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Introduction

In the last decade, the study of sympatric speciation has

gained much momentum (Coyne & Orr, 2004; Dieck-

mann et al., 2004; Gavrilets, 2004; Bolnick & Fitzpatrick,

2007). This has been in part due to empirical research

(Schliewen et al., 1994; Gı́slason et al., 1999; Barluega

et al., 2006b; Savolainen et al., 2006a) and in part due

to advances in theoretical modelling (e.g. Dieckmann &

Doebeli, 1999; Kondrashov & Kondrashov, 1999; Kirk-

patrick & Ravigné, 2002; Gavrilets, 2004). It is now

widely accepted that sympatric speciation can – and

does – occur (Bolnick & Fitzpatrick, 2007). However, it is

still very much debated how common it is in nature. This

controversy applies to both empirical data (Barluega

et al., 2006a; Savolainen et al., 2006b; Schliewen et al.,

2006; Stuessy, 2006) and models (Doebeli & Dieckmann,

2005; Doebeli et al., 2005; Gavrilets, 2005; Polechová &

Barton, 2005; Waxman & Gavrilets, 2005a, b; Doebeli

et al., 2007).

On the theoretical side, part of the debate has focused

on costs of choosiness. One possible path to sympatric

speciation is the evolution of nonrandom mating in

populations subject to frequency-dependent disruptive

selection. For example, in populations experiencing

intraspecific competition, fitness may be reduced for

individuals with an intermediate phenotype. Females can

prevent the production of low-fitness offspring by

choosing males whose phenotype is close to their own.

In other words, there is selection for positive assortative

mating (Rosenzweig, 1978; Doebeli, 1996; Dieckmann &

Doebeli, 1999; Doebeli & Dieckmann, 2000; Matessi

et al., 2001; Bolnick, 2004; Doebeli, 2005; Bolnick, 2006;

de Cara et al., 2008; Otto et al., in press; Pennings et al.,

2008; Ripa, in press), in a process similar to reinforce-

ment (Servedio & Noor, 2003). If assortative mating gets

strong enough, the population can split into two repro-

ductively isolated clusters (Gourbiere, 2004; Bürger &

Schneider, 2006; Bürger et al., 2006; Schneider & Bürger,

2006; Doebeli et al., 2007). However, speciation may fail

if choosy females experience fitness costs.

Whether or not costs of choosiness represent a serious

obstacle for sympatric speciation has been a matter for

much recent debate (Matessi et al., 2001; Bolnick, 2004;

Gourbiere, 2004; Kirkpatrick & Nuismer, 2004; Doebeli,

2005; Doebeli & Dieckmann, 2005; Gourbiere & Mallet,

2005; Waxman & Gavrilets, 2005a, b; Bürger & Schnei-

der, 2006; Bürger et al., 2006; Schneider & Bürger, 2006;
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Abstract

We investigate how costs of choosiness affect the evolution of assortative

mating in a simple model of competitive speciation. The model allows for a

comprehensive analysis by analytical and numerical techniques. We obtain

results for two types of costs: mating costs, which restrict the number of males

a choosy female can evaluate, and viability costs, which decrease a choosy

female’s survival. Mating costs significantly reduce the range of parameters for

which speciation is possible, but only if the number of males a female can

evaluate is small (less than 10). This type of costs can be eliminated if females

are allowed to mate randomly at the end of the mating period. Although, in

this case, it is not possible to achieve complete reproductive isolation, our

results show partial isolation with strong phenotypic clustering. Viability costs

counteract selection for assortative mating. As this selection is typically weak,

speciation is possible only if viability costs, too, are weak. The above

restrictions are less severe if extreme phenotypes have an intrinsically higher

carrying capacity.
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de Cara et al., 2008; Otto et al., in press). For example,

Gavrilets repeatedly claims that ‘costs of being choo-

sy…can easily prevent speciation’ (Gavrilets, 2004,

p. 398) or even that ‘absence of costs’ is among the

‘conditions for sympatric speciation’ (Gavrilets, 2005).

Others have rejected this conclusion and maintain that

‘the evolution of assortative mating remains possible

even when such costs are substantial’ (Doebeli & Dieck-

mann, 2005, see also Doebeli, 2005; Doebeli et al., 2007).

There are several reasons for this disagreement. To

some degree, what constitutes ‘substantial’ costs or

‘possible’ speciation is a matter of personal interpretation.

Different authors have used different criteria for success-

ful speciation (e.g. evolution of strong assortative mating

vs. formation of phenotypic clusters), and have focused

on different aspects of the speciation process (strength

of selection for assortative mating, time to speciation,

maintenance of polymorphism and cluster formation).

Matters are further complicated by the fact that results

are usually derived from individual-based simulations,

which cover only a limited range of parameters and make

generalizations difficult. Only very recently, analytical

approaches have been suggested by three groups of

authors (de Cara et al., 2008; Otto et al., in press;

Pennings et al., 2008; building on preliminary work by

Matessi et al., 2001), which allow for a comprehensive

understanding of the evolutionary dynamics under sim-

ple but nontrivial conditions.

Here, we use the model by Pennings et al. (2008) to

analyse costs of choosiness. The key simplification of this

model relative to previous studies (e.g. Dieckmann &

Doebeli, 1999; Bolnick, 2004) is that the genetic basis of

the ecological trait (which underlies competition) is

reduced to a single biallelic locus. The benefit is that the

model can be analysed in great detail and in the full

parameter space by using a combination of analytical and

numerical techniques. In Pennings et al. (2008), choosi-

ness was cost free. Here, we introduce two types of costs,

which we refer to as mating costs and viability costs.

Mating costs arise if choosy females run the risk of not

finding an acceptable male before the end of the mating

period (Gavrilets & Boake, 1998; Arnegard & Kondrashov,

2004; Bolnick, 2004; Bürger & Schneider, 2006; Bürger

et al., 2006; Schneider & Bürger, 2006). Viability costs

directly decrease the survival of choosy females (Doebeli

et al., 2007; Otto et al., in press), for example, due to an

increased predation risk. Our main interest is in how costs

of choosiness alter the strength and direction of selection

on assortative mating, and, in particular, whether costs

prevent the evolution of phenotypic isolation.

Model description

Below, we give a short, but self-contained description of

the model; for additional details, the reader is referred to

Pennings et al. (2008). We assume that natural selection

acts on a single, diploid locus (termed the ecological locus)

with two alleles, ‘+’ and ‘)’. The three ecological genotypes

(+/+), (+/)) and ()/)) may be viewed as coding for a

quantitative trait (e.g. with value x, 0 and )x), but we

will not need to make explicit reference to the pheno-

type in most of the following. The total population

size is N ¼ Nþhom þ Nhet þ N�hom, where Nþhom;Nhet and

N�hom denote the number of individuals in the three

genotype classes, and ‘hom’ and ‘het’ stand for homo-

zygotes and heterozygotes. In symmetric cases, we will

write Nþhom ¼ N�hom ¼ Nhom. The relative genotype fre-

quencies will be denoted by P�hom ¼ N�hom=N and Phet ¼
Nhet/N. Unless otherwise stated, the terms ‘homozygotes’

and ‘heterozygotes’ will always refer to the ecological

genotype. Time is continuous, and generations are

overlapping. Individuals are assumed to be either

simultaneous hermaphrodites (no selfing) or males and

females with a sex ratio of 1 : 1.

Viability selection

Viability selection is modelled using a Lotka–Volterra

approach (Roughgarden, 1972). The carrying capacity for

heterozygotes is Khet, whereas the carrying capacity for

both homozygotes is Khom ¼ Khet(1)k), with k £ 1. For

k > 0, Khet > Khom, that is, the carrying capacity function

(K as a function of phenotype) is unimodal, whereas for

k < 0, Khet < Khom and the carrying capacity function

is bimodal. The strength of competition is 1 between

identical genotypes, 1 ) c between heterozygotes and

either of the homozygotes, and 1 ) c ¢ between the two

different homozygotes (c ¢ ‡ c). Typically, we will assume

c ¢ ¼ 1 ) (1 ) c)4, which corresponds to a Gaussian rela-

tionship at the phenotypic level. The total amount of

competition experienced by the various genotypes is

C�hom ¼ N�hom þ ð1� cÞNhet þ ð1� c 0ÞN�hom; ð1aÞ

Chet ¼ ð1� cÞNþhom þ Nhet þ ð1� cÞN�hom: ð1bÞ

These can be viewed as ‘ecologically effective popula-

tion sizes’, with 1 ) c and 1 ) c ¢ acting as competition

coefficients. In the absence of viability costs (see below),

the genotype-specific death rates are given by

d�hom ¼
C�hom

Khom

; dhet ¼
Chet

Khet

: ð2Þ

An extension of the model to cases with an asymmetric

carrying capacity or competition function is possible (see

Pennings et al., 2008), but did not lead to qualitative

changes in the results. We therefore limit our analysis to

the symmetric case here and only briefly comment on

the asymmetric case in the Results section.

