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ABSTRACT

We consider a population that adapts to a gradually changing environment. Our aim is to describe how
ecological and genetic factors combine to determine the genetic basis of adaptation. Specifically, we consider
the evolution of a polygenic trait that is under stabilizing selection with a moving optimum. The ecological
dynamics are defined by the strength of selection, s̃, and the speed of the optimum, ṽ; the key genetic
parameters are the mutation rate Q and the variance of the effects of new mutations, v. We develop analytical
approximations within an ‘‘adaptive-walk’’ framework and describe how selection acts as a sieve that trans-
forms a given distribution of new mutations into the distribution of adaptive substitutions. Our analytical
results are complemented by individual-based simulations. We find that (i) the ecological dynamics have a
strong effect on the distribution of adaptive substitutions and their impact depends largely on a single
composite measure g ¼ ṽ=ðs̃Qv3Þ, which combines the ecological and genetic parameters; (ii) depending
on g, we can distinguish two distinct adaptive regimes: for large g the adaptive process is mutation limited
and dominated by genetic constraints, whereas for small g it is environmentally limited and dominated by
the external ecological dynamics; (iii) deviations from the adaptive-walk approximation occur for large
mutation rates, when different mutant alleles interact via linkage or epistasis; and (iv) in contrast to pre-
dictions from previous models assuming constant selection, the distribution of adaptive substitutions is
generally not exponential.

AN important aim for both empirical and theoretical
evolutionary biologists is to better understand the

genetics of adaptation (e.g., Orr 2005a). For example,
among the multitude of mutations that arise in a popu-
lation, which ones are eventually fixed and contribute
to evolutionary change? That is, given a distribution of
new mutations, what is the distribution of adaptive substitu-
tions (or fixed mutations)? Here, distribution means
the probability distribution of the effects of mutations
on either the phenotype or the fitness of their carriers.
In principle, both the distribution of new mutations
and the distribution of adaptive substitutions can be
measured empirically, the former from mutation accu-
mulation experiments (Eyre-Walker and Keightley

2007) and the latter from QTL (e.g., Bradshaw et al.
1998) or experimental evolution (Elena and Lenski

2003) studies. However, as only a small subset of all
mutations is beneficial, such measurements are diffi-
cult. Therefore, a large role in studying the genetics of
adaptation has to be played by theoretical modeling.

In recent years, several different approaches have
emerged for modeling the process of adaptation. Con-
siderable work exists, in particular, in the context of
Fisher’s geometric model (e.g., Fisher 1930; Kimura

1983; Orr 1998; Welch and Waxman 2005; Martin

and Lenormand 2006), Gillespie’s mutational land-
scape model (e.g., Gillespie 1983, 1984; Orr 2002),
various models of so-called ‘‘adaptive walks’’ on rugged
fitness landscapes (e.g., Kauffman and Levin 1987;
Kauffman 1993), and models of clonal interference in
asexual populations (e.g., Gerrish and Lenski 1998;
Park and Krug 2007). Together, these models have
yielded several robust predictions. For example, both
Fisher’s geometric model and the mutational landscape
model predict that the distribution of adaptive substi-
tutions should be approximately exponential (with re-
spect to either phenotype or fitness) (Orr 1998, 2002,
2005a,b). This means that most substitutions have little
effect, but that a significant fraction of the overall
evolutionary change is due to a small number of sub-
stitutions with large effects. These results are in qualita-
tive agreement with empirical data (Orr 2005a; Elena

and Lenski 2003) and have shed new light on the
classical debate about micro- vs. macromutationalism
(Fisher 1930; Provine 2001).

One way to look at adaptation is to view selection as a
sieve that transforms the distribution of new mutations
into the distribution of adaptive substitutions (Turner

1981; Orr and Betancourt 2001). This perspective
emphasizes the role of environmental factors and
directly leads to the question of how different selective
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regimes (sieves) affect the adaptive process. Yet, almost
all studies to date have focused on the simplest possible
ecological scenario: a population that, after a sudden
change in the environment, is now under constant
stabilizing selection.

In reality, however, environmental change is often
gradual rather than sudden (e.g., Hairston et al. 2005;
Thompson 2005; Parmesan 2006; Perron et al. 2008).
To account for this possibility, several authors (Bello

and Waxman 2006; Collins et al. 2007; Kopp and
Hermisson 2007; Sato and Waxman 2008; Kopp and
Hermisson 2009) have recently turned to the so-called
moving optimum model, which was originally devised in
the field of quantitative genetics (e.g., Lynch et al. 1991;
Lynch and Lande 1993; Bürger and Lynch 1995;
Bürger 1999; Waxman and Peck 1999; Bürger and
Gimelfarb 2002; Nunney 2003; Jones et al. 2004). In this
model, the selectively favored value of a quantitative trait
changes over time, such that the trait is under a mixture
of stabilizing and directional selection. An important
aspect of the moving optimum model is that it introduces
an additional timescale (the timescale of environmental
change), which is absent in the previous models.

In a recent article (Kopp and Hermisson 2009) and a
previous note (Kopp and Hermisson 2007), we have
used the moving optimum model to investigate the time
to fixation of a single mutation and the order in which
mutations of different phenotypic effect go to fixation.
However, the fastest mutations in the short term are not
necessarily those that dominate evolution in the long
term. The present article focuses on this long-term
evolution, which can be characterized by the distribu-
tion of adaptive substitutions.

MODEL AND METHODS

We investigate the evolution of a quantitative trait z
that is under stabilizing selection with respect to a
moving optimum zopt(t) (see Table 1 for a summary of
our notation). At time t, the fitness of phenotype z is

wðz; tÞ ¼ exp �s½z � zoptðtÞ�2
� �

; ð1Þ

where s . 0 determines the strength of selection. We
assume that the optimum increases linearly over time;
that is,

zoptðtÞ ¼ vt 1 dð0Þ; ð2Þ

where v is the speed of the optimum and d(0) is its initial
value. As we assume that, at t¼ 0, the mean phenotype �z
of the population is 0, d(0) equals the initial phenotypic
gap. In general, we define the phenotypic gap at time t as

dðtÞ ¼ zoptðtÞ � �zðtÞ: ð3Þ

Note that d has also been called the phenotypic lag (e.g.,
Bürger and Lynch 1995). Here, we prefer the term gap

to avoid confusion with the ‘‘lag time’’ for mutant
alleles (Kopp and Hermisson 2009; see discussion),
which is large if the initial gap is small.

The trait z is determined additively by L haploid or
diploid loci with a continuum of possible alleles.
Environmental variation is not modeled explicitly, but
can be thought of as being subsumed in the selection
parameter s (e.g., Bürger 2000). At each locus, new
alleles appear by mutation at rate u (meaning that, in
the diploid case, the mutation rate per individual allele
is u/2), following a random walk mutation model: The
allelic value of a mutant allele deviates from that of the
parent allele by an amount a drawn from a probability
distribution p(a), which is referred to as the distribution
of new mutations. We assume that p(a) is symmetric
around 0 with variance v2 and that it decreases mono-
tonically with jaj. Unless otherwise stated, we choose a
reflected exponential distribution,

TABLE 1

Summary of notation

f, F Distribution of final gap df

K Carrying capacity
L No. of loci
p Distribution of phenotypic effects of new mutations
q Distribution of fitness effects of new mutations
R Transition density for distribution of initial

gap r(di)
s Selection coefficient
t Time
u Mutation rate per locus
v Speed of the optimum
w Fitness
z Phenotype
zopt Optimal phenotype at a given time
zmax Maximal value of zopt in some simulations
a Phenotypic effect of mutation (step size)
g Composite parameter relating ecological and genetic

factors (v/[su])
d Phenotypic gap (z – zopt)
di ‘‘Initial’’ phenotypic gap before an adaptive step
df ‘‘Final’’ phenotypic gap before an adaptive step
Q Population and trait-wide mutation rate (2KLu)
m Mean effect of positive new mutations
r Distribution of initial gap di

s Strength of selection
f Distribution of phenotypic effects of adaptive

substitutions
x Distribution of fitness effects of adaptive

substitutions
C ‘‘Selective sieve’’
Cs Static part of selective sieve
Cd Dynamic part of selective sieve
v Standard deviation of distribution of new

mutations p(a)

a and v are generally measured in units of v, and s is mea-
sured in units of 1/v2. The unscaled counterparts are marked
by a tilde (e.g., ã).
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peðaÞ ¼
1ffiffiffiffiffiffiffiffi
2v2
p expð�

ffiffiffi
2
p
ja=v jÞ; ð4Þ

for our numerical examples. In appendix a, we also
present some limited analytical results for other distri-
butions (uniform, Gaussian, quartic Gaussian, and
Gamma). It is convenient to use the mutational standard
deviation v as the unit for trait measurements and to
rescale all dependent parameters and variables accord-
ingly. Formally, this is done by requiring v¼ 1 in (4). On
the same scale, the speed of the optimum v is measured
in mutational standard deviations per generation. As-
suming a constant population size K, new mutations
appear at rate KLu. In the following, we use the standard
parameter Q ¼ 2KLu as a measure for the population-
and genomewide mutation rate. The above model is
analyzed by analytical approximations and stochastic
simulations. We first describe the analytical methods.

