0.30). Because the consumer carrying
capacities are given by 1& d in this example, the distance
between the two lines in Fig. 3B also describes the width
of the range of carrying capacities allowing coexistence
in the Lotka-Volterra model of MacArthur and Levins
(1967) when the outer species have a carrying capacity of
0.95.
In most previous work on limiting similarity, similar-

ity has been measured using ‘‘d/w,’’ the ratio of the
separation of utilization curves to their standard

deviation. May (1973, 1974) suggested the rough rule
that d/w . 1 was required for coexistence to be likely,
and that rule is still widely quoted (e.g., Scheffer and van
Nes 2006, May et al. 2007). Assume that coexistence of
all three species considered here is defined as ‘‘likely’’ if
the range of mortalities of the intermediate species that
allows coexistence is at least 20% as large as mortality of
the outer species. Given the standard deviation of 0.189

FIG. 3. (A) The limiting mortalities of an intermediate
species that allow coexistence of three species, plotted as a
function of the separation of the leftmost species and the
intermediate species. The two outer species have resource
utilization curves separated by a distance of 0.6 on the resource
axis and have per capita mortality rates of 0.05. All three
species have the same bell-shaped utilization curve assumed in
Figs. 1 and 2. Coexistence is possible for per capita mortality
rates of the intermediate species that lie between the solid and
dashed curves. An identical figure describes coexistence
boundaries when the intermediate species is closer to the
rightmost resident species. Coexistence is impossible for any
separation between ;0.25 and 0.3, although the persistence
boundaries are so narrow for separations between 0.2 and 0.25
that coexistence is biologically unrealistic for such cases. (B)
The corresponding limits on d if calculation were based on the
MacArthur and Levins (1967) Lotka-Volterra model, for which
K ¼ 1 & d. This implicitly assumes that the resources all have
positive densities, which is not the case for d¼0.05. Because K¼
1 & d, the width of the interval of mortalities allowing
coexistence is exactly equal to the width of the interval of
carrying capacities. Panel B implies that, when mortality is high
enough that all resources persist, the coexistence bandwidth is
greatest when the middle species is equidistant from the two
outer species. Distance is niche separation, measured relative to
the width of a single utilization curve. Per capita mortality, d, is
measured relative to the maximum mortality that allows
existence of a single consumer species.
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for the utilization curve used in Fig. 1, the minimum
separation of the two outer species required for likely
coexistence represent d/w measures of 3.55, 3.12, and
2.17 in Fig. 1A, B, C, respectively. Following invasion
by the intermediate species, these correspond to
interspecies d/w values of 1.78, 1.56, and 1.08. Only
the spacing for Fig. 1C (where no resources went extinct)
corresponds well to the traditional rule.
Before leaving the case of logistic resources, we

discuss coexistence in a system having only two
consumer species. In a two-species system with utiliza-
tion curves having finite, nonidentical ranges, each
species has some exclusively utilized resources. Persis-
tence on this range of exclusively utilized resources is
always possible once mortality is sufficiently low. Thus,
for two species having very low mortality rates and a
moderate separation of their utilization curves, exclu-
sion of one species cannot be produced by lowering the
death rate of the other. Furthermore, there is no
absolute limit to similarity; there is always some range
of mortality rates of one species allowing coexistence,
given a fixed mortality of the other species. It is also true
that the bandwidth increases with increasing niche
separation in this case.

Model variations

Here we consider three variations of the framework
introduced in the section titled The model to determine
whether the results are robust to these changes in the
form of the model.

