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abstract: Recent theoretical studies have analyzed the evolution
of habitat specialization using either the logistic or the Ricker equa-
tion. These studies have implemented evolutionary change directly
in population-level parameters such as habitat-specific intrinsic
growth rates r or carrying capacities K. This approach is a shortcut
to a more detailed analysis where evolutionary change is studied in
underlying morphological, physiological, or behavioral traits at the
level of the individual that contribute to r or K. Here we describe
two pitfalls that can occur when such a shortcut is employed. First,
population-level parameters that appear as independent variables in
a population dynamical model might not be independent when de-
rived from processes at the individual level. Second, patterns of co-
variation between individual-level traits are usually not conserved
when mapped to the level of demographic parameters. Nonlinear
mappings constrain the curvature of trade-offs that can sensibly
be assumed at the population level. To illustrate these results, we de-
rive a two-habitat version of the logistic and Ricker equations
from individual-level processes and compare the evolutionary dy-
namics of habitat-specific carrying capacities with those of underlying
individual-level traits contributing to the carrying capacities. Finally,
we sketch how our viewpoint affects the results of earlier studies.
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Long-term evolution by mutation and selection is largely
driven by invasion of novel genotypes into resident pop-
ulations. Invasion is a population dynamical process and
therefore, when evolution is studied by means of math-
ematical models, has to be inferred from a population
dynamical model. In the recent literature, several studies
have appeared that analyze the evolution of habitat spe-
cialization by using either the Ricker equation (Wilson and
Yoshimura 1994; Egas et al. 2004) or the logistic equation
(Parvinen and Egas 2004; de Mazancourt and Dieckmann
2004) to describe habitat-specific population growth. In
these models, habitat specialization is subject to a trade-
off: a high value in the carrying capacity or the intrinsic
growth rate in one habitat is bought at the expense of a
low carrying capacity or growth rate in the other habitat.
Evolution and coexistence are then studied by assuming
variation in the degree of habitat specialization in terms
of either r or K. These parameters have an interpretation
only at the level of populations, while mutations causing
evolutionary change occur at the level of the individual.
Therefore, the models mentioned above employ a shortcut
because a description of how variation at the level of the
individual is linked to variation in population-level pa-
rameters is skipped. Such a shortcut is permissible only
when the assumed patterns of variation at the level of the
demographic parameters can be derived from variation
in underlying individual-level traits, an issue that can be
evaluated only with models that are based on an explicit
mapping from processes at the level of individuals to
population-level parameters.

Although our study is motivated by the specific prob-
lem introduced above, the issue at hand is of a much
more general nature. Genetic variation occurs at the level
of DNA sequences and ultimately affects the makeup
of a population. The step from individual sequences to
population-level characteristics can be described by a cas-
cade of mappings. Genotypes are mapped to enzymes and
their regulation. During development, these characteristics
might be mapped to, for example, the morphometrical
properties of a bird’s beak, which determine its handling
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times for different seeds, which determine energy uptake,
which determines offspring production, which determines
population growth rate. The general question then be-
comes how patterns of variation and covariation at one
level are mapped to the next level.

The aim of this article is to show how an explicit map-
ping from individual-level traits to population-level pa-
rameters can help us to understand how evolution is likely
to work by informing us about how patterns of variation
and covariation at lower levels can constrain resulting pat-
terns of variation at higher levels. In the next section, we
discuss two pitfalls that can occur when an explicit de-
scription of the mapping from individual-level traits to
demographic parameters is skipped. We then continue by
illustrating these issues by means of two examples, and
we conclude by sketching how our viewpoint affects the
results of the studies mentioned above.

Population-Level Parameters Derive from Underlying
Traits at the Level of the Individual

In this section, we use the logistic equation to illustrate
two separate issues that emerge when patterns of variation
and covariation at the level of population-level demo-
graphic parameters are derived from variation in under-
lying individual-level traits. The logistic equation is given
by

1 dN N
p r 1 � , (1)( )N dt K

where N denotes population density, r is the intrinsic rate
of increase, and K is the carrying capacity. The logistic
equation is widely used to describe density-dependent
population growth of a single species with only two pa-
rameters. The fact that r and K do not have an interpre-
tation at the level of the individual has triggered a series
of derivations from first principles at the level of the in-
dividual. Such derivations assume density dependence ei-
ther in the birth rate b (MacArthur 1972, p. 56; Schoener
1973; Edelstein-Keshet 1988, p. 119; see also Kooi et al.
1998) or the death rate m (Gyllenberg 2005). For deri-
vations that do not describe the dynamics of individuals
but describe the fraction of either inhabited patches in a
metapopulation or infected individuals in a population of
susceptible and infected individuals, see Hanski (1999, p.
56) and Diekmann and Heesterbeek (2000, p. 212). The
derivations that assume a density-dependent birth rate
have a limited scope because they predict a negative birth
rate when the population size passes some threshold, and
we do not consider these derivations any further. All der-
ivations that assume a density-dependent death rate im-

plement the idea that the death rate is linearly increasing
with population density:

1 dN a
p b � (m � aN) p (b � m) 1 � N , (2)( )N dt b � m

where the biological interpretation of the positive pro-
portionality constant a depends on the specific derivation.
From comparing equation (2) with equation (1), we see
that and .r p b � m K p (b � m)/a

Based on these derivations, two observations can be
made. First, K depends linearly on those traits that underly
r, and any variation that affects r causes K to vary pro-
portionally. Thus, seemingly independent parameters at
one level are not necessarily independent when they are
derived from an underlying level. A conclusion from the
above derivation is that models that use the logistic equa-
tion as a building block and that assume variation in r
while K is kept constant (e.g., Parvinen and Egas 2004)
do not have an interpretation at the level of the individual.
We do not claim that it is impossible to construct a der-
ivation of the logistic equation from first principles such
that individual-level traits exist that contribute to r but
not to K. But even in this case, independent variation of
r can be motivated only if genetic variation is likely to
contribute only to exactly those traits that do not affect
K.