ANALYTICAL METHODS: THE
ADAPTIVE-WALK APPROXIMATION

The aim of this article is to investigate the distribution
of adaptive substitutions f(a), that is, the distribution of
the effects of those mutations that eventually go to
fixation and contribute to adaptation. For an analytical
treatment and heuristic understanding, we need some
simplifying assumptions. In particular, we assume that a
new mutation reaches fixation if and only if it survives
stochastic loss while rare. Thus, the fate of a new mutation
(fixation or loss) is decided immediately at its origin, and
we assume that a successful mutation instantly reaches
fixation. As a result, the population is nearly always
monomorphic, and adaptation occurs in well-defined,
quasi-instantaneous steps. A sequence of such steps is
called an adaptive walk (see Figures 1A and 2A for

examples). The adaptive-walk approximation is a stan-
dard tool for studying the adaptive process (cf. Kauffman

1993; Orr 2005a). Due to the assumption of instanta-
neous fixation, it ignores interactions between cosegre-
gating alleles, which may arise from linkage or epistasis.
The scope and limits of the adaptive-walk approximation
are investigated in the simulation section below.

A single iteration of the adaptive walk can be charac-
terized by three elements (Figure 1A): (i) the initial gap
di, which equals the phenotypic gap d(t) at the end
of the previous step (see Equation 3); (ii) the final gap
df, that is, the phenotypic gap at the beginning of (i.e.,
right before) the current step; and (iii) the step size a.
For given di, both df and a are random variables, with the
distribution of the df depending on di and the distribu-
tion a depending on df. The update between consecu-
tive steps in terms of these elements is given by

d9i ¼ df � a; ð5Þ

where d9i is the initial gap for the next step (Figure 1A).
Ultimately, the adaptive walk depends on the distri-

bution of new mutations and on their fixation proba-
bilities. In the moving optimum model, the latter
depend explicitly on time. Using Haldane’s approxima-
tion (Haldane 1927) and neglecting chance fixations
of deleterious mutations, the fixation probability of a
single new mutation at time t is

pfixða; tÞ � 2sða; tÞ for sða; tÞ$ 0
0 for sða; tÞ, 0;

�
ð6Þ

where s(a, t) is the selection coefficient of a mutation
with effect a that appears at time t. (Conditions for the
validity of this approximation are discussed in Kopp and
Hermisson 2009.) Assuming weak selection, the selection
coefficients in the moving optimum model are given by

Figure 1.—(A) Illustration of the
adaptive-walk approximation. The
dashed line is the phenotypic opti-
mum zopt(t), and the solid line is
the (mean) phenotype of the popu-
lation over time. di ¼ d(0) and df are
the initial and the final phenotypic
gap for the first step, which has size
a. d9i, d9f , and a9 are the respective
quantities for the second step, and
di$, df$, and a$ are those for the third
step. Note that the second step over-
shoots the optimum and the third
step is a backward step (the associ-
ated a- and d-values are negative).
d9$i is the initial gap for the fourth
step, which is not shown itself. (B)
Dynamics of selection coefficients
s(a, t). Shading indicates the value

of the selection coefficient for mutant alleles with effect a at time t (dark shading, large s; light shading, small s; no shading,
negative s), assuming s ¼ 0.1. The dashed line is the optimum zopt(t) ¼ 0.001 3 t – 1, which is identical to the phenotpyic
gap d(t). As the gap is initially negative, selection favors first negative and then positive mutations.
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sða; tÞ ¼ �waðtÞ � �wðtÞ
�wðtÞ

¼ hexp �s½zðtÞ1 a� zoptðtÞ�2
� �

iz
hexp �s½zðtÞ � zoptðtÞ�2

� �
iz

� 1

� s½�zðtÞ � zoptðtÞ�2 � s½�zðtÞ1 a� zoptðtÞ�2

¼ as½2dðtÞ � a� ð7Þ

(see Figure 1B). Here, h . . . iz and the overbar �� are used
as equivalent notations for population averages, and �wa

denotes the marginal fitness of a mutation with effect a.
To the leading order considered here, the selection
coefficient depends on time only through the phenotypic
gap d(t) (Equation 3). Only mutations between 0 and 2d(t)
have a positive selection coefficient. In particular, for posi-
tive d(t), only positive steps (a . 0) are selected for and for
negative d(t) only negative ones (Figure 1B). As the fixation
probability for mutant alleles is determined by the hetero-
zygote fitness, our analysis applies to both haploid and
diploid populations. In the following, we derive analytical
expressions for the distributions of the key variables of the
adaptive walk (see Equation 5).

The distribution of the final gap df: The final gap df is
the phenotypic gap right before an adaptive step. Obvi-
ously, it is determined by the initial gap di and by the time
at which the step occurs. However, it is convenient to frame
our analysis directly in terms of df, with the time between

steps entering only implicitly. In appendix a, we derive the
distribution of df conditioned on di. In particular, we
obtain the complementary distribution function Fg(df j di),
that is, the probability that the final gap is greater than
df for given di. We find Fg(df j di) ¼ 1 for df , di and

Fgðdf j diÞ ¼ exp½signðdiÞggðdiÞ � signðdfÞggðdfÞ� ð8aÞ

for df $ di, where

ggðdÞ ¼
1

4g

ð2d

0
pðbÞbð2d� bÞ2db ð8bÞ

and

g ¼ v

Qs
: ð8cÞ

Explicit expressions for g(d) with particular choices of
p(a) are given in appendix a. Note that the dependence
of F on the ecological and genetic model parameters can
be summarized in the single composite parameter g. As
we discuss below, this parameter plays a key role for the
characteristics of the adaptive process. Differentiation of
(8) yields the corresponding density function, which is

fgðdf j diÞ

¼ dð1� Fgðdf j diÞÞ
ddf

¼ Fgðdf j diÞ
g

����
ð2df

0
pðbÞbð2df � bÞdb

���� ð9Þ

for df $ di and fg(df j di) ¼ 0 for df , di.

Figure 2.—Results from the adaptive-walk ap-
proximation for two different values of g ¼ v/
(sQ). The distribution of new mutations, p(a),
is assumed to be reflected exponential with stan-
dard deviation v ¼ 1 (Equation 4; dotted lines in
B and C). (A) The first steps of the adaptive walk
(phenotype z over time; solid line), together with
the change of the optimum (dotted line), assum-
ing v ¼ g. Note the backward steps in (A1). (B)
The shaded area shows the equilibrium distribu-
tion of adaptive substitutions, fð‘Þg , obtained
from 100,000 iterations of Equations 8 and 11.
The thick solid line is the predicted distribution
of the first step, fð1Þg (Equation 14). (C) The same
results on a log scale, but here, the thick line is the
predicted distribution of the second step, fð2Þg .
When plotted on the same scale, fð1Þg and fð2Þg

are almost indistinguishable for positive a, but
only fð2Þg extends to negative a.
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The conditional distribution of the step size a:
Assume now that a step occurs when the total gap equals
df. The probability that it has size a is proportional
to the fixation probability of the respective mutation,
2p(a)s(a j df), where

sða j dfÞ ¼ asð2df � aÞ ð10Þ

is the selection coefficient given df (see Equations 6 and
7). As only mutations with a positive selection coeffi-
cient (a between 0 and 2df) can result in a substitution,
we obtain the density of a given df as

fða j dfÞ ¼
pðaÞsða j dfÞ���� Ð 2df

b¼0 sðb j dfÞpðbÞdb

����
: ð11Þ

An adaptive walk following Equation 5 can be easily
simulated by specifying the initial gap for the first step
and then iteratively applying (i.e., drawing from) Equa-
tions 8 and 11. For further progress, however, we need to
say something about the distribution of the initial gap
values di over the course of the adaptive walk.