Assortative mating

Assortative mating is modelled as female choice and is

based on similarity with respect to the ecological locus.
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Females are characterized by evolvable mating traits

m and m¢, which indicate their readiness to reject males

of a different genotype. When a female encounters a

male of her own genotype mating occurs with probability

1. When a heterozygous female encounters a homo-

zygous male (or vice versa), mating occurs with

probability 1 ) m. Similarly, when a (+/+) female meets

a ()/)) male (or vice versa), mating occurs with

probability 1 ) m¢. In the following, we will always

assume that m and m¢ are determined by the same set of

genes and that m¢ is an increasing function of m. For

numerical calculations (e.g. in the figures), we choose

m¢ ¼ 1 ) (1 ) m)4, making mating probability a Gaussian

function of phenotypic distance. We consider two types

of costs: mating costs and viability costs.

Mating costs
Mating costs arise if a choosy female runs the risk of not

finding a suitable mate by the end of the mating period.

Here, we follow an approach introduced by Gavrilets &

Boake (1998) and subsequently used by a number of

authors (Matessi et al., 2001; Arnegard & Kondrashov,

2004; Bolnick, 2004; Doebeli, 2005; Waxman & Gavri-

lets, 2005b; Bürger & Schneider, 2006; Bürger et al.,

2006; Schneider & Bürger, 2006). Denote the probability

that an encounter of a female with a random male leads

to mating by

p�hom ¼ ½P�hom þ ð1�mÞPhet þ ð1�m0ÞP�hom�; ð3aÞ

phet ¼ ½ð1�mÞPþhom þ Phet þ ð1�mÞP�hom�: ð3bÞ

Furthermore, assume that there is a fixed maximum

number M of encounters or mating trials before the

mating period ends. Then, the mating rates of homozy-

gous and heterozygous females are

/�female; hom ¼ 1� ð1� p�homÞ
M; ð4aÞ

/female; het ¼ 1� ð1� phetÞM; ð4bÞ

which depend on m and m¢. For M fi ¥, mating costs

are absent and we recover model 2 of Pennings et al.

(2008). In the terminology of Kirkpatrick & Nuismer

(2004), this is the ‘animal model’, whereas the opposite

case M ¼ 1 is the ‘plant model’.

The rates of matings between females of type i and

males of type j, Qi,j, are given by

Qhom�; hom� ¼ /�female; hom

P�hom

p�hom

; ð5aÞ

Qhom� ;het ¼ /�female; hom

Phetð1�mÞ
p�hom

; ð5bÞ

Qhom� ;hom� ¼ /�female; hom

P�homð1�m0Þ
p�hom

; ð5cÞ

Qhet;hom� ¼ /female; het

P�homð1�mÞ
phet

; ð5dÞ

Qhet; het ¼ /female; het

Phet

phet

: ð5eÞ

To understand these equations, note that /female gives

the probability that a female mates at all, whereas the

fractional term gives the probability that she mates with a

male of a particular genotype.

Flexible mating strategy
Females can avoid costs of choosiness by accepting a

random male at the end of the mating period (Doebeli &

Dieckmann, 2005). Therefore, we also consider a variant

of the above model, in which females that have been

unsuccessful in M trials at assortative mating go on to

mate randomly at their next encounter. In this case,

/�female;hom and /female,het are the rates of assortative mating

only, and the total pairwise mating rates Qi,j become

Qhom� ;hom� ¼ P�hom

/�female; hom

p�hom

þ 1� /�female; hom

 !
; ð6aÞ

Qhom� ;het¼Phet

/�female;homð1�mÞ
p�hom

þ1�/�female;hom

 !
; ð6bÞ

Qhom� ;hom� ¼ P�hom

/�female;homð1�m0Þ
p�hom

þ 1� /�female;hom

 !
;

ð6cÞ

Qhet;hom� ¼P�hom

/female;hetð1�mÞ
phet

þ1�/female;het

� �
; ð6dÞ

Qhet;het ¼ Phet

/female;het

phet

þ 1� /female;het

� �
: ð6eÞ

Viability costs
Alternatively, or in addition to effects on female mating

rate, costs of choosiness could also affect viability (see

Doebeli, 2005; Doebeli & Dieckmann, 2005; Doebeli

et al., 2007; Otto et al., in press). There can be a number

of reasons for this, such as direct costs of the choosiness

mechanism, increased predation risk due to mate choice,

or a disadvantage in competition for the best feeding or

nesting sites.

We consider two subtypes of viability costs: absolute

and relative ones (using the terminology of Otto et al., in

press). Absolute viability costs depend directly on the
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parameters m and m¢, independent of the availability of

mating partners. For example, absolute costs could arise

if the choosiness mechanism itself is costly. For mathe-

matical reasons, we assume a soft selection scheme,

where costs depend on the difference between a female’s

own choosiness and the mean choosiness in the popu-

lation:

d� ¼
C�
K:
þ fdðm� �m;m0 � �m0Þ; ð7Þ

with a cost function fd that is nondecreasing in both of its

arguments. An example is the simple linear cost function

fdðm� �m;m0 � �m0Þ ¼ dðm� �mÞ þ d0ðm0 � �m0Þ; ð8Þ

where d,d¢ ‡ 0 measure costs linked to m and m¢ respec-

tively. Because of soft selection, these costs do not affect

the dynamics of a population that is monomorphic with

respect to choosiness. Absolute viability costs can be

introduced in various alternative ways, but models seem

to behave very similar as long as costs are not too strong.

For example, we also numerically analysed a hard

selection model with a multiplicative cost term,

dÆ ¼ (CÆ/KÆ)(1 + dm + d¢m¢), and obtained results compa-

rable to the ones discussed below (not shown).

In contrast to absolute costs, relative costs depend on

the number of males a female rejects before mating.

Mating costs, as introduced above, are necessarily

relative. However, also viability costs can easily be

relative, for example if predation risk is proportional to

the number of unsuccessful mating trials. In particular,

we assume

d� ¼
C�
K�
þ
X1
k¼1

ckð1� p�Þk: ð9Þ

The coefficient ck measures the cost for the kth

unsuccessful mating trial. If costs are equal for each trial,

ck ” c, eqn 9 simplifies to

d� ¼
C�
K�
þ c

1

p�
� 1

� �
; ð10Þ

where (1/pÆ)1) is the average number of rejected males

per female of a given ecological type.

We only consider viability costs that act equally on

males and females. For hermaphrodites, this assumption

holds automatically. For separate sexes, it is a necessary

condition to maintain an 1 : 1 sex ratio.

Although, in principle, different types of costs can act

simultaneously, in this paper, we will only analyse them

separately. Thus, a population subject to mating costs will

not also experience viability costs and vice versa.

Population dynamics

Using the above definitions and the laws of Mendelian

inheritance, the birth rates of the various ecological

genotypes are given by

B�hom ¼ N�homðQhom� ;hom� þ 1
2

Qhom�;hetÞ
þ Nhetð12 Qhet;hom� þ 1

4
Qhet;hetÞ; ð11aÞ

Bhet ¼ Nþhomð12 Qhomþ ;het þ Qhomþ;hom�Þ
þ 1

2
NhetðQhet;homþ þ Qhet;het þ Qhet;hom�Þ

þ N�homð12 Qhom�;het þ Qhom� ;homþÞ: ð11bÞ

Finally, the population dynamics are given by

_N�hom ¼ B�hom � N�homd�hom; ð12aÞ

_Nhet ¼ Bhet � Nhetdhet: ð12bÞ

Equations 11a, 11b, 12a and 12b assume that all

females in the population follow the same mating

strategy (i.e. their m and m¢ values are identical). In the

next section and in the Appendix, we show how the

model can be extended to incorporate mutant mating

strategies.

Invasion analysis

Our main aim is to understand the evolution of the

choosiness parameters m and m¢, which we will summa-

rize in the vector m ¼ (m,m¢). For this purpose, we

assume a population that is monomorphic with respect to

m, and we ask under what conditions a rare mutant with

a slightly different value ~m ¼ ð~m; ~m0Þ can invade. (Recall

that m¢ is an increasing function of m; so, a single

mutation will increase or decrease both parameters.)

Without costs of choosiness, considerable analytical

progress is possible. In particular, it can be shown that

mutants with increased choosiness can invade if and only

if the total fitness of homozygotes is greater than that of

heterozygotes (where fitness is determined by both

natural and sexual selection, see below and Pennings

et al., 2008). The reason is that choosy females tend to

have more homozygous offspring. With costs of choos-

iness, no such simple criterion exists, because females

now face a trade-off between their own fitness and that

of their offspring. Thus, invasion depends not only on the

sign but also on the magnitude of the fitness difference

between homozygotes and heterozygotes. Choosiness

can increase only if the benefit of having more homo-

zygous offspring more than offsets the disadvantage of

having a reduced mating rate or viability. To determine

the strength and direction of selection on m, it is

therefore necessary to calculate the invasion fitness

gradient (Geritz et al., 1998).