Nonuniform carrying capacity function.—So far, we
have assumed a uniform resource spectrum, but it is more
common to assume that resource productivity is a
unimodal function of position on the resource axis.
Calculations were therefore made assuming a Gaussian
distribution of resource carrying capacities having a
maximum at position zero on the resource axis. To
maintain a constant total productivity over the range of
resources that could be used by two overlapping ‘‘outer’’
species, the maximum value of the K function was
adjusted for different standard deviations so that the
integral from&1 toþ1 was constant. The outer consumers
were assumed to be located symmetrically on opposite
sides of the maximum of the resource distribution. This
means that the equilibrium allopatric population densities
of the consumers decrease as their niche separation
increases, because the resource they capture at the highest
rate has a smaller K. As a result, a lower mortality rate of
the outer consumer species is required for intermediate
resources to be driven extinct. This does not eliminate the
phenomenon of an absolute limiting similarity, but it does
mean that such a limit requires lower mortality rates. For
example, if the standard deviation of the K distribution is
0.18 (close to the standard deviation of the bell-shaped
utilization curve employed here), and the separation of
utilization curves is 0.6, a mortality rate less than ;0.032
is required for an absolute limit to similarity (compared to
a mortality between 0.05 and 0.06 in the case of a flat
resource distribution). The change in the coexistence
bandwidth for increasing separation of the outer species is
similar to that for the case of a flat resource distribution
illustrated here.
Abiotic resource growth.—The abiotic resource growth

model assumes that fx in Eq. 1a is given by I(x) & ER,
where I(x) and E are an input rate and an exit rate per
unit resource density. In spite of its name, this model
frequently applies to living organisms that can move in
and out of vulnerable states (Abrams 1977, Abrams and
Walters 1996). The fact that resources with a nonzero I
cannot go extinct implies that an absolute limit to
similarity cannot occur. The absolute limit shown
previously requires that resources are completely absent
from a large interval on the resource axis. Nevertheless,
the two phenomena underlying the decline in coexistence
bandwidth with increasing separation of the outer species
shown for logistic resource growth still occur with abiotic
growth. The upper boundary of the bandwidth decreases
over a range of low to intermediate separations because
the net exploitation of intermediate resources increases.
The lower boundary decreases more rapidly than the
upper boundary at low separations, but then reaches zero
once separation is great enough that each of the outer
species can exist on their exclusive resources alone. The
result is that in many systems the coexistence bandwidth
initially expands with greater niche separations, and then
contracts, before expanding again at high separations.
Under the logistic model of resource growth, this

FIG. 4. The coexistence bandwidth under the same assump-
tions as in Fig. 1B but for a system with abiotic rather than
logistic resource growth. The resource growth equation has
parameters I ¼ 1 and E ¼ 1, for input rate and exit rate. The
outer consumer species both have a mortality d ¼ 0.10. The
coexistence bandwidth increases from a separation of zero to
;0.23 units on the resource axis, at which point the lower
boundary of d2 reaches zero. At this point, the bandwidth is
0.0832 units of mortality. At larger separations, the intermedi-
ate species cannot exclude the outer species regardless of its
mortality. The bandwidth then decreases until the maximum d2
reaches its minimum value of 0.0769 at a separation of 0.41.
The bandwidth increases for larger separations but does not
exceed the value at a separation of 0.23 until separation reaches
0.58. See Fig. 1 legend for definitions of niche separation and
mortality, d.
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phenomenon was only observed when resource exclusion
occurred for some range of the resource axis.
Fig. 4 is an example of this phenomenon for a model

with abiotic resource growth having a uniform abun-
dance distribution (I(x)¼E¼ 1), assuming the standard
bell-shaped utilization curve used in Fig. 1. While the
coexistence bandwidth is relatively wide for even
moderate separations, it does contract by ;7.5% as
niche separation increases from ;0.23 to 0.41. The
bandwidth does not exceed its value for a separation of
0.23 until separation exceeds ;0.58. The shape of these
boundaries is relatively insensitive to the parameters of
the model. Most biological resources are likely to have
growth equations consisting of biotic and abiotic
elements. Immigration of the resource from other
habitats that lack consumers, or transitions of resource
into a vulnerable size/age class represent ‘‘abiotic’’
elements in models of living resources. In such a case,
the contraction of the coexistence bandwidth with
increasing niche separation will be intermediate between
the large values shown in Fig. 1 and the more modest
values shown in Fig. 4.
Unequal efficiencies of outer consumer species.—There