The distribution of the initial gap di: The sequence
of initial gaps di can be viewed as a Markov chain. From
(9) and (11), and using (5), the distribution of the
initial gap, r(di), evolves according to

rðn11Þ
g ðd9iÞ ¼

ð‘

�‘

Rgðd9i j diÞrðnÞg ðdiÞddi; ð12aÞ

where the transition density R is given by

Rgðd9i j diÞ ¼
ð‘

�‘

fðdf � d9i j df Þfgðdf j diÞddf

¼
ð
df .di
jdf j.jd9ij

pðdf � d9iÞðd2
f � ðd9iÞ2Þ

Fgðdf j diÞ
g

ddf : ð12bÞ

The integration runs over all final gap values df that are
larger than the old initial gap di and in absolute value
larger than the new initial gap d9i. Since the transition
density R depends only on g [and on the distribution of
new mutations, p(a)], this must also hold for any n-step
distribution of di and, in particular, for the equilibrium
distribution rð‘Þg (di). In extension, the same is true
for the distributions of df and a. In the limit g / 0,
we obtain Rg/0(d9i j di) } p(di – d9i)(d2

i – (d9i)2) for jd9ij #
jdij and Rg/0(d9i j di) ¼ 0 otherwise. The equilibrium
distribution for the initial gap rg/0

(‘)(di) then con-
verges to a point measure with weight 1 at di¼ 0 (i.e., the
gap becomes infinitely small).

The unconditional distribution of the step size a: We
can express the unconditional distribution of step sizes
a as

fgðaÞ ¼
ð‘

�‘

fgða j diÞrgðdiÞddi; ð13aÞ

where

fgða j diÞ ¼
ð‘

�‘

fgða j df Þfgðdf j diÞddf

¼ pðaÞ ja j
ð
df .di

2adf .a2

j 2df � a j
g

Fgðdf j diÞddf ð13bÞ

is the conditional distribution of a given the initial gap
di. To derive the unconditional distribution fg(a), we
need to decide on a distribution rg for the initial gap. In
general, it is not possible to solve Equation 12a for the
equilibrium distribution rð‘Þg . For an analytical approx-
imation of fg(a), we instead focus on the distribution of
di at the beginning of the adaptive process. In particular,
we assume that the population is initially (at the time the
optimum starts moving) perfectly adapted. Then the
distribution of the initial gap before the first step,
rð1Þg (di), is a point measure with weight 1 at di ¼ 0, and
(13) evaluates to

fð1Þg ðaÞ ¼ pðaÞa
ð‘

a=2

2df � a

g
Fgðdf j 0Þddf ð14Þ

for a $ 0 and fð1Þg (a) ¼ 0 for a , 0. For a refined
approximation, we can apply Equation 12 to rð1Þg (di) and
derive the distribution of the initial gap before the
second step, rð2Þg (di), and from that, the distribution of
the size of the second step, fð2Þg (a). As we show below,
fð1Þg and fð2Þg are good approximations for the equilib-
rium distribution fð‘Þg .

The distribution of fitness effects at the time of
fixation: In addition to the phenotypic effects of
adaptive substitutions, we might also be interested in
their distribution of fitness effects (see Gillespie 1983;
Gerrish and Lenski 1998; Orr 2002, 2006; Rozen et al.
2002; Martin and Lenormand 2008), where fitness is
measured at the time the substitution takes place. To
calculate this distribution, we first need to derive the
distribution of fitness effects of new mutations for a
given final gap df. Due to the symmetry of the fitness
function (10), there are generally two a-values for any
selection coefficient s (corresponding to under- and
overshooting of the optimum),

a1;2ðs; dfÞ ¼ df7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

f �
s

s

r
; ð15Þ

provided that df $
ffiffiffiffiffiffiffiffi
s=s

p
. The cumulative distribution

function (cdf) of the fitness effects of new mutations
given df is

Q ðs j dfÞ ¼ ProbðS # s j dfÞ
¼ ProbðA # a1ðs; dfÞor A $ a2ðs; dfÞÞ
¼ Pða1ðs; dfÞÞ1 1� Pða2ðs; dfÞÞ; ð16Þ

where A and S are random variables for the step size
and the selection coefficient, respectively, and P(a) is
the cdf of the phenotypic effects of new mutations [the
integral of p(a)]. Differentiation yields the correspond-
ing density
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qðs j dfÞ ¼
pða1ðs; dfÞÞ1 pða2ðs; dfÞÞ

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

f � s=s

q ð17Þ

for s # sd2
f and 0 otherwise. Here, the denominator is the

magnitude of the partial derivates of a1,2 with respect to s.
In analogy to Equation 13b, and focusing on the first step
of the adaptive walk (i.e., di ¼ 0), the distribution of
fitness effects of adaptive substitutions is then

xð1Þg ðsÞ ¼
s

sg

ð‘ ffiffiffiffiffiffi
s=s
p qðs j dfÞFgðdf j 0Þddf ð18Þ

for 0 , s # sd2
f and 0 otherwise. Further results for the

distribution of fitness effects are given in appendix c.

SIMULATION METHODS

To further study adaptation in the moving optimum
model, we developed an individual-based stochastic
simulation program (written in C11, available upon
request) similar to the one described in Bürger (2000,
p. 273). The program simulates individuals whose geno-
types are characterized by the allelic values at L additive
genetic loci, which may be haploid or diploid. The sex
ratio is always 1:1, and males and females are not
modeled explicitly. Time is discrete and generations
are nonoverlapping. Each generation, the following
steps are performed:

Viability selection: For each individual, the phenotype is
determined by summing over all allelic values, and
the fitness is calculated according to Equation 1. With
probability 1 – w, the individual dies and is removed
from the population.

Population regulation: If less than K individuals have
survived selection, all of them proceed to reproduc-
tion. Otherwise, K individuals are selected randomly,
and the rest is removed from the population. Thus, K
is the carrying capacity of the environment.

Reproduction: The selected individuals form random
mating pairs, and each pair produces four offspring.
This procedure ensures that the effective size of a well-
adapted population is equal to K (Bürger 2000, p.
274). The genotype of the offspring is derived from
the parent genotypes by segregation (in the diploid
case), mutation (see model description), and recom-
bination. Recombination between pairs of ‘‘adjacent’’
loci occurs at rate r # 0.5.

In a polymorphic population, an allele can be called
fixed if the population has been taken over by that allele
or its descendants (e.g., Park and Krug 2007). There-
fore, the program keeps track of the genealogical
relationship between the alleles at a given locus. A
substitution is recorded whenever there is a change in
the root of such an ‘‘allele tree’’ (i.e., when the surviving
alleles get a new most recent common ancestor).

In all simulations, the initial population contained K
identical individuals with phenotype 0. In the diploid
case, the individuals were homozygous at each locus.
The initial value of the optimum zopt(0) ¼ d(0) was
likewise set to zero. The simulations were iterated until
reaching 1000 substitutions.

For some parameter combinations, the mean popu-
lation fitness drops permanently below 0.5, such that
reproduction (two offspring per individual) cannot com-
pensate for the losses from viability selection. In this
case, the population cannot keep track with the moving
optimum and is doomed to extinction. Population ex-
tinction in the moving optimum model has been dis-
cussed in detail by Lynch et al. (1991), Bürger and
Lynch (1995), and Nunney (2003). In the present
study, however, we focused on parameter combinations
where the population is able to maintain itself.

We also performed a limited number of simulations
in which the optimum stopped moving after reaching a
maximal value zmax (see Kopp and Hermisson 2007).
The aim here was to determine the distribution of
substitutions until the population had adapted to the
new optimum. Unlike in the simulations with an in-
definitely moving optimum, we counted a fixation event
whenever the frequency of a mutant allele exceeded 0.9
for the first time. (The reason is that the ultimate
replacement of all copies of an ancestral allele might
take much longer than the movement of the optimum.)
Simulations were stopped once the following criteria
were met: (i) The optimum has reached the final value;
(ii) the mean population fitness has exceeded a value of
0.999 at least once; and (iii) after i and ii are fulfilled,
one final step has been recorded, or no step has oc-
curred within 10,000 generations. For each parameter
combination, we then determined the average distri-
bution of adaptive substitutions over 100 replicated
simulations.

RESULTS

In the following, we first present analytical results
based on the adaptive-walk approximation (5). Later, we
compare the approximations to the results obtained
from individual-based simulations.