We assume that the population dynamics are fast

relative to the evolutionary dynamics (Hammerstein,

1996). This means that invasion of new modifier alleles

for choosiness always occurs at the population dynamical

equilibrium of a ‘resident population’ with a monomor-

phic mating strategy. For speciation to be possible, the
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resident population must be polymorphic at the eco-

logical locus. Due to the symmetries of the model,

a symmetric equilibrium with Nþhom ¼ N�hom ¼ Nhom

always exists. For viability costs with soft selection, the

ratio n ¼ Nhet/Nhom at this equilibrium can be derived

following Pennings et al. (2008). In all other cases, it

needs to be calculated numerically for 0 < m < 1. The

stability of the symmetric equilibrium is not guaranteed

under nonrandom mating (Matessi et al., 2001; Kirkpa-

trick & Nuismer, 2004; Bürger & Schneider, 2006; Bürger

et al., 2006; Pennings et al., 2008). It can be determined

by numerically calculating the leading eigenvalue of

system 12a and 12b.

Let mhet be the number of heterozygote individuals

(with genotype (+/)) at the ecological locus) that carry

the mutant choosiness allele. Similarly, mhom is the total

number of mutant homozygotes [i.e. the sum of the

number of mutants with ecological genotypes (+/+) and

()/))]. The dynamics of the mutant subpopulation is

described by

_mhet

_mhom

� �
¼ a11 a12

a21 a22

� �
mhet

mhom

� �
ð13Þ

with the elements of the matrix Am; ~m being

a11¼
~Qhet;hom�

2
þ

~Qhet;het

4
þ

Qhom� ;het

2
þQhet;het

4
�dhet; ð14aÞ

a21 ¼
~Qhet;hom�

2
þ

~Qhet;het

4
þ

Qhom� ;het

2
þ Qhet;het

4
; ð14bÞÞ

a12 ¼
~Qhom� ;hom�

2
þ

~Qhom� ;het

4
þ

Qhom�;hom�

2
þ

Qhet;hom�

4
;

ð14cÞ

a22¼
~Qhom�;hom�

2
þ

~Qhom�;het

4
þ

Qhom� ;hom�

2
þ

Qhet;hom�

4
�dhom;

ð14dÞ

where terms marked with a tilde refer to the mutants.

The leading eigenvalue kðm; ~mÞ of Am; ~m is the invasion

fitness (Metz et al., 1992) for the ~m mutant. It can be

visualized using pairwise invasibility plots (Geritz et al.,

1998; see Appendix 1 for some examples and discussion

of peculiarities). The direction of selection for choosiness

is determined by the invasion fitness gradient (Geritz

et al., 1998)

DkðmÞ ¼
@kðm; ~mÞ

@ ~m

�����
~m¼m

: ð15Þ

Dk describes how, in the vicinity of the resident mating

strategy, a rare mutant’s strategy influences its (invasion)

fitness. Choosiness (m) increases if Dk is positive and

decreases if Dk is negative. A convergence-stable inter-

mediate equilibrium is achieved if Dk ¼ 0 and ¶Dk/

¶m < 0. In most cases, a convergence-stable equilibrium

for m also is an evolutionarily stable strategy (ESS).

However, in Appendix 1, we also present an example

where it is a branching point, which might give rise to a

polymorphic mating strategy in the population (Fig. A1f).

In Appendix 2, we derive the invasion fitness gradient

for mating costs as well as absolute and relative viability

costs. We also determine the sign of the invasion fitness

gradient at random mating (m ¼ m¢ ¼ 0) and at complete

isolation (m ¼ m¢ ¼ 1), which determines whether these

two states can be evolutionary endpoints. For interme-

diate m, we must resort to numerical analysis of eqn 15.

The model with a flexible mating strategy is analysed in

Appendix 3. We show that, in this model, invasion again

depends only on the sign of the fitness difference

between homozygotes and heterozygotes.

Results

Basic model without costs

The basic model without mating or viability costs (with

M fi ¥ and fd ¼ 0) has been analysed in Pennings et al.

(2008). Here, we briefly summarize its results. In the

model, all females are assured to mate, but rare males

are less likely to be chosen by a female. Thus, female

choosiness induces sexual selection against rare males

(Kirkpatrick & Nuismer, 2004). (This effect has been

termed a ‘cost to rarity’ by Doebeli & Dieckmann (2003),

but it is not a cost that is paid by the choosy females

themselves.) Because females do not pay for being

choosy, choosiness increases if and only if homozygotes

have higher fitness than heterozygotes. Depending on

the ecological parameters k and c, there are five regimes

for the evolution of female choosiness (Fig. 1a). Three

regimes are monostable and lead to a unique outcome:

random mating (m ¼ 0, R), partial isolation (0 < m < 1,

P) or complete isolation (m ¼ 1, C). In addition, there are

two bistable regimes, in which the outcome depends on

initial conditions: random mating or complete isolation

(R/C), and partial isolation or complete isolation (P/C).

Furthermore, for low values of c, the polymorphic

equilibrium at the ecological locus (which is a prerequi-

site for speciation) is unstable for at least some (inter-

mediate) values of m (see Bürger & Schneider, 2006;

Bürger et al., 2006), which prevents the evolution of

complete isolation in small steps.

The pattern of the invasion fitness gradient in each

regime is shown in Fig. 2, along with the fitness differ-

ence between homozygotes and heterozygotes (DW).

Note that, although both functions have the same roots,

they have different shapes. In particular, in the C, P/C

and R/C regimes, Dk tends to zero for m fi 1, because,

in this parameter region, heterozygotes are almost absent

and a change in m has little influence on the offspring

phenotype distribution. This effect is not reflected in the

fitness difference DW. Therefore, it is always the invasion

fitness gradient that determines not only the direction
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but also the speed of evolution (according to the

‘canonical equation’ of adaptive dynamics; Dieckmann

& Law, 1996).

In Pennings et al. (2008), we explain the above results

by the interplay of natural and sexual selection. Briefly,

natural selection (due to the carrying capacity and com-

petition functions) is negatively frequency dependent

and reflects the structure of ecological niches. It favours a

specific proportion of heterozygotes (which may be zero).

Sexual selection (due to female choosiness) is positively

frequency dependent and favours common genotypes. It

is sexual selection that creates the bistability in the R/C

and P/C regimes and the potential instability of the

ecological polymorphism. Both natural and sexual selec-

tion can prevent the evolution of full assortative mating

and, instead, lead to a stable intermediate value of

choosiness.

We note two differences in Fig. 1a when compared

with the analogous Fig. 1c in Pennings et al. (2008):

first, the present figure extends to negative k values,

showing (not surprisingly) that speciation is easiest

if the carrying capacity function is bimodal (provided

competition creates enough negative frequency

dependence to maintain the ecological polymorphism).

Second, we demand that the domain of attraction of

complete isolation in the P/C and R/C regimes must

not be too small. In Fig. 1, parameter combinations are

included into these regimes only if complete isolation

evolves from a starting population with m¢ £ 0.999

(meaning that the probability of a (+/+) female to

accept a ()/)) male, and vice versa, is ‡ 0.001). The

original boundary for stability of complete isolation is

included as a dotted line in Fig. 1a, which shows that

there is a large area in parameter space where complete

isolation is mathematically stable, but has a vanishingly

small domain of attraction.

Mating costs

Mating costs do not change the basic structure with five

evolutionary regimes. However, mating costs induce

sexual selection against rare and choosy females (in

addition to sexual selection against rare males). There-

fore, for given values of k and c, mating costs decrease the

likelihood that complete isolation can evolve from

random mating in small steps. This results in a shift of

the complete isolation regime towards lower (and neg-

ative) k values (Fig. 1b–f).
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Fig. 1 Evolutionary regimes for female choosiness m in the model with mating costs, as a function of the ecological parameters k and c. k is the

strength of stabilizing (positive values) or disruptive (negative values) selection arising from phenotype-specific carrying capacities. c is the

strength of frequency-dependent selection induced by competition. Mating costs are quantified by the number of mating trials per female,

M. M fi ¥ corresponds to the model without costs (model 2 of Pennings et al., 2008). The five regimes are named according to the outcome of

evolution in small steps: R ¼ random mating (m ¼ 0); P ¼ partial isolation (0 < m < 1); C ¼ complete isolation (m ¼ 1); R/C ¼ random

mating or complete isolation; P/C ¼ partial or complete isolation. In the R/C and P/C regimes, low initial values of m lead to random mating or

partial isolation, respectively, whereas high initial values of m lead to complete isolation. Only points where complete isolation can be reached

from an initial value of m¢ £ 0.999 (m £ 0.823) are assigned to these bistable regimes (see main text). In (a), the dotted line shows the boundary

of the bistable regimes if the domain of attraction of the complete isolation equilibrium can be arbitrarily small (critical m¢ fi 1). In (b–f) (i.e.

for M < ¥), the complete isolation equilibrium is always locally stable, but often with a vanishingly small domain of attraction. In the hatched

area, the polymorphic equilibrium at the ecological locus is unstable for at least some values of m. In (d) and (e), the C regime is present for

values of k smaller than those shown in the plots. In (f), only the R regime exists, and the polymorphic equilibrium is always unstable.
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Yet, marked deviations from the no-costs case appear

only for M [ 10. A special case is given for M ¼ 1, where

no amount of choosiness can evolve at all. This is easy to

understand, as a female that has only a single mating

opportunity should never reject it. The following discus-

sion refers only to the case M ‡ 2.