Second, K can change independently of r only through
a change in a. This parameter is inversely related to K, so
any change in a affects K in a nonlinear way. This ob-
servation becomes important when studying the evolu-
tionary dynamics of correlated traits. Assume a situation
where an organism occupies two different habitats that
require different adaptations and that population growth
in each habitat can be described by the logistic equation
(eq.[2]). In this situation, it is likely that a constraint exists
that prevents a genotype from being optimally adapted to
both habitats simultaneously. Here we adopt the viewpoint
that such a constraint can be visualized as the outer bound-
ary of the set of possible phenotypes that we will refer to
as a trade-off curve (fig. 1). Assume further that adapta-
tions to the habitats occur in traits and . Since pop-a a1 2

ulation growth increases with decreasing values of (eq.ai

[2]), selection will push a population’s trait distribution
from high values of toward lower values until the trade-ai

off is hit. From then on, selection will keep the phenotype
distribution close to the trade-off, relative to the muta-
tional step size. Patterns of covariation within a population
will then depend on the shape of the outer boundary of
the set of possible phenotypes, and different trade-off
curves correspond to different such boundaries. Arnold
(1992) refers to this scenario as the Charnov-Charlesworth
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Figure 1: Distribution of phenotypes in the two-dimensional ( )a , a1 2

trait space. Solid lines correspond to a constraint or trade-off beyond
which no viable phenotypes can occur. Since fitness is decreasing in both

and , the set of possible phenotypes lies above and to the right ofa a1 2

the constraint. The right panel shows the location of the phenotypes and
the constraint after applying the mapping (K , K ) p [(b � m )/a ,1 2 1 1 1

. Because fitness is increasing in both and , the dis-(b � m )/a ] K K2 2 2 1 2

tribution of phenotypes lies below and to the left of the constraint. Note
that the trade-off has changed from weak to strong (see text for further
explanation). In the ( )-space, the phenotypes have relative low val-a , a1 2

ues for both habitats, indicating a high degree of adaptation, while in
the ( )-space, the phenotypes again correspond to low values, nowK , K1 2

indicating a low degree of adaptation. Parameter values are chosen such
that .b � m p 1i i

model for equilibrium genetic covariance for a single pair
of traits (cf. Charnov 1989; Charlesworth 1990). The pat-
tern of covariation in individual-level traits causes specific
patterns of covariation at the level of demographic param-
eters (fig. 1). In our example, phenotypes are mapped from
the ( )-space to the ( )-space bya , a K , K (K , K ) p1 2 1 2 1 2

. In the same way, we can map[(b � m )/a , (b � m )/a ]1 1 1 2 2 2

the trade-off curve from one level to the next. The result
of this mapping is shown in figure 1. Note that the phe-
notype distribution in the -space lies below and(K , K )1 2

to the left of the trade-off because population growth in-
creases with increasing values of .Ki

The important message from this example is that prop-
erties of the phenotype distribution and the trade-off are
not necessarily conserved when mapped from one level to
the other. The phenotypes indicated by the dots in the
( )-space in figure 1 show relative low values ofa , a a1 2 i

for both habitats. The corresponding trade-off is called
weak because the habitat generalist is only slightly inferior
in each habitat when compared to the habitat specialists.
On the other hand, phenotypes in the ( )-space showK , K1 2

relative low carrying capacities in both habitats. In this
case, the trade-off is called strong because habitat gener-
alists are strongly inferior in each habitat in terms of their
carrying capacity when compared to the corresponding
specialist. From this observation, two questions emerge.
First, can an a priori chosen curve for the trade-off between

and be derived from a curve representing the un-K K1 2

derlying constraint between and ? Second, if we as-a a1 2

sume that the answer to that question is yes, is it biolog-
ically plausible to assume the trade-off between anda1

, such that the curve becomes exactly mapped onto ana2

a priori chosen curve for the trade-off between andK1

? In the following examples, we show that, in some cases,K2

a weak trade-off between habitat-specific carrying capac-
ities cannot be derived from any underlying trade-off and
that, in other cases, specific curves for the trade-off at the
higher level can be realized only by assuming rather ex-
treme curvatures for the trade-off at the underlying level.

Before we continue to illustrate our point, we want to
emphasize that the very same two observations can be
made for the Ricker equation N /N p exp [r(1 �t�1 t

. For derivations of the Ricker equation from firstN /K)]t

principles, see work by Royama (1992), Gatto (1993), Gur-
ney and Nisbet (1998), Sumpter and Broomhead (2001),
Thieme (2003), Geritz and Kisdi (2004), and Brännström
and Sumpter (2005).

Two Examples

We want to illustrate by means of two examples how pat-
terns of covariation between demographic parameters can
be derived from an explicit model of individual-level pro-
cesses that contribute to the demographic parameters. Our
examples are strongly inspired by the models of Wilson
and Yoshimura (1994), Egas et al. (2004), de Mazancourt
and Dieckmann (2004), and Parvinen and Egas (2004). In
this section, we develop a two-habitat version of the lo-
gistic and the Ricker equations from first principles. This
provides us with explicit expressions for the carrying ca-
pacity in terms of individual-level traits. In the “The Map-
ping of Trade-Offs,” we then investigate how specific cur-
vatures for trade-offs between traits that contribute to the
carrying capacities affect the curvature of the resulting
trade-off between habitat-specific carrying capacities. In
“Evolutionary Dynamics,” we show how evolutionary pre-
dictions can differ when evolutionary change is directly
assumed in the carrying capacities, as compared to evo-
lutionary change in underlying individual-level traits.

Continuous Time: Fast Migration between Habitats

Assume that individuals migrate at a high rate between
habitats and that travel time is negligible. This means that
the environment is fine grained. Under the assumption
that birth and death rates are small when compared to the
migration rates, we calculate the probability for an indi-
vidual to be in habitat 1, P1, or in habitat 2, P2, in appendix
A. Furthermore, we assume that birth and death processes
are determined instantaneously; that is, whether an in-
dividual dies or gives birth at a certain moment in time
depends purely on its current habitat. If population growth
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within each habitat can be described by the logistic equa-
tion (eq. [1]), then the population dynamics are given by

dN PN P N1 2p N Pr 1 � � P r 1 � , (3)1 1 2 2[ ( ) ( )]dt K K1 2

with and as the habitat-specific intrinsic growth ratesr Ki i

and carrying capacities, respectively. The dynamics have a
single nontrivial, stable equilibrium at