Analytical results: Figure 2 shows the distribution of
adaptive substitutions in the adaptive-walk approxima-
tion for two different values of the parameter g (Equa-
tion 8c) and for different stages of the adaptive process.
The shaded areas show the equilibrium distribution
fð‘Þg , obtained from numerical iteration of Equations 8
and 11. fð‘Þg is bimodal with a large positive and a very
small negative part (indicating that backward steps are
rare). In addition, the solid line in Figure 2B shows
the distribution of the first step, fð1Þg , which is very close
to fð‘Þg for a $ 0, but does not extend to a , 0. Backward
steps are, however, included in the distribution of the
second step, fð2Þg , which is virtually indistinguishable
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from the equilibrium distribution (Figure 2C). In the
following, we often neglect backward steps and use fð1Þg

as a useful first approximation to fð‘Þg .
Comparing the left and right columns of Figure 2, we

see that fg depends strongly on the composite para-
meter g ¼ v/(sQ). To understand the role of this key
parameter, it is instructive to rewrite Equation 8c as

g ¼ v

Qs
¼ ṽ

Q v3s̃
: ð19Þ

Here, v and s are our usual model parameters, which
are measured in units of the mutational standard
deviation v (see model description), and ṽ ¼ vv and
s̃ ¼ s=v2 are the unscaled counterparts. The unscaled
version in (19) makes explicit the strong dependence of
g on the width of the distribution of new mutations (g�
1/v3). Since g itself is dimensionless, it does not depend
on a particular scale. It relates two key determinants of
the model behavior: While the numerator captures the
dynamics of the environment, the denominator can be
understood as a measure for the ‘‘adaptive potential’’ of
the population, that is, its ability to follow the moving
optimum. The adaptive potential includes both genetic
factors (the mutation rate and the distribution of new
mutations) and the static component of the selective
environment (the selection strength s). If g is small, the
environment changes slowly relative to the adaptive
potential. This suggests that the adaptive process will be
determined primarily by the environmental dynamics.
In contrast, for large g, the adaptive process is de-
termined mainly by genetic factors, especially by the
distribution of new mutations (see below). To make
these ideas more explicit, we now formalize the concept
of the selective sieve (see Introduction).

The selective sieve: According to Equation 13, the
distribution of adaptive substitutions is the product of
three factors:

fgðaÞ ¼ pðaÞCða; gÞ ¼ pðaÞCsðaÞCdða; gÞ: ð20aÞ

Here, p(a) is the distribution of new mutations, which
provides the raw material for adaptation. C(a, g)

constitutes the selective sieve, which expresses the average
fixation probability over the adaptive process and trans-
forms new mutations into substitutions. As a function of
a, the selective sieve splits into two basic components
(compare Equation 13):

CsðaÞ } jaj ð20bÞ

Cdða; gÞ}
ð‘

�‘

ð
df .di;
2adf .a2

j 2df � aj F ðdf j di; gÞrgðdiÞddf ddi ð20cÞ

(where } indicates proportionality; all factors not
depending on a are ignored).

The first component Cs is the static sieve, which is
independent of the ecological and genetic dynamics.
It reflects the fact that (in our additive model)
mutations with small phenotypic effects can have only
small fitness effects and, hence, are often lost due to
genetic drift. In consequence, the static sieve favors
large adaptive steps, which is the classical argument
raised by Kimura (1983) in the context of Fisher’s
geometric model.

The second sieve component Cd is the dynamic sieve.
Unlike the static sieve, it depends on g and accounts for
the dynamic changes in both the population and the
environment. It is the dynamic sieve that removes mu-
tations overshooting the optimum by more than the
final phenotypic gap df (see Figure 1B). Thus, in con-
trast to the static sieve, the dynamic sieve favors small
mutations over large ones.

The three factors in Equation 20 combine to deter-
mine the shape of the distribution of adaptive substitu-
tions (Figure 3). Clearly, the substitution rate of small
mutations is limited by the static sieve Cs. As new mu-
tations with small phenotypic effects have low fixation
probabilities, fg(a) decreases linearly to zero for jaj/
0. This holds even if small mutations are abundant (as
is the case for the exponential distribution of new
mutations), as long as their density is bounded at a¼ 0
(since also the dynamic sieve Cd is always bounded at
a ¼ 0).

Figure 3.—Illustration of the selective sieve
(Equation 20). The plots show the factors con-
tributing to the distribution of adaptive substitu-
tions [or, more precisely, to the distribution of
the first step, fð1Þg (a), Equation 14] for two values
of g ¼ v/(sQ). To derive the distribution of
adaptive substitutions, the distribution of new
mutations p(a) (thin solid line) is first multiplied
by the static sieve Cs (dotted line, Equation 20b),
yielding the limiting distribution f‘(a) (shaded
line, Equation 24). Multiplication of f‘(a) by
the dynamic sieve Cd (dashed line, Equation
20c) gives the distribution of adaptive substitu-
tions fg(a) (thick solid line). The static and dy-

namic sieve components are defined only up to proportionality. Here, Cs is scaled such as to be an asymptote to f‘, and Cd such as
to yield 1 at the intersection of f‘ and fg. Note that the static sieve is independent of g, whereas the dynamic sieve is less effective
(i.e., less steep) if g is large.
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In contrast, the substitution rate of large mutations is
limited by both the dynamic sieve Cd and the distribu-
tion of new mutations p(a). As shown in Figure 3, the
relative importance of these two factors depends on g.
For small g (Figure 3A), the right-hand tail of fg(a) is
determined mainly by the dynamic sieve, which sharply
cuts off the right-hand tail of p(a). In contrast, for large
g (Figure 3B), the dynamic sieve is weak (i.e., Cd de-
creases only slowly with a), and the right-hand tail of
fg(a) is determined primarily by p(a). For intermediate
g, both factors are important. In appendix b, we show
that they interact in a complex way, whose details de-
pend on the fourth moment of p(a).

Genetic vs. environmental limitation: The way in
which g determines the relative importance of the
dynamic sieve and the distribution of new mutations in
shaping the distribution of adaptive substitutions is a key
result of this article. Indeed, the two examples shown in
Figure 3 can be generalized to describe two different
modes of adaptive evolution, or adaptive regimes, in the
moving optimum model. In accordance with our in-
terpretation of the parameter g (see above, Equation 19),
we say that the adaptive process (which can be character-
ized by the distribution of adaptive substitutions) is
environmentally limited if g is small and the right-hand tail
of fg(a) is mainly determined by the dynamic sieve. In
contrast, we say that the adaptive process is mutation limited
if g is large and the right-hand tail of fg(a) is mainly
determined by the distribution of new mutations. These
two cases are best viewed as the ends of a continuum.
However, they can be studied in a ‘‘pure’’ form by
considering the limits of very small or very large g, in
which only one of the two factors, Cd or p(a), is operating.

Small g—environmentally limited regime: If g>1, the
speed of environmental change is small relative to the
adaptive potential of the population, and the dynamic
sieve is maximally efficient. As described after Equation
12b, the distribution of the initial gap converges to di �
0. Similarly, the final gap df does not get much larger
than di, and the population tracks the optimum closely.
In consequence, only very small adaptive steps are
possible, and the distribution fg(a) becomes indepen-
dent of the shape of p(a). In the limit g / 0, we find
Cd(a) / 0 for a 6¼ 0, and the entire weight of fg¼0(a) is
trivially concentrated at a ¼ 0. For finitely small g, we
can approximate p(a) by a uniform distribution with the
same mutational density Qp(0) at a ¼ 0. The distribu-
tion of adaptive substitutions then satisfies

fg>1ðaÞ } CsðaÞCdðaÞ: ð21Þ

An exact expression for fg>1ðaÞ is given in appendix a

(Equation A18). In particular, the mean step size (i.e.,
the expectation of fg) in this limit can be expressed as

�a ¼ Gð5=4Þ
ffiffiffiffiffiffi
3g4

p
; ð22Þ

where G is the gamma function.