Figure 3a illustrates how mating costs affect the inva-

sion fitness gradient Dk(m). Costs decrease Dk for inter-

mediate values of choosiness, but not for very small

or very large m. In the limit m fi 0, Dk remains

unchanged. This means that local stability of the random

mating regime is unaffected by mating costs (Appendix

2). The reason is that any benefit of being choosy scales

linearly with m for m fi 0, whereas the costs scale

like mM (the probability to reject a mating partner is

proportional to m, and females go unmated if they reject

M mating partners). Consequently, the line separating

the C, P and P/C regimes from the R and R/C regimes is

identical in all subplots of Fig. 1 with M ‡ 2.

For m fi 1, mating costs induce strong sexual selec-

tion against heterozygotes (both males and females), as

long as these are very rare. As a consequence, complete

isolation is always locally stable, at least in the mathe-

matically strict sense (Appendix 2). This means that

mating costs actually increase the invasion fitness gradi-

ent in the P and R regimes, where complete isolation is

unstable without costs (note that Fig. 3a shows only the

C regime). However, this effect is limited to values of m

very close to 1 and is thus of no real biological

significance. Indeed, the domain of attraction of the

m ¼ 1 equilibrium is exceedingly small for parameter

values outside those marked as the C, P/C and R/C

regimes in Fig. 1 (see above). Once we require a minimal

domain of attraction for complete isolation (see above),

mating costs lead to a slight reduction in these regimes.

Where complete isolation is stable in the absence of costs,

the effect of mating costs on the invasion fitness gradient

vanishes for m fi 1.

Furthermore, strong mating costs increase the area

where the polymorphic equilibrium at the ecological

locus becomes unstable (for some values of m in [0,1]).

The reason is that mating costs reduce the fitness of rare

phenotypes (due to increased sexual selection). This may

lead to a failure of speciation, which requires a poly-

morphic population. Unlike in the no-costs case (Pen-

nings et al., 2008), the monomorphic equilibria at the

ecological locus are always locally stable for suffi-

ciently large m (Appendix 2), but this should be of little

significance as long as the polymorphic equilibrium is

locally stable, too.

Finally, we also performed some limited num-

erical analysis of an asymmetric model with
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Fig. 2 The invasion fitness gradient Dk (solid

line, left axis) and the fitness difference

between homozygotes and heterozygotes DW

(dashed line, right axis) as a function of

female choosiness m, in the absence of costs

and for each of the five evolutionary

regimes (cf. Fig. 1a). Choosiness

increases whenever Dk and DW are

positive and decreases when they are

negative. Parameters: (C) k ¼ 0.05,c ¼ 0.3,

(P) k ¼ 0.05,c ¼ 0.8, (R) k ¼ 0.6,c ¼ 0.95,

(PC) k ¼ 0.12,c¼0.4, (RC) k ¼ 0.2,c ¼ 0.2.
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Kþhom ¼ K0ð1 � 2
3

kÞ and K�hom ¼ K0ð1 � 4
3

kÞ (results not

shown; see Appendix E and Fig. E1 in Pennings et al.,

2008 for the evolutionary regimes of the asymmetric

model without costs). We find that consequences of

mating costs are similar to that in the symmetric case. In

particular, there is no significant effect for M J 10.

Flexible mating strategy

One way to avoid costs of choosiness is for females

to become less choosy towards the end of the mating

period. In the simplest case, we might assume that a

female behaves choosily during the first M encounters

with males, but mates randomly afterwards. In this

model, reproductive isolation can never be complete,

because some females will always reach the random

mating step. For the sake of continuity, we nevertheless

retain nomenclature such as ‘C regime’ for the evolution

of m ¼ 1, even though this no longer refers to complete

isolation in the strict sense. As each female is guaranteed

to mate, costs of choosiness are absent in this model. We

therefore recover the invasion criterion from the model

with M fi ¥, namely that choosiness increases (the

invasion fitness gradient is positive) if and only if

homozygotes have higher fitness than heterozygotes

(Appendix 3).

Figure 4 shows the distribution of evolutionary

regimes in the k vs. c plane for the model with a flexible

mating strategy, together with the maximal possible

degree of reproductive isolation (measured as the equi-

librium proportion of heterozygotes for m ¼ 1). For small

values of M, the domain of the C regime increases in size,

whereas the domains of the P regime and of the bistable

regimes decrease. These results can be explained as

follows: the P regime tends to be replaced by the C

regime because, for small M, even the C regime leads

only to partial isolation (see above). The bistable regimes

become less prominent because a small M (high readiness

of females to mate randomly) reduces sexual selection on

males, which is the driving force behind bistability due to

its positive frequency dependence. Unlike in the previous

model (Fig. 1), the case M ¼ 1 is not qualitatively

different from the other cases. Obviously, the maximal

possible degree of reproductive isolation (i.e. the propor-

tion of heterozygotes at m ¼ 1) decreases with decreasing

M. We observe ‘almost complete’ isolation (less than 1%

heterozygotes) if and only if the effects of mating costs in

the corresponding nonflexible model are weak

(M J 10). For stronger mating costs, a flexible strategy

leads to only partial isolation even in parameter regions

where complete isolation evolves in the absence of

flexibility. In these cases, we find a large parameter

–0.4 
–0.2 

0 0.2 0.4 0.6 0.8 1
m

–0.02 

0 

0.02 

0.04 

Dλ

(a) 

–0.02 

0 

0.02 

0.04 

0  0.2  0.4  0.6  0.8 1

Dλ

m 

(b) 

–0.06 

–0.04 

–0.02 

0 

0.02 

0 0.2 0.4 0.6 0.8 1

Dλ

m

(c) 

–0.06 

–0.04 

–0.02 

0 

0.02 

0 0.2 0.4 0.6 0.8 1

Dλ

m

(d) 

Fig. 3 The invasion fitness gradient Dk(m) for female choosiness m in the presence of costs of choosiness. For values of m to the right of the

crosses, the proportion of heterozygotes is less than 1/3 (bimodal phenotype distribution). To the right of the dots, the proportion of

heterozygotes is less than 0.01 (strong phenotypic clustering). The ecological parameters are k ¼ 0.05, c ¼ 0.3 (cf. Fig. 2, first panel).

(a) Mating costs with a limited number of mating trials, M, per female. From top to bottom M ¼ ¥ (thick line), 10, 8, 6, 5, 4, 3, 2, 1.

Decreasing M leads to a switch from the C regime (M ¼ 10, 8, 6 to the P/C regime (M ¼ 5, 4, 3) and further on to the P regime (M ¼ 2) and

R regime (M ¼ 1), cf. Fig. 1. Note the break in the y-axis and the different scales in its lower and upper parts. (b) Absolute viability costs

linked directly to m (i.e. eqn 8 with d¢ ¼ 0), with (from top to bottom) d ¼ 0, 0.01, 0.02, 0.03, 0.04. (c) Absolute viability costs linked directly to

m¢ (i.e. d ¼ 0), with (from top to bottom) d¢ ¼ 0, 0.01, 0.02, 0.03, 0.04. (d) Relative viability costs linked to the average number of males

rejected by a female before mating (according to eqn 10), with (from top to bottom), ck ” c ¼ 0, 0.01, 0.02, 0.03, 0.04.
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region where evolution of assortative mating leads to

pronounced phenotypic clustering (for M ‡ 2, the phe-

notype distribution at a stable equilibrium with m ¼ 1 is

always at least bimodal).

Viability costs

Absolute viability costs
The effect of absolute viability costs with soft selection on

the invasion fitness gradient Dk(m) can be calculated

analytically (Appendix 2). For a given cost function fd,

Dk(m) is decreased by the derivative

dfd ¼
@fd

@m
þ @fd

@m0
@m0

@m
ð16Þ

(see eqn A3). For the linear cost function (eqn 8), it follows

that Dk(m) is reduced by a constant, d, if costs are directly

linked to m (Fig. 3b). By contrast, the effect of costs linked

to m¢ is proportional to (1 ) m)3, meaning that it is

strongest for low m and vanishes for m fi 1 (Fig. 3c).
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Fig. 4 Evolutionary regimes for female

choosiness m in the alternative model with a

flexible mating strategy. Females are choosy

in their first M encounters with males but

mate randomly afterwards. Plots in the left-

hand column are analogous to those in Fig. 1

(see Fig. 1 for further details). Plots in the

right-hand column show the proportion of

heterozygotes at the maximal choosiness

value m ¼ 1; black: proportion of hetero-

zygotes less than 0.001, dark grey: £0.01,

intermediate grey: £ 0.1, light grey £(1/3)

(bimodal), white: > 1/3. The dotted line is

identical to the line separating the C, P/C and

R/C regimes from the P and R regimes in the

left-hand plots, with m ¼ 1 being locally

evolutionarily stable to the left of this line.
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(Note that costs linked to m¢ reduce the invasion fitness

gradient by a constant if the gradient is derived with

respect to m¢ instead of m. In general, one should use a

scale, proportional to m or m¢ or any combination thereof,

where choosiness modifiers have a constant average

effect, independent of the resident choosiness.) Because

of soft selection, there is no change in the stability of the

ecological polymorphism in the resident population.