(Pr � P r )K K1 1 2 2 1 2N̂ p . (4)
2 2P r K � P r K1 1 2 2 2 1

In order to give the parameters and , an interpre-r Ki i

tation at the level of the individual, we present in appen-
dix A one possible derivation of equation (3) based on
individual-level processes. This derivation is inspired by
Royama’s derivation (1992, p. 144; see “Discrete Time:
Juvenile Dispersal”) of the Ricker equation. We assume
that individuals die at some minimum rate when they can
exploit a competition neighborhood of size a on their own.
The size of this neighborhood is determined by a variety
of biological properties such as the conversion efficiency
of food into energy or the efficiency with which resources
are gathered. The minimum death rate increases incre-
mentally by l, a positive constant, with each additional
conspecific that enters the competition neighborhood of
the focal individual. For a single habitat, this mechanism
yields

dN la
p N(b � m) 1 � N , (5)( )dt b � m

where b and m are the density-independent birth and death
rates, respectively. Equation (5) corresponds to equation
(2), but now the demographic parameters r and K have
an interpretation in terms of individual-level traits: r p

and . This holds for each habitat sob � m K p (b � m)/la
that and . If we insertr p b � m K p (b � m )/(l a )i i i i i i i i

these descriptions into equation (3), we get the following
two-habitat version:

dN l a1 1p N P(b � m ) 1 � PN1 1 1 1[ ( )dt b � m1 1

l a2 2� P (b � m ) 1 � P N . (6)2 2 2 2( )]b � m2 2

Discrete Time: Juvenile Dispersal

Here we assume that generations are discrete and non-
overlapping. At birth, individuals are randomly distributed
over two habitats with probabilities P1 and .P p 1 � P2 1

These probabilities are proportional to the relative sizes
of the two habitats and independent of the habitat of birth.
The latter is the case because of either very effective dis-
persal or a fine-grained environment. Once settled, indi-
viduals stay within their habitat until death. In the case
of a fine-grained environment, this implies that organisms
are sessile. If we assume that the population dynamics
within each habitat can be described by the Ricker equa-
tion (Ricker 1952), then population growth is given by

PN1 tN p N P exp r 1 �t�1 t 1 1{ [ ( )]K1

P N2 t� P exp r 1 � . (7)2 2[ ( )]}K2

Only in case of symmetric parameter values ,r p r p r1 2

, and can we calculate theK p K p K P p 0.5 p P1 2 1 2

equilibrium population size analytically as . TheN̂ p 2K
population dynamics of this case are well understood. The
equilibrium is stable for , with larger valuesN̂ p 2K r ! 2
of r leading to cycles and eventually chaotic dynamics (May
and Oster 1976). Here we restrict ourselves to parameter
values that produce stable equilibria.

In order to get an individual-level interpretation of
equation (7), we again follow Royama (1992, pp. 144).
Royama assumes that the number of offspring produced
by an individual, , decreases exponentially with theRn

number of conspecifics n within a competition neighbor-
hood of size a: . The sensitivity parameter k isnR p R kn 0

a positive constant smaller than 1. For the case when in-
dividuals are Poisson distributed over the habitat, Royama
shows that

a(1 � k)
N p N exp log R 1 � N . (8)t�1 t 0 t{ [ ]}log R 0

This is the Ricker equation, where andr p log R K p0

. By combining equation (8) with equa-log R /[a(1 � k)]0

tion (7), we get a two-habitat version of the Ricker equa-
tion:
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a (1 � k )1 1N p N P exp log R 1 � PNt�1 t 1 01 1 t( { [ ]}log R 01

a (1 � k )2 2� P exp log R 1 � P N (9)2 02 2 t{ [ ]})log R 02

The Mapping of Trade-Offs

The preceding section provides us with an individual-
based interpretation of the population-level parameters Ki

and ri:

b � mi iK p ,i a li i

r p b � m , (10)i i i

for the logistic equation, and

log R 0iK p ,i a (1 � k )i i

r p log R , (11)i 0i

for the Ricker equation. We now investigate how a trade-
off between the habitat-specific carrying capacities can be
derived from a trade-off in traits at the level of the in-
dividual. Here we assume that mutational change occurs
for the size of the competition neighborhoods anda a1 2

and that these traits are coupled by a trade-off, which can
be written as a function with . All othera (a ) da /da ! 02 1 2 1

traits are assumed to be fixed parameters. We choose a1

and because they can, at least in principle, be measureda 2

at the level of the individual and because they influence
the carrying capacities in the logistic and Ricker equations
in the same way, which facilitates a comparison between
these models. From here on we refer to a trade-off between

and as a trade-off in a and, similarly, to a trade-offa a1 2

between and as a trade-off in K.K K1 2

Next we introduce specific trade-off parameterizations
for and . This allows us to visualize how aa (a ) K (K )2 1 2 1

trade-off in a maps onto a trade-off in K or, vice versa,
what trade-off in a is implicitly assumed when a specific
trade-off in K is chosen. Our parameterizations generalize
the trade-off function used by Egas et al. (2004) and Par-
vinen and Egas (2004):

a p (a , a )1 2

1/z 1/zp [a � a (1 � v) , a � a v ], (12)1 max 1var 2 max 2var

K p (K , K )1 2

1/z 1/zp [K � K (1 � v) , K � K v ]. (13)1 min 1var 2 min 2var

Here , , , , , , , anda a a a K K K1 max 1var 2 max 2var 1 min 1var 2 min

are positive constants determining the range of pos-K2var

sible parameter values, while the positive parameter z de-
termines the curvature of the trade-off curve.

Note the following difference between the two trade-off
parameterizations. In equation (12), correspondsv p 0
to a low value of and a high value of . In equationa a1 2

(13), the opposite holds true: corresponds to a highv p 0
value of and a low value of . Since population growthK K1 2

is decreasing in (eqq. [6], [9]) but increasing in (eqq.a Ki i

[3], [7]), this means that in both cases, correspondsv p 0
to a specialist for habitat 1 while corresponds to av p 1
specialist for habitat 2. A similar pattern applies to the
curvature of the trade-off and the corresponding curvature
parameter z (fig. 2). Values of correspond to a con-z ! 1
cave trade-off in a ( ) and to a convex trade-2 2d a /da ! 02 1

off in K ( ). The opposite pattern holds for2 2d K /dK 1 02 1

. Hence, these parameterizations are such thatz 1 1 z ! 1
corresponds to a strong trade-off and correspondsz 1 1
to a weak trade-off in both a and K. This terminology is
motivated by the following observation. In case of sym-
metric values for , , , and , all phenotypesa a K Ki max ivar i min ivar

that lie on a linear trade-off have exactly the same(z p 1)
value for a and K, respectively, when averaged over both
habitats. In comparison with a linear trade-off, generalists
on a convex trade-off have a lower competition neigh-
borhood size (eq. [12]) and a lower carrying capacity (eq.
[13]) when averaged over both habitats. Such generalists
are superior over specialists in terms of their average com-
petition neighborhood size but inferior in terms of its
average carrying capacity. The opposite pattern holds for
concave trade-offs.