are many ways that systems with unequal efficiencies of
the two outer species can differ from the one considered
here. However, unequal mortality does not eliminate the
phenomenon of an absolute limit to similarity. If either
of the two outer species has a high enough mortality,
there will be intermediate resources and the absolute
limit will not exist. However, absolute limits do not
require that the mortalities of the outer species be
approximately equal. If, for example, the two outer
species are separated by a distance of 0.6, and the
previous model is modified so that d3 (the mortality of
species 3) differs from d1 (with d1 ¼ 0.05), an
intermediate zone of resource exclusion .1 unit in
width on the resource axis occurs for all values of d3
between just above zero to just below 0.09. In this case,
it is again possible for invasion and coexistence to occur
if the intermediate species is closer to the higher
mortality resident, and its own mortality falls within a
narrow range of values.

DISCUSSION

Can an absolute limit to similarity exist?

The original analysis of limiting similarity by
MacArthur and Levins (1967) proposed that invasion
and coexistence of an intermediate species is impossible
for some range of separations of two resident compet-
itors. This conclusion rests on the assumption of equal
consumer efficiencies, required for equal consumer
carrying capacities (May 1974, Abrams 1975). This
does not seem to be warranted. Without this assump-
tion, there is no absolute limit to similarity in the
Lotka-Volterra model used by MacArthur and Levins
(1967), as shown by May (1974). May’s (1974) analysis
of this deterministic model suggested that the coexis-
tence bandwidth decreased with decreasing separation

of resource utilization curves, a conclusion supported
by subsequent studies (e.g., Abrams 1975, 1983,
Meszéna et al. 2006). The reanalysis of MacArthur’s
consumer–resource model (and variations thereof)
presented here do not agree with previous results on
either the absolute or relative conceptions of limiting
similarity. In each case, the difference in results is a
consequence of taking into account the impact of
resource exclusion and/or depletion on the competition
between consumer species.

Our results show that an absolute limiting similarity
can exist in cases where consumers are efficient and have
one-dimensional partitioning of biotic resources. How-
ever, this result must be qualified by noting that there is
always a possibility for invasion and coexistence by
intermediate species that fall within a restricted range of
niche positions that are closer to one of the resident
species and have efficiencies of resource utilization
sufficiently higher than either resident (e.g., sufficiently
lower mortalities). These separations allow the middle
species access to some resources, and the lower mortality
gives it the competitive advantage required to avoid
exclusion by the closer of the two outer species. Low
resource immigration rates prevent the ‘‘absolute’’ limit
that can occur under the pure logistic model, but the
mortalities of the intermediate species that are required
for coexistence are so low, and the range of those
mortalities is so narrow, that coexistence conditions are
biologically implausible.

Coexistence bandwidth can decrease
with increasing niche separation

Our results also show that a broad range of models
and parameters can result in the coexistence bandwidth
decreasing with greater separation of the outer two
species in a linear array of three species. This outcome is
associated with high consumer efficiencies (e.g., low
mortalities), and is observed for an intermediate range
of separations of the outer two species. Over this range
of niche separations, moving the utilization curves of
two consumers further apart can result in a broader
range of severely depleted or extinct resources. High
consumer efficiency implies that the maximum mortality
of the intermediate species allowing coexistence decreas-
es rapidly with increasing niche separation. The mini-
mum mortality decreases rapidly at low separations, but
then decreases more slowly (or does not change) because
this minimum approaches (or reaches) zero when the
outer consumers have high enough efficiency and niche
separation.

Higher order interactions

The Lotka-Volterra model assumes that the compe-
tition coefficients between any pair of species are
independent of the presence or absence of any other
competitors. Consumer–resource models with small
numbers of resources suggest that this is generally not
the case (Abrams 1980a). The models analyzed here also
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exhibit a strong dependence of the competition coeffi-
cients characterizing a pair-wise interaction on the
presence or absence of additional competitors. Because
competition coefficients are based on consumption of
extant resources, these coefficients are bound to change
with species addition or removal when the range of
extinct resources changes. In the system considered here,
depletion or extinction of intermediate resources by an
intermediate consumer will reduce competition between
the outer species.