Large g—mutation-limited regime: In the opposite ex-
treme of large g, the environment changes fast relative
to the adaptive potential of the population. As a con-
sequence, the phenotypic gap df will typically be large,
and large mutational steps can contribute to the adap-
tive process. In this case, the dynamic sieve is not
effective, and fg(a) is limited for large a by the
distribution of new mutations p(a). In the limit g /
‘, Cd(a) is constant. Only the static component of the
sieve, Cs(a), remains in place, and the distribution of
adaptive substitutions satisfies

f‘ðaÞ } pðaÞCsðaÞ: ð23Þ

Normalization yields the solution

f‘ðaÞ ¼ 2pðaÞa
m
; ð24Þ

where m is the average size of a positive new mutation
(a . 0) under the distribution p(a). Since Equation 24
is independent of the initial gap di, it holds for all steps
in the adaptive walk. For an exponential distribution of
new mutations, (24) is a Gamma distribution with shape
parameter 2 (Rozen et al. 2002). Furthermore, since
m ¼ v=

ffiffiffi
2
p

, the mean step size evaluates to

�a ¼ 2m: ð25Þ

If the optimum increases indefinitely (as is assumed
here), the limit g / ‘ (e.g., v / ‘) might appear un-
realistic. However, Equation 24 also holds if the opti-
mum stops moving once the phenotypic gap has
reached a value df sufficiently larger than m. In this
case, g / ‘ corresponds to a sudden change in the
environment (see Simulation results below). Indeed,
an alternative derivation of f‘(a) is as a limit of the
conditional distribution f(a j df) (Equation 11) for
large df (in which case s } a). It is worth noting that
Equation 24 corresponds to the distribution of the first
substitution predicted by Kimura (1983) for Fisher’s
geometric model (see also Orr 1998).

For an exponential distribution of new mutations, the
distribution of adaptive substitutions is well approxi-
mated by the limiting distribution fg>1 if g & 0.1 and by
the limiting distribution f‘ if g * 10 (Figure 4). For g�
1, the distribution of adaptive substitutions is between
those extremes, and the mean step size is less than that
predicted by either of the two limits (Figure 4F). A more
in-depth analysis of the transition between the environ-
mentally and mutation-limited regimes is given in
appendix b.

The distributions of the first steps and in equilib-
rium: Finally, we can explain why the equilibrium
distribution of adaptive substitutions is usually well
approximated by the distributions of the first and
second steps (see Figure 2). The explanation depends
on whether the adaptive process is environmentally or
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mutation limited. This is because fð1; 2Þg and fð‘Þg have
the same limit distributions for either g / ‘ or g>1,
respectively (see above).

If g is small and evolution is environmentally limited,
the distribution of adaptive substitutions is strongly
influenced by the dynamic sieve Cd. In particular,
the conditional distribution fg(a j di) (Equation 13b)
depends strongly on the initial phenotypic gap di (Fig-
ure 5A1). However, in this case, the gap typically re-
mains small (Figure 5B1) and can be approximated by
di ¼ 0.

In the opposite case of large g (mutation-limited
regime), the initial (and final) phenotypic gap can be
substantial (Figure 5B2). Equation 13 shows that the
only effect of the distribution of the initial gap, r(di), on
fg(a) is through the dynamic sieve Cd. As discussed
above, however, the dynamic sieve is not effective in
the mutation-limited case, and f(a) is limited by the
distribution of new mutations. Similarly, the value of
di has little influence on the conditional distribution
fg(a j di) (Figure 5A2).

In summary, for small g the phenotypic gap is small
and can be approximated by di¼ 0, whereas for large g,
the gap is large but has little effect on the distribution of
adaptive substitutions. In consequence, the distribution
of step sizes during an adaptive walk is not confounded
by transient nonequilibrium effects. As long as the

decisive parameter g is kept constant, the equilibrium
distribution is reached almost immediately and is well
predicted by the distribution of the first (or second)
step.

Simulation results: In the following, we compare the
analytical predictions from the adaptive-walk approxi-
mation to results from individual-based simulations. In
contrast to the previous section, we use the unscaled
parameters ṽ ¼ vv and s̃ ¼ s=v2 introduced in Equa-
tion 19. Also the substitution effects ã ¼ va are mea-
sured on a given constant scale, that is, not relative to v.
Using this constant scale makes explicit that an increase
in g due to a decrease in v (see Equation 19) leads to a
decrease in the average absolute substitution effect ã,
whereas the relative effect a always increases with g

(compare Figures 4 and 6).
Figure 6 shows that the predictions from the adaptive-

walk approximation are very accurate for populations
experiencing a low influx of mutations (small Q). A
comparison with Figure 2 shows that backward steps are
even rarer than in the adaptive-walk approximation.
Therefore, the equilibrium distribution of adaptive
substitutions is well predicted by the distribution of
the first step, fg

(1) (Equation 14). This is true for various
shapes of the distribution of new mutations (including
Gaussian, Gamma, and uniform distributions, data not
shown) and in both the environmentally limited (large

Figure 4.—Dependence of the distribution of adaptive substitutions, fg(a), on the composite parameter g ¼ v/(sQ) (solid
line). (A–E) The shaded area is the equilibrium distribution fð‘Þg of the adaptive-walk approximation, as obtained from 100,000
iterations of Equations 8 and 11. The solid line is the distribution of the first step, fð1Þg (a), according to Equation 14. The other two
lines show the limiting distributions discussed in the main text: The dotted line is the distribution fg>1 (Equation 21), which is a
good approximation in the environmentally limited regime (small g). The dashed line is the distribution f‘ (Equation 24), which
is the limiting distribution in the mutation-limited regime (large g). (F) The mean step size �a for all three distributions as a func-
tion of g (where the dotted line is from Equation 22 and the dashed line is from Equation 25).
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v, small g) and mutation-limited (small v, large g)
regimes. Furthermore, the result holds in both haploid
and diploid populations.

In contrast, if the influx of mutations into the
population is high (large Q), the observed distribution
of adaptive substitutions deviates from the adaptive-walk
prediction (Figure 7), and the direction of the deviation
depends on the genetic architecture. For given Q,
substitutions are larger than predicted if the number
of loci, L, is small but smaller than predicted if the
number of loci is large (assuming the total individual
mutation rate Lu is kept constant).

To explain these findings, recall that, in the adaptive-
walk approximation, fixation (or loss) of mutant alleles

is instantaneous and, therefore, adaptation occurs in
well separated steps. In populations with large Q, this
assumption is violated. Instead, at any given time,
different mutant alleles are likely to be segregating
simultaneously. These alleles interact with each other
and compete for fixation. The important point is that
they do so in two different ways. One is based on linkage
and the other one on epistasis.

Linkage effects: If two mutations get established in
different genetic backgrounds, the only way for them to
go to fixation together is by a recombination event that
brings them onto the same background. Otherwise, one
of them will eventually outcompete the other. This
effect has been described as the Hill–Robertson effect

Figure 5.—The role of
the initial phenotypic
gap di in the adaptive-walk
approximation. (A) The
shaded area shows the
equilibrium distribution
of adaptive substitutions,
fð‘Þg (a) (same data as in Fig-
ure 2). The lines are the
conditional distributions
fg(a j di) given the initial
phenotypic gap di (Equation
13b). The shaded line (neg-
ative a) is for di¼�0.5 in A1
and for di ¼ �1 in A2. (B)
The equilibrium distributions
of the initial and the final
gap, along with the distri-
bution of new mutations
(reflected exponential with
v ¼ 1, Equation 4).

Figure 6.—The distribu-
tion of adaptive substitu-
tions in diploid and
haploid populations experi-
encing a low influx of muta-
tions (Q¼ 0.2). Histograms
show the observed distribu-
tion obtained from individ-
ual-based simulations. The
solid line is the prediction
for the first step from the
adaptive-walk approxima-
tion (Equation 14). The
dashed line is the distribu-
tion of new mutations p(a)
(reflected exponential with
standard deviation v, Equa-
tion 4). The value in paren-
theses is the composite
parameter g (Equation
19). Other parameters:
ṽ ¼ 0:001, s̃ ¼ 0:1, L ¼ 10,
K ¼ 1000, u ¼ 10�5, Q ¼
2LKu. Note that, because

mutational effects ã are measured on an absolute scale (not relative to v), the mean step size decreases with g (whereas it increases
on the relative scale, see Figure 4).
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for sexual populations (Hill and Robertson 1966;
Barton 1995) and as clonal interference for asexual
populations (e.g., Gerrish and Lenski 1998; Park and
Krug 2007). In Figure 7, the linkage effect is strongest
for small L, because decreasing L (while keeping Q

constant) amounts to reducing recombination. The
effect of recombination is also investigated in Figure 8,
where the recombination rate r between adjacent loci is
varied.