How does the function mediate the trade-off ina (a )2 1

K? To see this, we have to combine the expression for Ki

from equation (10) with equation (12). The result is shown
in figure 2a, 2b. Note that the curvature of the derived
trade-off in K can change from convex to concave along
a single trade-off curve (see fig. 2b, right panel). In the
following, we refer to the curvature around the generalist’s
trait with . In figure 2a, the trait space encompassesv p 0.5
values of between 0.1 and 0.2 ( ,a a p 0.2 a pi i max ivar

), while in figure 2b, the trait space encompasses values0.1
between 0.1 and 1 ( , ). In the first case,a p 1 a p 0.9i max ivar

all trade-offs in a corresponding to are mapped intoz ! 2
a strong trade-off in K. In other words, for trade-offs in
a with , that is, for moderately weak trade-offs,1 ! z ! 2
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Figure 2: Mapping of five different trade-off curves for the habitat-
specific size of competition neighborhoods onto trade-off in carryingai

capacities through function given by equation (10) (a, b) and viceKi

versa through the inverse function (c, d). The left graph in each pair
shows trade-offs for five values of the curvature parameter z before the
application of the mapping, while the right graph shows trade-offs as a
result of the mapping. Curves with the same gray scale correspond to
the same value of , with z decreasing with lighterz � {4, 2, 1, 0.5, 0.25}
coloration. Other parameters: , ,b p (0.3, 0.3) m p (0.1, 0.1) P p

; a, , , ; b,(0.5, 0.5) a p (0.2, 0.2) a p (0.1, 0.1) l p (10, 10) a pmax var max

, , ; c, , ,(1, 1) a p (0.9, 0.9) l p (2, 2) K p (0.1, 0.1) K p (0.1, 0.1)var min var

; d, , , .l p (10, 10) K p (0.1, 0.1) K p (0.9, 0.9) l p (2, 2)min var

their weakness is not inherited. In the second case, only
extremely weak trade-offs in a corresponding to z 1≈ 12
are mapped onto weak trade-offs in K. For trade-offs with

, the weakness is not inherited. Hence, weak1 ! z ! 12
trade-offs in a are mapped to strong trade-offs in K for z
values below some threshold. In appendix B, we show that
this threshold increases with increasing values of . Inaivar

the limit of , the threshold becomes 1 and thea p 0ivar

curvature property is always inherited. In the limit of
, the threshold becomes infinity; hence, anya p �ivar

trade-off in a, weak or strong, is mapped to a strong trade-
off in K.

Models assuming a trade-off directly at the level of the
carrying capacities make an implicit assumption about the
shape of the trade-off in an individual-level trait. This
implicit assumption can be shown by applying the inverse
mapping, from the trade-off in the carrying capacities K
to the trade-off in a. The result of this exercise is shown
in figure 2c, 2d.

Evolutionary Dynamics

Analyses of long-term evolution should be based on an
invasion argument: can a rare mutant type increase in
frequency, or is it doomed to extinction? This is deter-
mined by its invasion fitness s, its long-term average
growth rate when rare in an environment dominated by
a given resident type (e.g., Metz et al. 1992). If , thens 1 0
such a mutant has a positive probability of invading the
resident population, and if , such a mutant will dis-s ! 0
appear. Under certain conditions, an invasion analysis is
equivalent to solving an optimization criterion (Metz et
al. 1996). The quantity that is maximized by evolution
cannot be chosen a priori but has to be derived from an
invasion argument (Mylius and Diekmann 1995). For our
examples, we are able to show that equilibrium population
size serves as an optimization criterion. Populations withN̂
trait values that correspond to a higher equilibrium pop-
ulation size replace populations with lower equilibriumN̂
population size, and trait values that maximize population
size are potential endpoints of evolution. Such trait values
are attractors of the evolutionary dynamics and are un-
invadable by nearby mutants. Eshel (1983) coined the term
continuously stable strategies (CSSs) for such trait values.
Trait values that correspond to minima of are evolu-N̂
tionary repellors from which the evolutionary dynamics
move away. The existence of an optimization criterion
allows us to visualize the evolutionary process using Lev-
ins’s fitness set approach (Levins 1962; Rueffler et al. 2004).
In this graphical method, the trade-off curve is plotted on
top of the contour lines of the fitness landscape given by

(fig. 3). Evolutionary endpoints are those phenotypesN̂
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Figure 3: Fitness contour plots for model with fast migration between habitats (logistic equation; a–c) and juvenile dispersal (Ricker equation; d–
f ). Fitness contours represent values of optimization criteria as functions of and (a, c, d, f ) or and (b, e). Lighter coloration indicatesK K a a1 2 1 2

higher values of the optimization criterion and therefore higher fitness. Trade-offs with different values of the curvature parameter z are plotted on
top of the fitness landscape. For a given trade-off curve, the optimal phenotype is given by the point on the trade-off curve lying on the highest
contour. The color of the circles at the position of the habitat generalist indicates evolutionary properties: stable strategy,black p continuously

, neutral with respect to all other traits on the trade-off. a, d, Trade-off is assumed directly in K. b, e, Trade-offwhite p repellor gray p selectively
is assumed in a. c, f, Trade-off in K is derived from the underlying trade-off in a. The latter two representations necessarily give the same result.
Parameter values: ; a, c, , , ; b, d, , , ; b,P p (0.5, 0.5) K p (0.1, 0.1) K p (0.4, 0.4) r p (0.2, 0.2) a p (0.5, 0.5) a p (0.4, 0.4) l p (4, 4) l pmin var max var

, , ; d, , .(4, 4) b p (0.3, 0.3) m p (0.1, 0.1) k p (0.1, 0.1) logR p (0.2, 0.2)0

on the trade-off curve that lie on the highest fitness con-
tour line.