Relationship to other literature

Two papers have results that superficially appear
similar to those presented here, but are actually quite
different. Roughgarden (1974) analyzed variants of the
MacArthur and Levins (1967) Lotka-Volterra model,
and showed that if the intermediate species had a
carrying capacity somewhat greater than the residents,
invasion by the intermediate species could be possible at
both high and low, but not intermediate, separations of
the outer species. This was termed a ‘‘similarity barrier,’’
and it is reflected here in the fact that upper limit of d2 is
minimized by intermediate separations in Figs. 1 and 4
in this paper. However, Roughgarden’s ‘‘similarity
barrier’’ did not measure the coexistence conditions for
all three species; it measured only invasion of the middle
species. While Roughgarden (1974) also suggested that
three-species coexistence should be easier for both large
and small separations of the outer species, this was not
supported by quantitative analysis, and was not
observed in our reanalysis of analogous consumer–
resource models, even when resources did not go extinct.
In the second related paper, Abrams (1998) analyzed
competition using two-consumer-two-resource models
in which extinction of resources was considered, and
showed that the change in population density caused by
the competing consumer was maximized at intermediate
levels of similarity. However, that article did not treat
the conditions required for coexistence.
There is a persistent idea (Dayan and Simberloff

2005) that competition should result in even spacing of
utilization curves (i.e., niche positions). This is support-
ed by the MacArthur and Levins (1967) parameteriza-
tion of the Lotka-Volterra model, in that the maximum
range of parameters allowing coexistence occurs at a
niche position midway between that of the two outer
species. However, this is not predicted by consumer–
resource models of highly efficient consumers. As
shown in Fig. 3A, intermediate niche positions that
are significantly closer to one of the outer species are
most favorable to coexistence when consumers are
efficient and niche separation is moderate. The impli-
cation is that conditions that are symmetric around a
particular position on the resource axis can result in an
asymmetric distribution of consumer species in the
absence of any constraints on the characteristics of
those consumers. This may be related to observed
uneven size distributions (Holling 1992). It differs from

the phenomenon of long transient coexistence of clumps
of consumers in the Lotka-Volterra model of Scheffer
and van Nes (2006).

Possible extensions

Multidimensional resource partitioning requires fur-
ther analysis. However, at least for small numbers of
species, low mortalities enhance coexistence when each
consumer species has some exclusively used resources
(Schoener 1976, Abrams 1977), as is true in the case of
two consumers in the current model. Exclusive resources
result from utilization functions that are finite in extent
and do not overlap completely. In this case, a sufficiently
low mortality would allow the consumers to persist on
the exclusive resources alone, and thus prevent any
absolute limit to similarity. Higher mortalities mean that
some of the shared resources must also be obtained for a
positive equilibrium consumer density. Unfortunately,
the topic of resource partitioning has not been a popular
topic of empirical research in recent years (Schoener
[1974] provides an early review), so the nature of
multidimensional partitioning is still poorly quantified.
The impacts of resource depletion and exclusion also
need to be reconsidered in models that have a
continuous resource spectrum for situations in which
coexistence is influenced by environmental variability
(Abrams and Holt 2002), and for cases where the
resources compete with each other (Abrams and
Nakajima 2007).
Several recent models have analyzed coexistence

within large linear arrays of competitors (e.g., Gyllen-
berg and Meszéna 2005, Scheffer and van Nes 2006,
Szabó andMeszéna 2006), and the present analysis could
be extended to include more consumer species. However,
resource partitioning along a single axis seldom charac-
terizes more than a small number of competing species
(Schoener 1974, Abrams 1983). Careful studies of small
groups (,10 species) of competitors have revealed
multidimensional partitioning (Abrams et al. 1986,
Abrams 1987). Diamond’s (1975) description of eight
competing fruit pigeons seems to be the largest group of
species for which linear partitioning has even been
proposed, and resource partitioning in that system is
poorly understood. Thus, the issue of coexistence in very
large linear arrays of species is of questionable biological
relevance, and was not treated here.