It is easy to see that arbitrary shapes of the cost

function fd can lead to an arbitrary number of additional

evolutionary regimes (other than those described in

Fig. 2), because they may create additional (stable or

unstable) equilibria. For example, in Fig. 3b, for d ¼
0.02, there is a regime with two stable intermediate

equilibria for m. More generally, if costs are proportional

to m, complete isolation (m ¼ 1) can never be stable, as

the invasion fitness gradient tends to 0 for m fi 1 even in

the absence of costs. This is because m¢ is already close to

1 for large m (under the assumption of the Gaussian

shape m¢ ¼ 1 ) (1 ) m)4) and selection in homozygotes

against mating with heterozygotes vanishes once the

heterozygotes are nearly extinct. Note that there is no

such effect if costs are linked to m¢ rather than m.

Instead of focusing on isolation in the strict sense, it

may be more relevant biologically to discuss whether

assortative mating can evolve to a point where two clear

clusters emerge in phenotype space. A minimal condition

for cluster formation is the evolution of a bimodal

phenotype distribution (Nhet £ 1/3N), where heterozy-

gotes are less frequent than either type of homozygotes.

More stringently, one might demand that heterozygotes

should be almost absent from the population (e.g. Nhet ¼
0.01N). The values of m corresponding to both these

criteria are highlighted in Fig. 3 (crosses and dots respec-

tively). Whether or not a given degree of clustering can

evolve depends on the shape of the invasion fitness

gradient (in the absence of costs), on the shape of the costs

function and on the mutational step size at the choosiness

locus (i.e. on the intermediate values of m that are actually

realized). Viability costs will always impede cluster

formation if the minimum in the derivative of the cost

function dfd exceeds the maximum in the invasion fitness

gradient Dk(m) (without costs) for sufficiently small m. By

contrast, cluster formation is always possible if the

maximum in dfd is smaller than the minimum in Dk(m).

The minimal and maximal values of Dk acting in the

population before either bimodality or strong clustering is

reached are shown in Fig. 5. For the range of parameters

analysed, Dk is in the order of 10)1–10)2. We note that if

sexual selection on males is absent (as in model 1 of

Pennings et al., 2008), Dk is higher, but still within the

same order of magnitude (results not shown).

Relative viability costs
The effect of relative viability costs is intermediate

between those of absolute viability costs and of (relative)

mating costs (Fig. 3d). Like for mating costs, the effect of

relative viability costs is maximal for intermediate m

(although this maximum is much less pronounced for

costs that are proportional to the number of rejected

males, eqn 10) and vanishes for m fi 1. Complete

isolation is always locally stable (although the domain of
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Fig. 5 The invasion fitness gradient Dk(m) in the absence of costs of choosiness. The graphs are contour plots in the c vs. k plane (see Fig. 1) for

the minimal (a,c) and maximal (b,d) value of Dk before the population reaches either a bimodal phenotype distribution (a,b) or strong

phenotypic clustering with 1% heterozygotes (c,d). The values shown correspond to the minimum and maximum of the top most functions in

Fig. 3 to the left of the crosses and dots respectively. From right to left, the thick lines are isoclines for Dk ¼ 0, 0.05 and 0.1. The thin lines are

isoclines in steps of 0.01. Only isoclines for positive values of Dk are shown.
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attraction may be vanishingly small, see above) as long as

costs are not extremely high (c < 1/4; see Appendix 2).

Relative viability costs also decrease the stability of the

ecological polymorphism, in a pattern similar to that

shown in Fig. 1. In contrast to mating costs, however,

relative viability costs are linear in m for m fi 0. This is

because a part of the costs is already paid after the first

potential partner is rejected (given that c1 > 0 in eqn 9).

Close to random mating, therefore, relative viability costs

have an effect similar to that of absolute costs with a

linear cost function.

Discussion

We have investigated how costs of choosiness affect the

evolution of assortative mating in a simple model of

competitive speciation. Our analysis focuses on two types

of costs: mating costs, which restrict the number of

mating trials per female, and viability costs, which reduce

survival. We show that mating costs have a significant

effect only if the number of mating trials per female is less

than about 10. Viability costs must be weak for assorta-

tive mating to evolve, because selection for assortative

mating is weak in itself.

The strength of selection for assortative mating

Sufficiently strong costs can inhibit the evolution of any

trait. But how strong is too strong for the evolution of

assortative mating driven by resource competition?

Clearly, assortative mating can evolve only if positive

selection due to competition (and, potentially, sexual

selection) is stronger than negative selection resulting

from costs of choosiness. Therefore, the first question to

be asked is how strong positive selection for assortative

mating can be.

As shown in Fig. 5, the strength of selection for

assortative mating depends strongly on the shape of the

carrying capacity function (which is determined by the

parameter k). For positive k, that is for unimodal carrying

capacity functions, the invasion fitness gradient in the

absence of costs is typically in the order of 10)2.

Therefore, the selection coefficient s for a new mutation

that increases choosiness by 10% is in the order of 10)3.

This is weak, but not very weak selection and well within

the range of selection coefficients inferred from molec-

ular data (e.g. Andolfatto, 2007). It is worth noting that

selection on mating modifiers is stronger by at least two

orders of magnitude than selection on dominance mod-

ifiers in Fisher’s classical theory for the evolution of

dominance at mutation–selection balance (Mayo & Bür-

ger, 1997; note, however, that this is not true under

frequency-dependent disruptive selection, where the

strength of selection on dominance is comparable with

that on assortative mating in our model, e.g. Peischl &

Bürger, 2008). Thus, speciation should still be possible in

the presence of weak costs, but it is likely to be prevented

if costs are moderate or high. Furthermore, the fate of

mutations with a given selection coefficient depends

strongly on the effective population size Ne. In particular,

selection dominates genetic drift if Ne >> 1. Irrespective

of costs, this suggests that competitive speciation is more

likely in species with large effective population sizes.

Selection for assortative mating is significantly stronger

if the carrying capacity function is bimodal (k < 0). For

example, for k ¼ )0.5, the invasion fitness gradient for m

can exceed 0.1. This is hardly surprising, as a bimodal

carrying capacity directly favours extreme phenotypes

(i.e. homozygotes). Under these conditions, speciation

should be possible even in the presence of moderate

costs. Indeed, the prime obstacle to speciation in this case

seems to be the potential instability of the ecological

polymorphism for low and intermediate values of c (as

opposed to the existence of stable low or intermediate

evolutionary equilibria for m). A bimodal carrying

capacity function can result, for example, if the popula-

tion uses two discrete resources. Given the large effort

invested in models with unimodal resource distributions

(following Dieckmann & Doebeli, 1999), we suggest that

more attention should be paid to models with bimodal or

discrete resource distributions (e.g. Doebeli, 1996; Kisdi

& Geritz, 1999; Ito & Shimada, 2007; Ripa, in press). It

seems possible that competitive speciation then appears

more likely than inferred from previous models.

The strength of costs

The next question is how strong costs of choosiness are

likely to be relative to the strength of selection for

assortative mating. This is an empirical question, but

unfortunately, too few data exist for a general answer

(Kokko et al., 2006; Bolnick & Fitzpatrick, 2007). Abso-

lute viability costs, which are independent of a female’s

actual search effort, are particularly hard to measure,

although it has been suggested that costs for female

preferences (which may be comparable with absolute

costs of choosiness) might be very low (Kokko et al.,

2006). Some studies show that relative viability costs

(such as search costs) can be quite high (e.g. Byers et al.,

2005). This conclusion is corroborated by indirect evi-

dence from studies showing that females behave less

choosily under conditions of resource limitation (Byers

et al., 2006), predation risk (Godin & Briggs, 1996) or

increased energy expenditure (Milinski & Bakker, 1992).

In other species, however, viability costs seem to be very

low (Gibson & Bachman, 1992).

With regard to mating costs, Bolnick & Fitzpatrick

(2007) recently reviewed data about the number of

males females visit before mating. These estimates should

be viewed as a lower bound for the parameter M in our

model (the maximal number of males a female can

evaluate during the mating period), because it is not clear

whether females in the study populations accepted a

male because the benefit of further search was low (i.e.
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the chosen male satisfied the female’s preferences) or

because the costs (risk of remaining unmated) were high.