Fast Migration between Habitats

First we consider the case where evolutionary change is
assumed to directly affect and . Invasion fitness ofK K1 2

a mutant type in a resident population with′ ′ ′K p (K , K )1 2

carrying capacities can be derived fromK p (K , K )1 2

equation (3) as

2 2P r P r1 1 2 2′ ˆs(K , K ) p Pr � P r � N(K ) � . (14)1 1 2 2 ′ ′( )K K1 2

Equation (14) is obviously monotonically decreasing in
(eq. [4]). As mentioned above, this is a sufficient con-N̂

dition for the equilibrium population size to be an opti-
mization criterion (Mylius and Diekmann 1995). Figure
4a shows the numerically calculated locations of the min-
ima and maxima of the optimization criterion as a func-
tion of the curvature parameter z for one specific set of
symmetric parameter values. For weak trade-offs, the hab-
itat generalist with maximizes equilibrium pop-K p K1 2

ulation size and therefore displays a CSS. The habitatN̂
generalist maintains a CSS for moderately strong trade-
offs, and it is only for very strong trade-offs with z !

that the generalist turns into an evolutionary repellor.0.35
In appendix C, we show that whether the habitat gen-
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Figure 4: Bifurcation diagram of extrema of optimization criterion as a function of curvature parameter z for model with fast migration between
habitats (logistic equation; a, b) and juvenile dispersal (Ricker equation; c, d). Ordinate shows value of the specialization coefficient v. a, c, Trade-
off directly in K. b, d, Trade-off in a. Solid lines indicate maxima of the optimization criterion and correspond to continuously stable strategies,
while dashed lines indicate minima of the optimization criterion and correspond to evolutionary repellors. The gray vertical line in b indicates that
for , all trait combinations are selectively neutral. Arrows indicate the direction of evolutionary change. Parameter values as in figure 3.v p 1

eralist with constitutes a minimum or a maxi-K p K1 2

mum of also depends on the parameters andN̂ Ki min

, that is, on the range of possible parameter values forKivar

. Small values of favor the generalist even forK Ki i min

(strong trade-offs), while with small values of ,z ! 1 Kivar

a situation is approached where weak trade-offs select for
a generalist while strong trade-offs select for specialists.

Do the evolutionary dynamics change when we imple-
ment evolutionary change in individual-level traits? In-
vasion fitness of a rare mutant type with competition
neighborhood size in a population with′ ′ ′a p (a , a )1 2

can be derived from equation (6) asa p (a , a )1 2

′ 2 ′ 2 ′ˆs(a , a) p Pr � P r � N(a)(P a l � P a l ), (15)1 1 2 2 1 1 1 2 2 2

where . As in the previous version, fitness isr p b � mi i i

a monotonically decreasing function of , which thereforeN̂
qualifies as an optimization criterion. From equation (4)
we can derive that .2 2N̂ p (Pr � P r )/(P a l � P a l )1 1 2 2 1 1 1 2 2 2

Differentiation of reveals that critical points are givenN̂
by and that the sign of the second2 2da /da p �P l /(P l )2 1 1 1 2 2

derivative equals the sign of . Hence, critical2 2�d a /da2 1

points of are maxima for (weak trade-offs) andN̂ z 1 1
minima for (strong trade-offs). For , all traitz ! 1 z p 1
combinations are selectively neutral. Figure 4b depicts this

result for the case of symmetric parameter values. A com-
parison of figure 4a and 4b shows that the range of z values
that favor habitat generalists over specialists is considerably
smaller when the trade-off is implemented between anda1

. This indicates that, in this case, the shortcut of directlya 2

implementing a trade-off in demographic parameters
overestimates the likelihood of finding generalists.

It is illuminating to plot these results in terms of fitness
sets (Levins 1962). The fitness landscape, that is, the op-
timization criterion, can be plotted as a function of either
the demographic parameters and (fig. 3a, 3c) or theK K1 2

underlying individual-level traits and (fig. 3b). In thea a1 2

first case, the contours of the fitness landscape are given
by those values of and that result in equal values cK K1 2

of the optimization criterion . These values lie onN̂ Ki

convex hyperbolas given by . In2 2K p cP r K /(K � cP r )2 2 2 1 1 1 1

the second case, the contours of the fitness landscape are
straight lines with a negative slope given by a p (1 �2

. In the next step, we plot different trade-2 2cP a l )/(cP l )1 1 1 2 2

off curves on top of the contour plot of the fitness land-
scape. This is done in figure 3a for trade-offs in K and in
figure 3b for trade-offs in a. In figure 3c, this is done again
for a trade-off in K, but now the trade-off is derived from
the underlying trade-off in a. From figure 3a, we see that
fitness landscapes with convex fitness contours favor gen-
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eralists, and it is only for very strong trade-offs (e.g.,
) that specialists do better (cf. fig. 4a). In the pres-z p 1/4

ence of a fitness landscape with linear contours (fig. 3b),
weak trade-offs favor generalists and strong trade-offs fa-
vor specialists (cf. fig. 4b). Figure 3c shows that optimi-
zations in terms of K and a are equivalent approaches as
long as the trade-off in K is derived from an underlying
trade-off in a. In both cases, the trade-off curve given by

exactly follows a contour line of the fitness land-z p 1
scape, which accounts for the evolutionary neutrality of
all traits.

Juvenile Dispersal

Fitness in discrete-time models can be expressed more
easily as . If , a mutant is able to invade,w p exp (s) w 1 1
while a mutant with cannot invade. As in the pre-w ! 1
vious section, we first perform an evolutionary analysis
under the assumption that and are traded off directly,K K1 2

followed by an analysis where evolutionary change is im-
plemented in the size of the two competition neighbor-
hoods and . In both cases, the fitness function isa a1 2

monotonically decreasing in , which therefore againN̂
qualifies as an optimization criterion (Mylius and Diek-
mann 1995). Unfortunately, we can calculate analyticallyN̂
only for the case of symmetric parameter values and a
consumer that is equally specialized for both habitats.
Hence, the maximization of has to be done numerically.N̂

For the first case, where the trade-off is directly assumed
in K, we find the following fitness function:

ˆPN(K )1′w(K , K ) p P exp r 1 �1 1 ′[ ( )]K1

ˆP N(K )2� P exp r 1 � . (16)2 2 ′[ ( )]K2

Numerical analysis of the optimization criterion revealsN̂
a pitchfork bifurcation of v values that correspond to ex-
trema in (fig. 4c). For small values of z (strong trade-N̂
offs), the generalist is an evolutionary repellor. The gen-
eralist adopts a CSS when some threshold value of z is
passed. For , that is, for stable population dynamicalr ! 2
equilibria, we prove in appendix C that this threshold
always has a value smaller than 1.

In the second case, where the trade-off is assumed be-
tween the underlying traits and , invasion fitness isa a1 2

given by

′ˆPN(a)a (1 � k )1 1 1′w(a , a) p P exp r 1 �1 1{ [ ]}r1

′ˆP N(a)a (1 � k )2 2 2� P exp r 1 � . (17)2 2{ [ ]}r2

By numerical calculations, we again find a pitchfork bi-
furcation (fig. 4d). For this case, we can prove (app. C)
that the change from a repelling generalist to an attracting
generalist takes place for some z value larger than 1 (for
a weak trade-off). In appendix C, we also show that the
bifurcation point moves toward higher z values with in-
creasing population growth rate r. This means that fast
growth favors habitat specialization. Figure 3d–3f illus-
trates these results with the use of fitness sets.