Relationship to real competitive communities

In the context of the simple models considered here,
the absolute limit to similarity and declining coexistence
bandwidth with increasing similarity are both most
likely when the scaled mortality rate, d, is low. It is
therefore important to discuss whether the low values of
d assumed in many of the calculations here are
biologically realistic. This can be judged by comparing
these values to the ratio of resource densities with and
without consumers in empirical studies. Because of the
scaling of parameters (b¼ 1; K¼ 1; sum or integral of C
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¼ 1), d is equal to this ratio in a system with a single
resource species. In a system with many resources having
equal equilibrium densities in the absence of consump-
tion, d gives a weighted average of equilibrium resource
densities in the presence of the consumer, where the
weights are C(x). Because C(x) has a negative covariance
with R(x) at equilibrium with the consumer (and the
integral of C(x) is unity), the mean resource density,
R(x) must be larger than d. As a result, the ratio of mean
total resource density in the presence of a consumer
species to mean resource density in the absence of
consumers is greater than or equal to d. To judge
whether a d value on the order of 0.1 is biologically
reasonable, we can look at the average reduction in
resource (prey) densities produced by their consumers
(predators) in empirical studies. Measurements of
resource reductions in laboratory microcosms are
frequently several orders of magnitude lower than
equilibrium abundances in the absence of consumers
(Holyoak and Lawler 1996), suggesting that values of d
close to 0.001 are not unrealistically low, at least for
some systems. In fact, Shurin et al. (2002) documented
an average reduction of resources to ;6% of their pre-
consumer levels in field studies of predator density
manipulations for benthic assemblages in lentic ecosys-
tems. Because the consumer abundance is measured in
units of K, increasing the resource carrying capacity
sufficiently will result in a very low value of the scaled
mortality parameter d. This implies that fertilizing
resources should have effects similar to reducing death
rates. Bimodal or multimodal size–abundance distribu-
tions similar to those shown in Fig. 2 have been
observed (Holling 1992, Havlicek and Carpenter 2001),
but the mechanism producing them is not known.
Complete absence of certain sizes classes over a wide
range of sizes does not appear to have been observed.
However, this is not surprising, as resources of a given
size are likely to include many that are well-defended or
otherwise unusable.
The theory of limiting similarity is difficult to test

because key parameters cannot be manipulated in an
experimental setting. Observed patterns of niche sepa-
ration are generally influenced by the limited variation in
resource use traits of potential community members, as
well as their evolution in sympatry. Both of these
processes are likely to lead to a level of similarity in
resource use that is less than maximal, and both are
likely to vary significantly based on many factors other
than those we have considered. However, there are
potentially testable predictions from the theory devel-
oped here. For example, our results suggest that high
resource use efficiency is likely to reduce the ability of
consumer species at intermediate niche positions to
invade communities. In addition, evolutionary diver-
gence in the resource use of two resident species may
reduce the possibility of invasion at intermediate
positions. Our results also suggest that increased
mortality of all consumers is most likely to lead to the

exclusion of intermediate consumer species in a linear
array. These ideas could potentially be tested using
microcosms. Finally, the theory developed here should
aid in understanding the basis of observed multimodal
size distributions within a trophic level.
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Meszéna, G., M. Gyllenberg, L. Pásztor, and J. A. J. Metz.
2006. Competitive exclusion and limiting similarity: a unified
theory. Theoretical Population Biology 69:68–87.

Roughgarden, J. 1974. Species packing and the competition
function with illustrations from coral reef fish. Theoretical
Population Biology 5:163–186.

Scheffer, M., and E. H. van Nes. 2006. Self-organized
similarity: the evolutionary emergence of groups of similar
species. Proceedings of the National Academy of Sciences
(USA) 103:6230–6235.

Schoener, T. W. 1974. Resource partitioning in ecological
communities. Science 185:27–39.

Schoener, T. W. 1976. Alternatives to Lotka-Volterra compe-
tition: models of intermediate complexity. Theoretical
Population Biology 10:309–333.

Shurin, J. B., E. T. Borer, E. W. Seabloom, K. Anderson, C. A.
Blanchette, B. Broitman, S. D. Cooper, and B. S. Halpern.
2002. A cross-ecosystem comparison of the strength of
trophic cascades. Ecology Letters 5:785–791.
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