Both Figures 7 and 8 show that, in the moving
optimum model, increased linkage (interference) fa-
vors mutations with large phenotypic effect. Two factors

contribute to this phenomenon. First, interference
leads to a reduced substitution rate (because some
mutations are lost even after they have survived drift),
which increases the average gap between the mean
phenotype and the optimum and leads to mutations
with larger average effect being recruited. Second, a
mutation with large phenotypic effect is more likely to
outcompete an interfering small one than vice versa,
even if both mutations initially have the same selective
advantage. The reason is that, with a moving optimum,
the selection coefficient of the large mutation will
increase faster (see Equation 7).

Figure 7.—Effect of the
population mutation rate
Q and the number of loci
L on the distribution of
adaptive substitutions. His-
tograms show the observed
distribution obtained from
individual-based simulations
of a diploid population, as-
suming the distribution of
new mutations is reflected
exponential (Equation 4)
with v ¼ 0:2

ffiffiffi
2
p

. The solid
line is the prediction for
the first step from the adap-
tive-walk approximation
(Equation 14). Deviations
between observation and
prediction are due to link-
age for small L and due to
epistasis for large L (see
text). In each row, Q was
varied by increasing K
(103, 104, 105), while in

each column, u was adjusted to keep the product Lu constant. Parameters: Q ¼ 2LKu, s̃ ¼ 0:1, ṽ ¼ 0:001. The composite param-
eter g (Equation 19) ¼ 2.21 in A, 0.221 in B, and 0.0221 in C.

Figure 8.—Effect of link-
age on the distribution of
adaptive substitutions in pop-
ulations experiencing a high
influx of mutations (Q ¼
20). r is the recombination
rate between adjacent loci.
Histograms show the ob-
served distribution obtained
fromindividual-basedsimula-
tionsofahaploidpopulation,
assuming the distribution of
new mutations is reflected ex-
ponential (Equation 4) with
v ¼ 2

ffiffiffi
2
p

. The solid line is
the prediction for the first
step from the adaptive-walk
approximation (Equation
14). Parameters: K ¼ 105,
L¼ 10, u¼ 10�5, Q ¼ 2LKu,
ṽ ¼ 0:001, s̃ ¼ 0:1.Thecom-
posite parameter g ¼ 2.2 3
10�5 (Equation 19).
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As shown in Figure 9, the importance of the linkage
effect increases with the rate of environmental change ṽ,
but is relatively insensitive to the selection strength s̃.
This can be explained as follows: The amount of
interference depends on the probability of cosegregat-
ing mutations, which is determined by the substitution
rate (the number of substitutions per time) and the
average fixation time Tf (i.e., the time a mutation takes
to increase from a single copy to frequency 1, cf. Kopp

and Hermisson 2009). Increasing ṽ leads to a strong
increase in the substitution rate, because adaptation
needs to cover a larger phenotypic distance per time,
whereas the mean step size increases only relatively
weakly (see Figure 4F). It also leads to a decrease in
the average fixation time (because overall selection is
stronger), but this is not enough to compensate for
the increased substitution rate. In consequence, more
alleles are segregating at any given time, and the op-
portunity for interference increases. In contrast, if ṽ is
constant and s̃ increases, the substitution rate increases
only slightly (because the average step size decreases),
and this effect approximately cancels with the decreased
fixation time due to stronger selection. Because the
linkage effect is (more or less) independent of s̃, it also
has no strong relation to g and can be equally strong in
the environmentally and mutation-limited regimes.

Epistasis effects: The second way in which cosegregat-
ing alleles interfere is via epistasis. More precisely, the
stabilizing selection component of the moving opti-
mum model induces negative epistasis for fitness. Each
mutant allele that brings the population mean pheno-
type closer to the optimum reduces the fitness of all

other mutant alleles with the same sign. In other words,
each segregating mutation that increases in frequency
effectively reduces the speed of environmental change
‘‘perceived’’ by other mutations. This reduction in the
effective ṽ favors small mutations and leads to a reduced
average step size. The effect can also be summarized
as follows: Several small mutations can be substituted
together with overlapping fixation time intervals, while
several large mutations cannot. The epistasis effect in-
creases with increasing Q, but does not strongly depend
on ṽ and s̃ (data not shown). For tight linkage (small L
or r), it tends to be overshadowed by the linkage effect,
which works in the opposite direction. Therefore, the
epistasis effect is best seen if the number of indepen-
dent loci is large (see Figure 7C with L ¼ 100).

Limited increase of the optimum: So far, we have
assumed that the optimum increases indefinitely, which
is, of course, an idealization of biological reality. To test
the robustness of our results for shorter bouts of
adaptation, we now assume that the optimum stops
after reaching a maximal value zmax (see Simulation
methods). To avoid complications caused by interference
between cosegregating alleles (see above), we focus on
populations with small Q.

In the model with an indefinitely moving optimum,
we have shown that the distribution of step sizes changes
little over the course of the adaptive process. Indeed, a
key result is that the long-term equilibrium distribution
is very similar to the distribution of the first steps (Figure
2). In contrast, with a limited increase of the optimum,
the size of the later steps is bound to decrease as the
population approaches the final optimum. This is,

Figure 9.—Effect of the
(unscaled) selection
strength s̃ and speed of en-
vironmental change ṽ on
the distribution of adaptive
substitutions in popula-
tions experiencing a high
influx of mutations (Q ¼
20). Histograms show
the observed distribution
obtained from individual-
based simulations of a hap-
loid population, assuming
the distribution of new mu-
tations is reflected expo-
nential (Equation 4) with
v ¼ 0:2

ffiffiffi
2
p

. The solid line
is the prediction for the
first step from the adap-
tive-walk approximation
(Equation 14). Also shown
is the value of the compos-
ite parameter g (Equation
19) and the average fixa-
tion time of mutant alleles
(see text). The main pur-

pose of the figure is to illustrate how the deviation between observation and prediction, which stems from the linkage effect,
depends on s̃ and ṽ. Parameters: K ¼ 105, L ¼ 10, u ¼ 10�5, Q ¼ 2KLu.
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indeed, observed in our simulations (right-hand col-
umns in Figure 10).

We can now ask for how long the optimum must move
so that the distribution of adaptive steps is accurately
predicted by the adaptive-walk approximation (which
assumes an indefinite movement). As illustrated in
Figure 10, this is the case if the ratio of the total move-
ment of the optimum to the predicted average size of a
single step, zmax=�a, is sufficiently large. Most steps will
then occur during the moving phase, and the final steps
during the constant phase have no significant effect on
the overall distribution (Figure 10C). Our simulations
indicate that a value of zmax=�a * 5 is sufficient for a
good fit with the prediction from Equation 14. This
result is independent of whether the ratio is large
because zmax is large or because �a is small (additional
results not shown).

The sudden change scenario assumed in most previous
studies of adaptation can be seen as a limiting case of the
moving optimum with v / ‘. In Analytical results, we have
argued that the limiting distribution f‘(a) (Equation 24)
is an approximation for the sudden change scenario,
provided the jump of the optimum (which is equivalent
to the final phenotypic gap df) is large enough. This is
illustrated in Figure 11. For a small jump, there is an
excess of small and negative steps relative to the pre-

diction from Equation 24, but for a large jump, the fit is
very good. Consequently, even the extreme case of a
sudden environmental change is well approximated in
the moving optimum framework if zmax=�a (and thus the
total number of adaptive steps) is moderately large.

DISCUSSION

Adaptive evolution is the product of two factors: (i)
genetic variation, which ultimately derives from muta-
tion, and (ii) the selective environment, which ‘‘sieves’’
the genetic variation and turns a subset of new muta-
tions into adaptive substitutions. Both factors are in-
herently dynamic: Mutation is a stochastic process, and
new selection pressures arise as a result of environmen-
tal change. The aim of this study (and the recent study
by Kopp and Hermisson 2009) was to develop a model
of adaptation that accounts for the dynamics at both
levels and to analyze their combined effects. A natural
framework for such a study is provided by the moving
optimum model, which combines simple genetics (a
single polygenic trait under stabilizing selection) with a
very basic ‘‘ecology’’ (the change of the optimum at
constant speed).