In some cases, females evaluate up to 100 males before

mating, but often, they mate after looking at fewer than

10. As, in our model, we find a significant effect for

M [ 10, this suggests that mating costs can indeed be an

important factor opposing competitive speciation.

Furthermore, there is some evidence that mating costs

might play a larger role if the ecological trait has a more

complex genetic architecture. Although our estimate that

mating costs are relevant for M [ 10 is in accordance

with the results by Schneider & Bürger (2006) and

Bürger et al. (2006), it is in slight contrast to Bolnick

(2004) and Waxman & Gavrilets (2005b), who find a

significant effect already for M [ 30. These differences

can be explained by differences in the effective number

of ecological phenotypes. The more different types there

are, the less likely it is that a choosy female finds a male

of exactly her own type. Bolnick (2004) and Waxman &

Gavrilets (2005b) study the time to speciation in models

with four to 10 ecological loci. As pointed out by Bolnick

(2004), this time is largely determined by the time it

takes to sort genetic variation in an initially highly

polymorphic population that is close to random mating.

Assuming, for simplicity, that all phenotypes are equally

frequent, the probability of a female encountering a male

of the same phenotype within M ¼ 10 trials is 0.983 for

one locus (as in our model), 0.692 for four loci and 0.386

for 10 loci. After 30 trials, these probabilities increase to

0.971 and 0.769 for four and 10 loci respectively.

Schneider & Bürger (2006) and Bürger et al. (2006) also

allow for more ecological phenotypes than we do, but

their focus is on the number of phenotypic clus-

ters formed at the ecological equilibrium for a given

level of choosiness, and this number is typically quite

low. Nevertheless, both Bolnick (2004) and Bürger et al.

(2006) find evidence that costs become more important

as the number of ecological loci increases.

Several authors have focused on the extreme case

M ¼ 1, mostly because it is analytically tractable (Drossel

& McKane, 2000; Gourbiere, 2004; Kirkpatrick & Nuis-

mer, 2004; de Cara et al., 2008). Not surprisingly, these

studies find that speciation is impossible in the presence

of costs (cf. Fig. 1f). Indeed, this is obvious even without

formal analysis, as a female should never reject the only

male she can expect to meet. However, the case M ¼ 1 is

clearly not representative of the general model, as even

for M ¼ 2, the results are qualitatively very different.

Therefore, claims regarding the general importance of

costs should not be based on this extreme case.

An argument by Bolnick & Fitzpatrick (2007) suggests

an interesting difference between the expected strength

of mating costs and viability costs. Mating costs should be

most severe in low-density populations, where encoun-

ters between potential mates are rare. However, this is

not likely to be the case in populations experiencing

strong intraspecific competition, such as the ones con-

sidered in our model. An opposite argument can be put

forward for viability costs: these are indeed most likely to

be strong in resource-limited, high-competition environ-

ments, and this might create a ‘catch 22’ for speciation

(Bolnick & Fitzpatrick, 2007).

The pattern of effects

Different types of costs not only differ in their strength

but also in the precise pattern of change they inflict on

the invasion fitness gradient (Fig. 3). This, in turn,

determines their exact biological consequences. Consider

a situation where speciation is possible in the absence of

costs (C regime). In principal, costs that have a strong

effect at low degrees of choosiness (low m) tend to

prevent the onset of speciation, whereas costs that are

strong at high degrees of choosiness tend to prevent the

completion of speciation. Viewed differently, costs whose

effect is weak at low m but gets stronger with increasing

m tend to halt speciation at partial isolation, whereas

costs whose effect decreases near complete isolation (i.e.

for m fi 1) favour bistability. They can prevent speci-

ation from random mating, but not the completion of

speciation, for example after secondary contact. Thus,

there is a potential difference in the effect of costs on

sympatric speciation vs. reinforcement (i.e. completion of

speciation after secondary contact).

It is worth pointing out that both types of relative costs

(mating costs and relative viability costs) belong to this

latter class (Fig. 3a, d). Relative costs have no effect at or

near complete isolation, because the only way for a

mutant (homozygote) female to increase her mating rate

is to mate with a male from the opposite homozygote

class. However, the (heterozygote) offspring resulting

from this mating will have a very low mating rate

themselves, due to the strong sexual selection against

rare heterozygotes. Both mating costs and relative

viability costs have their largest effect at intermediate

m. However, the effect of mating costs vanishes also

towards random mating (Fig. 3a), whereas relative via-

bility costs have a strong effect already at low degrees of

choosiness (Fig. 3d). In consequence, mating costs favour

bistability between partial isolation and complete isola-

tion (P/C regime; see Fig. 1), whereas relative viability

costs favour bistability between random mating and

complete isolation (R/C regime; not shown).

Absolute viability costs can exhibit any number of

patterns. For example, linear costs linked to m have a

constant effect on the invasion fitness gradient (Fig. 3b),

whereas linear costs linked to m¢ have their maximal

effect in populations close to random mating (Fig. 3c). It

is also conceivable that costs are low for low m, but

increase for large m (not shown). Such costs would most

probably lead to partial isolation.

All costs that do not tend to zero for m fi 1 will

prevent the evolution of strictly complete isolation

(Fig. 3b). However, even in this case, we often find that
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isolation can still become ‘almost complete’, and that the

resulting population shows a strongly bimodal distribu-

tion with almost no intermediate phenotypes present

(see also Doebeli et al., 2007). If gene flow is severely

restricted, the two incipient species might conceivably

evolve complete reproductive isolation by additional

mechanisms (e.g. divergent evolution along other trait

axis, temporal and/or spatial isolation, gradual build-up

of incompatibilities).

Avoidance of costs

In many situations, females should be able to avoid costs

of choosiness by flexibly adjusting their mate choice

behaviour. In this paper, we have investigated a model in

which females avoid mating costs by abandoning choos-

iness after M unsuccessful trials at assortative mating

(Fig. 4). More generally, such a strategy is always

possible if the cost of rejecting a male increases over

time. In the examples used in the figures, this is true for

mating costs (where all costs are paid only after the Mth

unsuccessful mating trial), but not for viability costs:

absolute viability costs are paid before the first male is

encountered and, thus, can never be avoided. Relative

viability costs with a linear cost function (eqn 10) are

identical in every round, so that the cost/benefit ratio is

the same for each new trial.

As female mating behaviour is generally highly plastic

(Bolnick & Fitzpatrick, 2007), cost-saving mechanisms

should be common in nature. This is particularly true for

mechanisms avoiding mating costs, because these entail

sexual selection against females that is effectively created

by the females’ own behaviour. In other words, refusing

to mate if the likelihood of future encounters with males

is low does not seem to be a viable adaptive strategy. We

stress that a flexible mating strategy is favoured for any

level of choosiness in the population, even at m ¼ 1. It is,

therefore, always the flexible strategy that is the evolu-

tionarily stable endpoint, and models for costs of choos-

iness should account for this fact.

A flexible strategy will never allow the evolution of

complete reproductive isolation. Our results show that

‘almost complete’ isolation results whenever costs are

weak in the nonflexible case. Otherwise (M [ 10 in our

model), cost avoidance leads to partial isolation as the

evolutionary outcome in a large parameter region. In this

case, we find strong phenotypic clustering (about 10%

heterozygotes), but gene flow between the clusters is still

considerable, and there is no obvious mechanism leading

to complete isolation.

Conclusions

Previous authors have voiced largely different opinions

about costs of choosiness and their importance for

competitive speciation (see Introduction). For our model,

as may often be the case, the truth is found in the middle.

In the light of our results, occasional claims that ‘absence

of costs’ is a prerequisite for speciation (e.g. Gavrilets,

2005) are exaggerated: evolution of assortative mating

is not structurally unstable and does not break down

immediately once biologically meaningful costs are

allowed for. On the other hand, even moderate costs

will clearly inhibit speciation in many biological scenar-

ios. Therefore, any model of competitive speciation is

incomplete if it does not account for this point.
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Appendix

Appendix 1: pairwise invasibility plots for female
choosiness

Figure A1 shows pairwise invasibility plots (Geritz et al.,

1998) for female choosiness m in the models with mating

costs and with absolute viability costs. In the absence of

costs, the nondiagonal boundary lines are vertical

(Fig. A1a; see Pennings et al., 2008). This is also true in

the flexible model, which is cost-free, too (not shown).

As a consequence of vertical boundary lines, modifiers

with small effect can invade if and only if modifiers with

large effect can invade (see also Otto et al., in press).

Pairwise invasibility plots with vertical boundary lines

represent a nongeneric case in the classification of Geritz

et al. (1998), and it has been argued that they arise if the

model assumptions are overly simplistic (Dieckmann &

Metz, 2006). As seen in Fig. A1b–e, the boundary lines

are no longer vertical if choosiness is costly. From the

point of view of Dieckmann & Metz (2006), therefore,

costs of choosiness contribute to the added ecological

realism that is needed to break up the degeneracy of the

simple model.