Discussion

Genetic variation is the fuel for evolutionary change. This
variation occurs at the level of DNA sequences. The di-
rection of evolutionary change depends on the available
genetic variation and on the per capita growth rate of the
different genotypes in the environment where selection
takes place. A complete understanding of the evolutionary
process would require knowledge of how variation at the
level of the DNA sequence is mapped through the process
of development to variation in demographic parameters.
In most cases, we are far from such a detailed knowledge,
and in order to deal with this difficulty, theoretical biol-
ogists have followed either of two different paths. Theo-
retical population geneticists study variation in allele space
and assume an extremely simplified genotype-phenotype
map by assigning fixed fitness values to alleles. The other
approach neglects the genotype-phenotype map altogether
and studies the effect of variation directly at the level of
phenotypes (optimization models, quantitative genetics,
game theory, and adaptive dynamics). Both approaches
are shortcuts, and it is important to develop an under-
standing of the possible consequences of such shortcuts.
In this article, we show how patterns of variation and
covariation at one level are mapped to a higher level, and
we pinpoint two pitfalls that can occur when variation at
a higher level is not derived from variation in underlying
traits.

Our article is motivated by a recent series of models
where habitat specific population growth is described by
either the logistic equation (de Mazancourt and Dieck-
mann 2004; Parvinen and Egas 2004) or the Ricker equa-
tion (Wilson and Yoshimura 1994; Egas et al. 2004). In
these models, variation is implemented in habitat-specific
growth rates or carrying capacities. Assuming evolutionary
change in these population-level parameters might not be
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acceptable for at least two reasons. First, population-level
parameters that appear as independent variables in a pop-
ulation dynamical equation might not be independent
when derived from processes at the individual level. Such
is the case with r and K in both the logistic and Ricker
equations. In these growth models, K appears to be linearly
dependent on r. Consequently, variation in r alone cannot
be derived from variation in an underlying trait. Inde-
pendence of r and K should be assumed only based on a
derivation showing how different independent traits at the
individual level can affect the different demographic pa-
rameters separately. Kuno (1991), Olson (1992), and Ber-
ryman (1992) all discuss why the logistic equation is likely
to be a bad candidate to find such a derivation. Second,
trade-offs between population-level parameters originate
from correlations in underlying individual-level traits. If
the mapping from these traits to higher-level parameters
is nonlinear, then specific trade-off curvatures are not in-
herited from one level to the next. By implementing a
certain trade-off curvature between population-level pa-
rameters, the modeler makes an implicit assumption about
the nature of the trade-off at the individual level. Because
of the involved nonlinearity, this assumption might often
be rather unrealistic, and as we have shown in some cases,
a certain curvature cannot be derived from an underlying
trade-off at all.

Based on all derivations of the logistic equation and the
Ricker equation that are known to us, the observation that
the carrying capacity increases linearly with intrinsic
growth rate has important consequences for the theory of
r and K selection. In the classical sense, as popularized by
MacArthur and Wilson (1967), Roughgarden (1971), and
Charlesworth (1971), this theory states that variable en-
vironments, in which population densities are regularly set
back to low values, select genotypes with high intrinsic
growth rates, while more stable environments select ge-
notypes corresponding to high equilibrium population
densities. The influential article by Roughgarden (1971)
uses the logistic equation to derive these predictions for-
mally. In this model, a trade-off is assumed: genotypes
with a high intrinsic growth rate correspond to a low
carrying capacity and vice versa. This assumption is clearly
at odds with the viewpoint championed in this article sug-
gesting that r and K are positively rather than negatively
correlated. Thus, in models that are based on the logistic
equation but where the demographic parameters are de-
rived from processes at the level of the individual, selection
for high growth rates results in a concomitant increase of
the carrying capacity. This point has also been made by
Kuno (1991). That the theory of r and K selection in its
narrow sense is flawed for other reasons has been known
at least since the important article by Matessi and Gatto
(1984). They showed that stable environments need not

select the genotype corresponding to the highest carrying
capacity but rather select the genotype that can live on the
fewest resources. These authors suggest using the terms r
and K selection to refer to the conditions of selection
(density independent vs. density dependent) rather than
to the outcome of selection (r maximization vs. K
maximization).

Application to the Recent Literature

The ideas presented in this article affect the results of a
recent series of articles that study the evolution of habitat
specialization. In these models, mutational change is as-
sumed for habitat-specific carrying capacities or intrinsic
growth rates.

Wilson and Yoshimura (1994) have explored the scope
for coexistence of two habitat specialists and a habitat
generalist, as determined by their habitat-specific carrying
capacities in a model where habitat-specific growth is de-
scribed by the Ricker equation. In their basic model ver-
sion, the carrying capacity for a specialist is 10 times higher
in the habitat it is adapted to than in the habitat it is not
adapted to. This situation corresponds to our figure 2b,
2d, where the two specialists are characterized by K p

and . The shape of the trade-off is de-(1, 0.1) K p (0.1, 1)
termined by the carrying capacities of the generalist. To
cover trade-off relations from strong to weak, Wilson and
Yoshimura varied the carrying capacity of the generalist
between 0.3 and 0.99. Wilson and Yoshimura (1994) find
that coexistence is possible for generalists ranging from

to . According to our pa-K p (0.99, 0.99) K p (0.4, 0.4)
rameterization (see eq. [13]), these generalists correspond
to trade-offs in a that are parameterized by z values be-
tween 617 (for ) and 3.8 (forK p [0.99, 0.99] K p

). Hence, all of these trade-offs correspond to very[0.4, 0.4]
weak or extremely weak trade-offs in a (cf. fig. 2d). Mod-
erately weak, linear, and strong trade-offs in a all corre-
spond to strong trade-offs in K (cf. fig. 2b) and do not
allow for the coexistence of two specialists and a generalist.
From this viewpoint, the scope for coexistence seems to
be far more restricted than suggested by Wilson and
Yoshimura.