The genetic basis of adaptation can be characterized
by the (expected) distribution of adaptive substitutions,

Figure 10.—The distribution of
adaptive substitutions if the optimum
stops at zmax. The rows show results
for three sets of simulations with differ-
ent zmax but equal speed of the opti-
mum ṽ ¼ 0:001. In the left-hand
column, bar charts show the average
distribution of step sizes over 100 repli-
cated simulations until adaptation to
the new optimum. The solid line is
the prediction from the adaptive-walk
approximation (Equation 14), which
assumes an unlimited increase of the
optimum. The dashed line shows the
distribution of new mutations p(a) (re-
flected exponential with v ¼ 1

ffiffiffi
2
p

;
Equation 4). In the right-hand column,
the solid line shows the average size of
the first, second, etc., steps (left y-axis).
Error bars are standard errors. The
dashed line shows the mean phenotype
of the population at the time of the re-
spective step, measured relative to the
final optimum zmax (right y-axis). The
shaded area indicates the proportion
of simulations that reached a given
number of steps (right y-axis). Parame-
ters: haploid population with L ¼ 10,
K ¼ 103, u ¼ 10�5, Q ¼ 2LKu ¼ 0.2,
s̃ ¼ 0:1. The composite parameter
g ¼ 0.0177 (Equation 19).
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f(a), that is, by the distribution of the phenotypic
effects of those mutations that are fixed during a bout of
adaptation. Here, we have focused on how this distri-
bution depends on the genetic and environmental
parameters. In the moving optimum model, the genetic
parameters comprise the population and trait-wide
mutation rate Q and the distribution of new mutational
effects p(a). The selective environment is characterized
by the selection strength s and the speed of the
optimum v. To derive analytical results, we have used
an adaptive-walk approach, which assumes immediate
fixation of adaptive alleles. In addition, we performed
individual-based simulations, which cover the whole
fixation process and account for potential interactions
between cosegregating mutant alleles.

The shape of the distribution: Most adaptive sub-
stitutions are in the forward direction of the moving
optimum (e.g., Figure 6). Although backward steps after
a previous ‘‘overshooting’’ (Sato and Waxman 2008)
are possible, they are very rare (Figure 2). The distribu-
tion of forward substitutions is unimodal: Most sub-
stitutions are of an intermediate effect, while both very
small and very large steps are rare. Furthermore, the
distribution is remarkably stable over the course of the
adaptive process. That is, if the optimum of a perfectly
adapted population starts moving, already the distribu-

tion of the first step is very similar to the equilibrium
distribution after many steps. As a technical conse-
quence, we can use the distribution of the first step
(which is easier to derive) as a valid approximation for
f(a). Furthermore, all predictions about f(a) also hold
for short-term adaptation, where the movement of the
optimum stops after a limited phenotypic distance. Our
simulations show that the distribution of the first step
approximates the distribution over an entire adaptive
bout if the optimum changes by at least five times the
average step size (Figure 10).

The selective sieve: The distribution of adaptive
substitutions can be decomposed into three factors:
f(a) ¼ p(a)Cs(a)Cd(a) (Equation 20), where p(a) is
the distribution of new mutations, and Cs and Cd are
two sieve functions, which describe the effect of selection
(Figure 3). The static sieve Cs } jaj reflects the fact that,
independently of the ecological dynamics, alleles with
small phenotypic effect have small fixation probabili-
ties. As a consequence, f(a) always approaches zero for
a / 0. The dynamic sieve Cd(a) captures the ecological
and genetic dynamics. It cuts off mutations with large
phenotypic effects when these would overshoot the
moving optimum by more than the current phenotypic
gap. The unimodal shape of f(a) arises from the
combined action of the two sieves.

Figure 11.—The distribution of
adaptive substitutions in the sudden
change scenario (i.e., the optimum im-
mediately jumps to zmax). See Figure 10
for more details. In A, the solid line is
the prediction from Equation 24. Pa-
rameters: haploid population with L ¼
10, K ¼ 103, u ¼ 10�5, Q ¼ 2LKu ¼
0.2, s̃ ¼ 0:1. The distribution of new
mutations is reflected exponential with
v ¼ 0:2
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The parameter g: To a large degree, the combined
effect of the genetic and environmental dynamics on
f(a) depends on a single composite measure g, which
determines the properties of the dynamic sieve Cd. In
arbitrary units of the trait, g is given by

g ¼ ṽ

Qv3s̃

(Equation 19), where the distribution p(a) of new
mutations enters through its standard deviation v.
The numerator describes the rate of environmental
change, whereas the denominator can be understood as
a measure of the adaptive potential of the population to
follow the optimum.

Adaptive regimes: Depending on the value of g, we
can distinguish two adaptive regimes, which form the
endpoints of a continuum (Figure 4). The mutation-
limited regime (large g) is characterized by a large
average gap between the population mean trait value
and the optimum. As a consequence, the population
follows the optimum with large steps, whose size is
restricted only by the distribution of new mutations
p(a). In the limit of g / ‘, the dynamic sieve Cd is
‘‘flat,’’ and the distribution of adaptive substitutions is
independent of the ecological dynamics: f(a) } jaj p(a)
(Equation 24). This limiting distribution corresponds
to the one suggested by Kimura (1983) for Fisher’s
geometric model. In contrast, in the environmentally
limited regime (small g), the population tracks the
optimum with only a narrow gap. Large mutations are
usually not adaptive and are cut off by the dynamic
sieve (which in this case is ‘‘steep’’). Therefore,
evolutionary change occurs in many small steps. For
very small g, f(a) becomes independent of the shape
of the distribution of new mutations and depends only
on the selective sieve: f(a) } C(a) (Equation 21).

The transition between the mutation and environ-
mentally limited regimes occurs roughly over an interval
g 2 [0.1, 10]. Biologically, g is determined by the
population size, the size of the mutational target, and
the rate of environmental change (in mutational
standard deviations per generation). In nature, these
parameters can vary over many orders of magnitude.
Small values of g are expected, for example, for
unicellular organisms with large population sizes and
short generation times or under the gradual climatic
shifts of geologic history. More generally, environmental
limitation will almost necessarily play a role if the popu-
lation is able to track a moving optimum for a long
period of time. In our model, extinction risk is high
already for g $ 10 (simulation results not shown; cf.
Lynch et al. 1991; Bürger and Lynch 1995; Nunney

2003). Purely mutation-limited adaptation is therefore
possible only over short time spans.

Interaction effects: As long as the frequency of
adaptive substitutions is low or moderate, the results
of the adaptive-walk approximation are fully confirmed

by individual-based simulations. For strong ‘‘adaptive
traffic,’’ however, we observe deviations due to inter-
actions between cosegregating beneficial alleles (which
are not accounted for in the adaptive-walk approxima-
tion). Interaction effects are most relevant for high
mutation rates (Q . 1), but are also favored by a fast
moving optimum (which requires many substitutions
per unit time). Therefore, the importance of interac-
tions does not depend on g and can be large in both the
mutation-limited and the environmentally limited re-
gime. We find two different types of interactions, which
have opposite effects:

i. Linkage disequilibria between cosegregating alleles
lead to Hill–Robertson (or clonal) interference,
which induces a shift of f(a) toward larger steps.
This effect is well known from previous studies (e.g.,
Barton 1995). It can be strong if linkage is very tight
(r , 0.01) or, equivalently, if the trait is affected by
mutations at only a few loci (L , 10).

ii. In contrast, interactions through negative epistasis
for fitness (due to stabilizing selection) favor smaller
alleles over larger ones. The reason is that multiple
small alleles can have overlapping fixation times
(because epistatic interactions between them are
weak), whereas multiple large ones cannot.

Comparison to KOPP and HERMISSON (2007, 2009):
The present article, which focuses on the long-term
distribution of adaptive substitutions, complements two
earlier studies on the moving optimum model (Kopp

and Hermisson 2007, 2009), in which we investigated
the fixation time of individual mutations and the order
of substitutions over short bouts of adaptation. In the
following, we summarize the picture arising from all
three studies and highlight the similarities and differ-
ences between them.

All three articles stress the importance of the ecolog-
ical timescale. They show that the rate of environmental
change has a significant impact on the pattern of adap-
tive substitutions. If environmental change is suffi-
ciently slow, the ecological timescale will influence or
even dominate the adaptive process, causing the size
of the most relevant mutations to decrease. In both
the present study by and the recent study by Kopp and
Hermisson (2009), the impact of the environment can
be determined by a single composite parameter g, which
relates the rate of environmental change to the adaptive
potential of the population. On the technical side,
analytical results in all three articles build on a single-
locus framework, in which interactions among segre-
gating alleles are ignored. Simulations show that this
approximation is valid in a large part of the biologically
relevant parameter space.