With mating costs (Fig. A1b, c), the nondiagonal

boundary line for the singular strategy corresponding to

the stable intermediate equilibrium of m is always

decreasing. This equilibrium is therefore always an ESS

(i.e. uninvasible), and in the neighbourhood of such an

equilibrium, only modifiers with small effect can invade.

With absolute viability costs that are proportional to m,

the boundary line at this singular point is decreasing for

small d, but can be increasing for high d. In the latter case,

the singular point is a so-called evolutionary branching

point (Geritz et al., 1998), i.e. invasion will lead to a

protected polymorphism of coexisting mating strategies.
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Appendix 2: invasion analysis with costs: analytical
results

In this section, we derive the invasion fitness gradient for

the model with mating costs and for the models with

absolute and relative viability costs. In addition, we

derive the conditions for stability of random mating and

complete isolation in each of these models. In particular,

we show that stability of random mating is unaffected by

mating costs (for M ‡ 2), and that complete isolation is

always (locally) stable in the presence of mating costs,

but never stable in the presence of absolute viability costs

directly linked to m. We also study the stability of the

monomorphic equilibria in the model with mating costs.

We start with the model with absolute viability costs,

where the assumption of soft selection makes a full

analytical treatment possible.

Absolute viability costs and soft selection

The invasion fitness gradient As absolute viability costs

with soft selection do not affect the population dynamics,

we can calculate the invasion fitness gradient analyti-

cally. Denote the matrix of the mutant invader dynamics

in the model without costs by A(0). The full invasion

matrix with costs (see eqn 13) is then given by

AðdÞ ¼ Að0Þ � fdð~m�m; ~m0 �m0Þ 0

0 fdð~m�m; ~m0 �m0Þ

� �
:

ðA1Þ

As the contribution of costs is proportional to the

identity matrix, the leading eigenvalue in the model with

costs relates to the eigenvalue without costs as

kdðm; ~mÞ ¼ k0ðm; ~mÞ � fdð~m�m; ~m0 �m0Þ; ðA2Þ

and the invasion fitness gradient is

DkðmÞ ¼
@kdðm; ~mÞ

@ ~m

�����
~m¼m

¼ w2ðv1 � v2Þ
4vw

@DQ

@ ~m

�����
~m¼m

� @fd

@m
� @fd

@m0
@m0

@m
: ðA3Þ

Here, v = (v1,v2) and w = (w1,w2) are the leading left

and right eigenvectors of the resident matrix Am,m, and

DQ is defined as in eqn A29.

As the entries of w are proportional to the equi-

librium distribution of the residents, we have w1/w2 ¼
n/2, and hence w2/(vw) ¼ 1/(v2 + v1n/2). From eqn A30

in the limit M fi ¥, we obtain DQ ¼ Qð ~mÞ � QðmÞ
with

DQð ~mÞ ¼ �~m0

2� ~m0 þ ð1� ~mÞn ðA4Þ

and thus

DkðmÞ ¼
1� v1=v2

1þ ðn=2Þv1=v2

m0nþ 4ð1�mÞ3ð2þ ð1�mÞnÞ
4ð2�m0 þ ð1�mÞnÞ2

� @fd

@m
� @fd

@m0
@m0

@m
: ðA5Þ
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Fig. A1 Pairwise invasibility plots for female choosiness m in the presence of costs of choosiness. M is the maximal number of mating trials per

female in the model with mating costs. d determines the magnitude of absolute viability costs linked directly to m. For each resident choosiness

value m, it is shown whether a mutant with choosiness ~m can (white) or cannot (grey) invade the resident population. Intersections of

boundary lines mark evolutionarily singular points (Geritz et al., 1998). (a) No costs. For the chosen ecological parameters (k ¼ 0.12, c ¼ 0.4),

there are two such points, with the lower one being an evolutionary attractor and the higher one an evolutionary repellor (corresponding to

the P/C regime). (b, c) Mating costs (d ¼ d¢ ¼ 0). The evolutionary attractor is uninvasible, i.e. it is an evolutionarily stable strategy (ESS). (d–f)

Absolute viability costs linked to m (M ¼ d¢ ¼ 0). The insets show close-ups of the neighbourhood of the evolutionary attractor (the left-most

singular point). In (d) and (e), the attractor is an ESS. In (f), the attractor is invasible and, hence, an evolutionary branching point.
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The ratio n ¼ Nhet/Nhom depends only on the resident

population with monomorphic mating type. Due to soft

selection, it keeps the same value as in the model

without costs and can be derived from a fourth-order

equation (see Pennings et al., 2008). The value of v1/v2

follows from the eigenvalue equation. For a linear cost

function (eqn 8) and a Gaussian mating function, we

further have

@fd

@m
� @fd

@m0
@m0

@m
¼ dþ d04ð1�mÞ3: ðA6Þ

Stability of random mating In particular, for random

mating (m ¼ m¢ ¼ 0), we find v1/v2 ¼ n/2 and

Dkðm ¼ 0Þ ¼ 1� n=2

ð1þ n2=4Þð2þ nÞ � d� 4d0 ðA7Þ

and from eqns 12a and 12b,

n ¼ Bhetdhom

Bhomdhet

¼ 2

1� k

2� c0 þ ð1� cÞn
2� 2c þ n

) k ¼ n2 � 2ð2� c0Þ
n2 þ 2nð1� cÞ : ðA8Þ

From the condition Dk(m ¼ 0) ¼ 0, we get n as the

solution of a cubic equation. Using this solution in eqn

A8, we then obtain k as a function of c and c ¢, defining

the boundary of the area where random mating is stable.

Stability of complete isolation At complete isolation

(m,m¢ fi 1 and Nhet fi 0), we find v1/v2 fi
|3 + 4(dhet ) dhom)|)1 and dhom fi 1, and thus

Dkðm;m0 ! 1Þ ! 1

2
� 1

j8dhet � 2j � d0
� �

@m0

@m

�����
m;m0!1

� d:

ðA9aÞ

As ¶m¢/¶m fi 0 for m,m¢ fi 1, we always have

Dk(m ¼ m¢ ¼ 1) < 0 if d > 0, i.e. complete isolation is

unstable. For d ¼ 0, the stability condition for complete

isolation (Dk > 0) is

dhet >
1

2

1� d0

1� 2d0
: ðA9bÞ

Relative viability costs and hard selection

Any hard selection scheme, as used for the relative

viability costs (as well as for the mating costs, see below),

will affect the population dynamics. We thus cannot use

the results from the cost-free model for n ¼ Nhet/Nhom,

and generally need to rely on numerical methods.

However, for invasion at random mating or at complete

isolation a full analytical treatment is still possible.

The invasion fitness gradient With relative viability costs,

the invasion matrix (eqn 10) is given by

A
ðcÞ
m; ~m ¼ A

ð0Þ
m; ~m �

P1
k¼1 ck

2 ~m
2þn

� �k

0

0
P1

k¼1
~mnþ~m0

2þn

� �k

0
B@

1
CA;
ðA10Þ

and the invasion fitness gradient by

D
ðcÞ
k ðmÞ ¼

v @
@ ~m A

ðcÞ
m; ~m

���
~m¼m

w

vw
ðA11Þ

where v and w are the left and right leading eigenvectors

of A
ðcÞ
m;m. The above equation can be evaluated to

D
ðcÞ
k ðmÞ¼

1

1þðn=2Þðv1=v2Þ

1
4
ð1�v1=v2Þ m0nþ@m0

@m
ð2þð1�mÞnÞ

� �
½2�m0þð1�mÞn�2

"

�nðv1=v2Þ
2þn

X1
k¼1

kck

2m

2þn

� �k�1

�
nþ@m0

@m

2þn

X1
k¼1

kck

nmþm0

2þn

� �k�1
#

ðA12Þ

Stability of random mating For random mating (m ¼
m¢ ¼ 0), where v1/v2 ¼ n/2, and with a Gaussian mating

function, the invasion fitness gradient reduces to

D
ðcÞ
k ð0Þ ¼

1� ðn=2Þ � c1ð4þ nþ n2=2Þ
ð1þ n2=4Þðnþ 2Þ : ðA13Þ

The condition Dk(0) ¼ 0 leads to n ¼
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 12c � 28c2

p
� 2c � 1Þ=ð2cÞ and we obtain the

boundary lines of the random mating regimes from eqn

A8, as for the absolute viability costs (results not shown).

Stability of complete isolation At complete isolation,

D
ðcÞ
k ð1Þ ¼

1

2
1� v1

v2

�
X1
k¼1

kck

2k�1

 !
@m0

@m

�����
m;m0!1

: ðA14Þ

As in the case of absolute viability costs, we have v1/

v2 ¼ |3 + 4(dhet ) dhom)|)1 with dhom ¼ 1. As

dhetð~m ! 1Þ ! Chet

Khet

þ
X

k

ck

for n ¼ 0, the heterozygous death rate diverges if
P

kck fi
¥. We then have v1/v2 fi 0 and conclude that complete

isolation is always stable as long as
P

k(kck/2
k)1) < 1

(i.e. c < 1/4 for ck ” c).