Egas et al. (2004) present a reanalysis of the model of
Wilson and Yoshimura. In one version of their model, they
assume that the habitat-specific carrying capacities can
vary continuously between 0 and 100. A carrying capacity
of 0 corresponds to an infinitely large competition neigh-
borhood size with . In appendix B, wea p � p ai max ivar

prove that in this case any trade-off in a is mapped into
a strong trade-off in K. However, from the analysis in Egas
et al. (2004), it becomes clear that coexistence of two spe-
cialists and a generalist requires a weak trade-off in K in
all cases where environmental variability is not extremely
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high. This perspective therefore suggests again that co-
existence is far more restricted than it appears from the
analysis of the authors.

Parvinen and Egas (2004) studied the evolution of hab-
itat specialization in a metapopulation model with two
types of habitat and logistic growth within patches. Evo-
lutionary change is assumed in either habitat-specific in-
trinsic growth rates or carrying capacities. Currently, no
derivation of the logistic equation known to us provides
a mechanism that would allow variation of the intrin-
sic growth rate while leaving the carrying capacities con-
stant; in all published mechanisms known to us, the latter
is linearly dependent on the former. Hence, we lack an
individual-based interpretation of habitat specialization in
terms of intrinsic growth rates.

The main purpose of an article by de Mazancourt and
Dieckmann (2004) is to extend Levins’s (1962) graphical
fitness set approach to accommodate frequency-dependent
selection. In order to illustrate their methodology, they
analyze a model of one consumer feeding in two habitats.
The consumer grows logistically in each habitat and
evolves in a trait that determines habitat-specific carrying
capacities. Evolution in the carrying capacities is assumed
to be constrained by a trade-off, and in the specific case
analyzed by de Mazancourt and Dieckmann (2004), the
space of possible carrying capacities ranges from 0 to 10.
As mentioned above, no individual-based derivation of
the logistic equation is known to us that can produce a
weak trade-off in K for this choice of parameters. Since a
weak trade-off is a prerequisite for evolutionary branching
in their model, this seems, at least from the viewpoint of
individual-level traits, contrary to the statement of the
authors, a very unlikely outcome. We want to emphasize
that our objection against the specific example does not
detract from the eminent suitability of their methodology
for analyzing situations where little knowledge is available
on the mapping from individual-level traits to population-
level parameters. An analysis along their lines produces
graphical conditions that a trade-off curve has to fulfill
for a specific outcome to be realized.

Ultimately, the nature of variation at any given level is
an empirical question. It might very well be that in a
certain species, a pattern of variation is found that matches
the assumed variation in the above. Therefore, theoretical
studies of an a priori chosen pattern of variation in
population-level parameters without deriving it from an
underlying level can still be useful. However, such a match
would seem to be a lucky coincidence and should not

form the basis of a research program. Instead, we suggest
the following approach. Evolutionary predictions should
be derived from models that assume evolutionary change
at the level of individual-based traits. In order to get a
broader picture, one should get a collection of different
individual-based derivations. In a second step, one can
classify the traits occurring in these derivations with re-
spect to how variation at this level is mapped to the level
of demographic traits and therefore result in the same class
of evolutionary dynamics.

The Evolution of Resource Specialization

Finally, we want to draw attention to the results of our
evolutionary analysis. In the face of trade-offs, theory pre-
dicts two qualitatively different evolutionary outcomes.
Natural selection can lead either toward an intermediate
phenotype where the gain from improving one trait is
exactly balanced by the loss through the accompanying
change in another trait or to an extreme phenotype at the
boundary of the trait space. The evolution of habitat spe-
cialization in terms of the size of the interaction neigh-
borhood a shows a marked difference in the continuous-
and the discrete-time models. In the continuous-time
model, where fast migration between habitats is assumed,
the generalist is selected for in the case of weak trade-offs,
while specialists are selected for in the case of strong trade-
offs. This scenario coincides with the intuition of many
evolutionary ecologists about the evolution of resource
specialization (e.g., Benkman 1993; Robinson 2000) and
with Levins’s predictions for evolution in an environment
that is stable in time but heterogeneous in space (Levins
1962). By contrast, in the discrete-time model, which as-
sumes juvenile dispersal and no migration, specialists are
also selected for in combination with weak trade-offs. This
scenario shows that Levins’s result does not hold generally
but only when fitness is a linear function of the traits
considered evolvable.
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APPENDIX A

Fast Migration between Habitats

The population dynamics of one consumer species exploiting two different habitats can be described by the following
system of coupled differential equations:

dN A1 2p h N � h N � b N � m N , (A1)12 2 21 1 1 1 1 1dt A1

dN A2 1p h N � h N � b N � m N . (A2)21 1 12 2 2 2 2 2dt A 2

Quantities and denote the population density in habitats 1 and 2, respectively. Individuals migrate at rate hijN N1 2

from habitat j to habitat i. Absolute habitat size is denoted by Ai. In each habitat, individuals reproduce and die at
the habitat-specific rates bi and mi, respectively. If we assume that migration rates are high in comparison with the
birth and death rates, we can calculate the equilibrium distribution of the population over the two habitats as

. Combining this with , where n denotes the total population size, we find thatˆ ˆN p N A h /A h n p A N � A N1 2 2 12 1 21 1 1 2 2

and .ˆ ˆˆ ˆP p A N /n p h /(h � h ) P p A N /n p h /(h � h )1 1 1 12 21 12 2 2 2 21 21 12

In order to write the model purely in terms of individual-level traits, we assume that the habitat-specific death rates
increase linearly with the number of competitors and therefore that the realized rate of increase of a consumer with
n competitors in its competition neighborhood of size a is given by . Here l is a positive constant.r p b � (m � ln)n

It describes the sensitivity to competition such that the sensitivity increases with increasing values of l. If we substitute
for , we can rewrite the realized rate of increase as . The expected rate of increase for any probabilityr b � m r p r � ln0 n 0

distribution P(n) is then given by

laN
¯E[r] p r � l nP(n) p r � ln p r � lNa p r 1 � , (A3)�0 0 0 0( )rn 0

that is, .K p r /la0

APPENDIX B

Mapping of the Trade-Off

Consider a trade-off between and that can be described by the function . This trade-off curve is translateda a a (a )1 2 2 1

into a curve by the map . This map has to be derived from equations (12) and (10) or (11). ToK (K ) K (a (a (K )))2 1 2 2 1 1

study the curvature of the trade-off in K, we have to differentiate twice:K (a (a (K )))2 2 1 1

2 2d K (a (a (K ))) da da 1 1 d a2 2 1 1 2 2 2∝ 2 � � . (B1)
2 2( )dK da da a a da1 1 1 2 1 1