Mating costs and hard selection

The invasion fitness gradient For mating costs, the

invasion matrix reads
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A
ðMÞ
m; ~m ¼A

ð0Þ
m; ~m�

1

4

/female;hetð ~mÞ�1 /female;homð ~mÞ�1

/female;hetð ~mÞ�1 /female;homð ~mÞ�1

� �
ðA15Þ

where A
ð0Þ
m; ~m is again the invasion matrix without costs.

We then obtain the invasion fitness gradient as

D
ðMÞ
k ðmÞ ¼

v @
@ ~m A

ðMÞ
m; ~m

�����
~m¼m

w

vw
ðA16Þ

with v and w again denoting the left and right leading

eigenvectors of A
ðMÞ
m;m. The above equation can be

evaluated to

D
ðMÞ
k ðmÞ ¼ D

ð0Þ
k ðmÞ þ @m

�/female �
1

4

ð1� n=2Þð1þ v1=v2Þ
ðn=2Þðv1=v2Þ þ 1

ðA17Þ
where D

ð0Þ
k ðmÞ is the gradient without costs and

@m
�/female ¼ 2Phom@m/female; hom þ Phet@m/female; het

ðA18Þ

¼ � 2M

ð2þ nÞMþ1
½ðmnþm0ÞM�1ðnþ @m0=@mÞ þ nð2mÞM�1�

ðA19Þ

is the derivative of the average female mating rate with

respect to choosiness.

Stability of random mating As @m
�/female / mM�1, we see

that mating costs do not affect the invasion fitness

gradient at random mating (m ¼ m¢ ¼ 0) for M ‡ 2

(which is given by eqn 13 of Pennings et al., 2008).

Stability of complete isolation For a resident population at

complete isolation (Nhet ¼ 0 and m ¼ m¢ ¼ 1), the inva-

sion matrix reads as follows:

A
ðMÞ
1; ~m ¼

1

4

1� ~mM � 4dhet
1�ð~m0=2ÞM

1�~m0=2 ð1� ~m0Þ

1� ~mM 1�ð~m0=2ÞM
1�~m0=2 þ 2½1� ð1=2ÞM� � 4dhom

0
@

1
A

ðA20Þ

From the equilibrium condition for the dynamics of

the resident population (eqns 12a and 12b), we find

dhom ¼ 1 ) (1/2)M. Using this and eqn 2 gives dhet ¼
2(1 ) c)(1 ) k)[1 ) (1/2)M]/(2 ) c ¢). We then see, in

particular, that the matrix element a22 is 0 for M ¼ 1

and always negative for M ‡ 2 and ~m0 < 1. For ~m; ~m0

sufficiently close to 1, we further see (by considering

leading order terms) that the trace of Am; ~m is

always negative, whereas the determinant is negative

for M ¼ 1, but positive for M ‡ 2. This corresponds to a

positive leading eigenvalue for M ¼ 1, but a negative

leading eigenvalue for M ‡ 2. We conclude that mut-

ants of a very small effect for weaker choosiness can

invade for M ¼ 1, but never for M ‡ 2. Strict complete

isolation is therefore always locally stable for M ‡ 2.

Note, however, that this result is of limited relevance

as it is often possible for mutants with a slightly larger

effect to invade (depending on the parameter values

for k, c and c¢).

Stability of monomorphic equilibria Local stability of the

monomorphic equilibrium (say, with the + allele) is

given if rare mutants with the ) allele cannot invade. As

all these mutants will appear as heterozygotes, we can

focus on the heterozygote fitness. The monomorphic

equilibrium is stable if

Whet ¼ ð/female;het þ /male;hetÞ=2 � dhet < 0:

Here, /male, het is the mating rate of heterozygous males.

From eqns 12a and 12b, we get dhom ¼ 1 and from eqn 2

dhet ¼ (1 ) k)(1 ) c) follows. The mating rate of a female

heterozygote is /female, het ¼ 1 ) mM. A heterozygote

male must be chosen by a homozygote female in her

first attempt as otherwise she will certainly choose a male

of her own type. Each of N females will meet the rare

heterozygote male first with probability 1/N and take him

with probability 1 ) m. We thus have /male, het ¼ 1 ) m

and

Whet ¼ 1�m

2
�mM

2
� ð1� kÞð1� cÞ: ðA21Þ

For c < 1 and k < 1, this is always negative for

sufficiently large m fi 1.

Appendix 3: Invasion criterion for the model with
flexible mating strategy

In this section, we prove the invasion criterion for the

model where costs of choosiness are avoided due to a

flexible female mating strategy, as defined in eqns 6a–6e.

The criterion claims that invasion of mutants for

increased choosiness is possible if and only if the fitness

of homozygotes Whom is larger than the fitness of

heterozygotes Whet in the population dynamical equilib-

rium of the residents.

Note first that the total female mating rates are all

equal to 1 for this model as every female is guaranteed to

mate. Explicitly, using eqns 6a–6e,

Qhom�;hom� þ Qhom�;het þ Qhom� ;hom� ¼ 1; ðA22Þ

Qhet;het þ Qhet;homþ þ Qhet;hom� ¼ 1: ðA23Þ

We can thus write the elements of the invasion matrix

for rare mutants Am; ~m (eqn 13) as follows,

a11 ¼ 1
4
ð1þ 2Qhom�;het þ Qhet;hetÞ � dhet; ðA24Þ

a21 ¼ 1
4
ð1þ 2Qhom� ;het þ Qhet;hetÞ; ðA25Þ
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a12 ¼ 1
4
ð1þ ~Qhom�;hom� � ~Qhom�;hom� þ 2Qhom� ;hom�

þ Qhet;hom�Þ; ðA26Þ

a22 ¼ 1
4
ð1� ~Qhom�;hom� þ ~Qhom�;hom� þ 2Qhom� ;hom�

þ Qhet;hom�Þ � dhom: ðA27Þ

Define the so-called resident matrix Am,m where the

mutant variables ~m and ~m0 are set equal to the resident

values m and m¢. As this matrix reproduces the popula-

tion dynamics of the resident population, it must have

leading eigenvalue 0 in the population dynamic equilib-

rium. Consider now the difference of the mutant and the

resident matrix,

DA :¼ Am; ~m �Am;m ¼
1

4

0 DQ

0 �DQ

� �
ðA28Þ

where

DQ¼ ~Qhom� ;hom� � ~Qhom� ; hom�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼Qð ~mÞ

�ðQhom� ;hom� �Qhom� ;hom�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼QðmÞ

Þ

ðA29Þ
and

QðmÞ ¼ �m0Phom

1� ð1� phomÞMþ1

phom

" #
: ðA30Þ

We can prove that

@

@m
QðmÞ < 0;

@

@m0
QðmÞ < 0 ðA31Þ

and thus DQ ? 0 for m? ~m. To see this, note that

@

@m
QðmÞ ¼ �m0Phom

@phom

@m

@

@phom

1� ð1� phomÞMþ1

phom

" #

ðA32Þ

and ¶phom/¶m ¼ )Nhet/N < 0 and

@

@phom

1� ð1� phomÞMþ1

phom

" #
¼

phomðM þ 1Þð1� phomÞM � 1þ ð1� phomÞMþ1

p2
hom

< 0

ðA33Þ
as

1 ¼ ð1 � phom þ phomÞMþ1 > ð1 � phomÞMþ1

þ ðM þ 1Þphomð1 � phomÞM:

The derivation for m¢ is analogous.

Next, we denote by w the right leading eigenvector of

the mutant matrix Am; ~m and by v the left leading

eigenvector of the resident matrix Am,m (with corre-

sponding eigenvalue 0). We can then express the leading

eigenvalue kðm; ~mÞ of Am; ~m as

kðm; ~mÞ ¼ vDAw

vw
¼ w2ðv1 � v2ÞDQ

4vw
: ðA34Þ

Because of the Perron–Frobenius theorem, all ele-

ments of the vectors v and w must be positive. We

conclude that kðm; ~mÞ > 0 for m < ~m, and hence

mutants for stronger choosiness can invade, if and

only if v2 > v1. For the last step note that the column

sums of the resident matrix reproduce the fitness

values,

a11 þ a21 ¼ Whet; ðA35Þ

a12 þ a22 ¼ Whom: ðA36Þ

Because of the equilibrium condition, we have

NhetWhet þ 2NhomWhom ¼ 0 ðA37Þ

and thus Whet and Whom have opposite signs. From

v1a11 + v2a21 ¼ 0, we get

v1 ¼ �
a21

a11

v2 ¼
a21

a21 �Whet

v2 ðA38Þ

and thus v2 > v1 if and only if Whet < 0 < Whom.
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