This gives us an expression for the shape of the trade-off in terms of the first two derivatives of . Further analyticala (a )2 1

results can be obtained for specific parameterizations of the trade-off curve. Here we choose equation (12), which can
also be written as

z z

a � a a � a1 max 1 2 max 21 p � . (B2)( ) ( )a a1var 2var

We can derive the trade-off function by solving equation (B2) for . The first two derivatives of this functiona (a ) a2 1 2

can be simplified using equations (12) and (B2) to
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1/zda (1 � v)v a2 2varp � ,
1/zda (1 � v) va1 1var

2 1/zd a (1 � v)v a (z � 1)2 2varp . (B3)
2 2/z 2 2da (1 � v) v a1 1var

Now we are able to simplify condition (B1) using equation (B3):

2 1/z 1/zd K (a (a (K ))) a (1 � v) a v2 2 1 1 1var 2var∝ 1 � z � 2 v � (1 � v) . (B4)
2 1/z 1/z[ ]dK a � a (1 � v) a � a v1 1 max 1var 2 max 2var

This condition depends on the magnitude of z relative to 1 plus two times some complicated expression in brackets.
If both instances of a1var and a2var are small, then the term in brackets is small as well, and the sign of the second
derivative will be determined by the difference between 1 and z. In this case, whether is a strong or aK (a (a (K )))2 2 1 1

weak trade-off is inherited for most values of z from the corresponding property in the underlying trade-off .a (a )2 1

By contrast, if both instances of a1var and a2var are large, that is, very similar to , then the term in brackets will beai max

large as well and can dominate the whole expression. In this case, moderately weak trade-offs in a will be mapped
into strong trade-offs in K. When approaches infinity, then will be a convex trade-off for any value of z.a K (K )ivar 2 1

APPENDIX C

Analytical Results for Evolutionary Analysis

First, we present some analytical results for the case of fast migration and mutational change in K. These derivations
are very similar to those in appendix B and will not be repeated in as much detail. The optimization criterion is given
by (eq.[4]). Differentiating with respect to (where is considered a function of ) reveals that critical pointsˆ ˆN N K K K1 2 1

of are given by . To see whether these critical points are maxima or minima of ,2 2 2 2ˆ ˆN dK /dK p �(P r K )/(P r K ) N2 1 1 1 2 1 2 1

we need to differentiate twice. It appears that we get a more tractable result if we differentiate , an′ˆ ˆ ˆN N :p �1/N
expression that has minima and maxima for the same values as . Differentiating twice with respect to yields′ˆ ˆN N K1

2
2 ′ 2 2 2 2ˆd N P r d K 2P r 2P r dK2 2 2 1 1 2 2 2p � � . (C1)

2 2 2 3 3 ( )dK K dK K K dK1 2 1 1 2 1

When we evaluate this derivative at the critical points of , we can replace the middle term withN̂
. This allows us factor out from the right-hand side of equation (C1). After replacing2 2 2�(dK /dK )2r P /(K K ) P r /K2 1 2 2 2 1 2 2 2

and with their explicit expressions, which can be derived analogous to equation (B3), we get2 2dK /dK d K /dK2 1 2 1

2 ′ 1/z 1/zˆd N K (1 � v) K v1var 2var∝ 1 � z � 2 v � (1 � v) . (C2)
2 1/z 1/z[ ]dK K � K (1 � v) K � K v1 1 min 1var 2 min 2var

For (weak trade-offs), this expression is always negative, and therefore, critical points are maxima. For , thez 1 1 z ! 1
sign of expression (C2) depends on the term in brackets. When this term is larger than 0.5, then will be2 ′ 2ˆd N /dK1

negative for any value of z and the critical point will be again a maximum. This is the case when K1min and K2min are
sufficiently small. In case of symmetric parameter values for ri, Pi, Kimin, and Kivar, we find a critical point of the
optimization criterion at . A sufficient condition for to be negative is then given by2 ′ 2ˆv p 0.5 d N /dK K !1 min

. However, when both K1var and K2var are sufficiently small, then the term in brackets will be close to 0, and1/zK 0.5var

the difference between 1 and z dominates the term in brackets. The optimization criterion then has the same qualitative
curvature as the trade-off . In the limit , the term in brackets becomes 0, and a strong trade-off in KK (K ) K p 02 1 ivar

corresponds to a minimum in and a weak trade-off in K corresponds to a maximum in .ˆ ˆN N
Given symmetric parameter values ( , , , , ,P p 1/2 p P r p r p r K p K K p K a p a1 2 1 2 1 min 2 min 1var 2var 1 max 2 max
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, , ), we can prove for the model with juvenile dispersal and no migration that thea p a R p R k p k p k1var 2var 01 02 1 2

bifurcation between a repelling generalist and an attracting generalist occurs for when the trade-off is directlyz ! 1
in K and for when the trade-off is in a. Under the assumption of symmetry, the first derivative of the fitnessz 1 1
function (eqq. [16], [17]) equals 0 at the generalist trait where and , respectively. At theseK p K p K a p a p a1 2 1 2

trait values, and in the case of a trade-off directly in K, and andˆ ˆdK /dK p �1 N p 2K da /da p �1 N p2 1 2 1

in the case of a trade-off in a. The bifurcation point is given by the z value where the second derivative2r/[a(1 � k)]
of the fitness function (eqq. [16], [17]) equals 0: and , respectively. Under2 ′ ′2 2 ′ ′2d w(K , K )/dK p 0 d w(a , a)/da p 01 1

the conditions mentioned above, we can derive that the bifurcation points are characterized by

2d K 2(2 � r)2 p (C3)
2dK K1

and

2d a 2r2 p , (C4)
2da a1

respectively. The right-hand side of equation (C3) is positive for . Hence, for stable population dynamical equilibria,r ! 2
the bifurcation occurs for a convex trade-off in K. As explained in “The Mapping of Trade-Offs,” this corresponds to
a strong trade-off in K ( ). The right-hand side of equation (C4) is also a positive number, thus indicating againz ! 1
that the bifurcation occurs for a convex trade-off. However, for this case where the trade-off is assumed in a, a convex
trade-off corresponds to a weak trade-off ( ).z 1 1

Literature Cited

Arnold, S. J. 1992. Constraints on phenotypic evolution. American
Naturalist 140(suppl.):S85–S107.

Benkman, C. W. 1993. Adaptation to single resources and the evo-
lution of crossbill (Loxia) diversity. Ecological Monographs 63:
305–325.

Berryman, A. 1992. Intuition and the logistic equation. Trends in
Ecology & Evolution 7:316.
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