However, there are also notable differences among
the three articles. Most fundamentally, they address
different questions. In Kopp and Hermisson (2007,
2009), we investigated the order of fixations and aimed at
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identifying the fastest substitution, that is, the substitu-
tion that initiates the adaptive response. In contrast, the
present article considers the distribution of substitutions
and, in particular, the most frequent substitution over a
complete adaptive bout. Although the fastest and the
most frequent substitution are often similar, they are not
identical. The fastest substitution depends on the total
time to fixation, whereas the most frequent one depends
mainly on the (average) fixation probability. This differ-
ence has important consequences for the definition and
demarcation of adaptive regimes.

When studying the order of substitutions (Kopp and
Hermisson 2007, 2009), mutations with different
effects can be seen as participating in a ‘‘race to
fixation.’’ The outcome of this race depends on the
total time to fixation, which has three components: the
lag time until the allele becomes beneficial; the waiting
time for the appearance of a successful mutation
(which, in turn, depends on the mutation rate and the
fixation probability); and the narrow sense fixation
time, that is, the time the successful allele needs to
sweep through the population. Accordingly, we distin-
guished three adaptive regimes with regard to the race-
to-fixation problem (Kopp and Hermisson 2009): the
environmentally limited regime, in which the total time
to fixation is dominated by the lag time; the mutation-
limited regime, in which it is dominated by the waiting
time; and the fixation time-limited regime, in which it is
dominated by the fixation time. Small mutations are
either mutation or fixation time limited (i.e., they have
long waiting or fixation times), whereas large mutations
are environmentally limited (long lag times). The fastest
mutations are those of intermediate size, which are
located at the boundary to the environmentally limited
regime.

Just as the fixation time in the previous articles can be
decomposed into the lag time, the waiting time, and the
fixation time, the distribution of adaptive substitutions
can be decomposed into three factors: the distribution
of new mutations p(a), the static sieve Cs, and the
dynamic sieve Cd (Equation 20). In part, these decom-
positions are analogous. In particular, the lag time is
implicit in the dynamic sieve and can be seen as the
reason for why large mutations are cut off. However,
there are also two important differences.

First, for the distribution of adaptive substitutions
studied in the present article, the narrow sense fixation
time is unimportant (and, consequently, is ignored in
the adaptive-walk approximation). Once a mutation is
picked up by selection and destined to go to fixation
(which depends on the fixation probability), it does
not matter how long the allele needs to actually reach
frequency 1. In consequence, there is no fixation time-
limited regime with respect to the distribution problem.
(In fact, the fixation time still plays an indirect role
by influencing the probability of interference between
cosegregating alleles. With some right, one could

therefore define an ‘‘interference regime’’ for the dis-
tribution problem to complement the fixation time-
limited regime in the race-to-fixation problem. Note,
however, that, in the race problem, the fixation time is
relevant even in the absence of interaction effects.)

Second, in the present article, the distribution p(a)
of new mutations enters as a (necessary) new player
influencing the distribution problem. While, in the
previous article, all mutations participating in the race
to fixation were equipped with the same (recurrent)
mutation rate u, the traitwide mutation rate Q in the
present article is unevenly distributed across mutations
with different effect. Since the waiting time for a suc-
cessful mutation depends on both the fixation proba-
bility (i.e., the static sieve) and the mutation rate, there
are now two ways in which the substitution rates of two
mutations can differ as a result of differential ‘‘mutation
limitation’’: either due to differences in the fixation
probability or due to differences in the mutation rate.
The former possibility (differential fixation probabili-
ties) is present in both articles and explains the pattern
for small mutations (long fixation time, low substitution
rate). The latter possibility (differential mutation rate)
occurs only with a nonuniform distribution of new mu-
tations and contributes to limiting the substitution rate
of large mutations in the present article. However, for
which kind of mutations (intermediate or large ones)
this second kind of mutation limitation is more or
less important than environmental limitation (i.e., the
dynamic sieve) depends on the precise shape of p(a)
(appendix b, Figure B1). In consequence, determining
the limiting factor for the substitution rate of alleles with
specific effect (as was done for the fixation time in Kopp

and Hermisson 2009) can be complex (see appendix

b). Instead, for the distribution problem, it proved more
useful to define the adaptive regimes with respect to the
whole adaptive process, that is, the entire distribution of
substitutions. Indeed, the two regimes are best charac-
terized via the limiting distributions given by Equations
21 and 24, respectively.

The nonuniform distribution of new mutations is also
the reason why there is no direct correspondence
between the summary parameters g appearing in the
two studies. In Kopp and Hermisson (2009), a para-
meter g ¼ v/(su) determines the effect of the fastest
mutation a*, which defines the boundary to the
environmentally limited regime. Unlike g in the present
study, it depends on the per-locus mutation rate u, not
on the per-trait mutation rate Q. For nonuniform p(a),
these two parameters cannot be straightforwardly trans-
lated into each other. Nevertheless, the two kinds of g

play essentially similar roles in describing the transition
between mutation-limited and environmentally limited
evolution.

Comparison to other models of adaptation and
future directions: Previous studies of adaptation to a
single sudden change in the environment suggest that
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the distribution of adaptive substitutions should often
be roughly exponential (Orr 1998, 2005a). In particular,
an exponential distribution of adaptive substitutions has
been obtained for both Fisher’s geometric model (Orr

1998) and Gillespie’s mutational landscape model (Orr

2002), although these two models are different in many
aspects. For example, mutational effects are measured as
phenotypic distances in Fisher’s model and as fitness
effects in the mutational landscape model. Yet, there are
two main reasons why the two models show similar results
(Orr 2005b): First, in both models, the distribution of
new mutations is biased toward small mutations. Second,
in both models, each adaptive step leads to a rescaling of
the original situation: The population is closer to the
optimum (in Fisher’s model), or the likelihood of further
beneficial mutations has decreased (in the mutational
landscape model). As a consequence, the initial steps
lead to sizable increases in fitness, whereas the later steps
are mere ‘‘fine tuning.’’ It is this second point that is
fundamentally different in the moving optimum model.
For this reason, Orr (2005b) predicted that the distri-
bution of adaptive substitutions in a moving optimum
version of Fisher’s geometric model should resemble that
of the first step (originally calculated by Kimura), which is
unimodal rather than exponential. This is, indeed, what
was found in the present study. A similar unimodal
distribution is also found for the fitness effects of adaptive
substitutions (see appendix c, Figure C1).

However, a more important point seems to be what
exactly determines the shape of the distribution of the
first step. Here, we have shown that a ‘‘Kimura-type’’
distribution (Equation 24) arises only in the mutation-
limited regime, where the mutational step size is limited
by genetic constraints. In the environmentally limited
regime, in contrast, the average mutational step size is
no longer small relative to the distance to the (moving)
optimum, and the distribution of adaptive substitutions
is strongly influenced by the dynamic sieve. This leads to
a significant decrease in average step size �a and also to a
change in the shape of the distribution. In particular,
the right-hand tail of f(a) is proportional to exp(–Ca2)
in the environmentally limited regime (see appendix b,
Equation B1).

Interestingly, we usually do not find an exponential
distribution of adaptive substitutions even in the case of
a sudden and limited jump of the optimum (Figure 11).
Indeed, if the jump is sufficiently large relative to the
expected size of a single step, the overall distribution of
step sizes is well approximated by the unimodal Kimura-
type distribution (Equation 24). As seen in Figure 11C2,
the mean size of subsequent steps declines only slightly,
and the overall distribution of step sizes is almost
identical to that predicted for the first step. The formal
reason is that the distribution of new mutations p(a)
introduces a fixed trait scale into the problem (the
standard deviation v) that does not rescale with the
distance of the population to the optimum. As a

consequence, the self-similarity arguments evoked by
Orr (1998, 2005a) will generally not apply. Self-similar-
ity is maintained, however, for the special case of a
uniform distribution p(a), and, in this case, the distri-
bution of the absolute values of step sizes approximately
follows an exponential (in the limit of strong selection
and weak mutation to avoid interference, results not
shown). For the general case, Orr (1998) suggested to
rescale the distribution of new mutations after each step
with the distance to the optimum (i.e., to consider
percentage changes with respect to the distance to the
optimum). Obviously, this procedure reinstalls self-
similarity. However, the assumption implies that the
effect not only of substitutions, but also of new mutations
decreases to zero as the population approaches the
optimum. This seems to be biologically implausible at
least for our model (but also for Fisher’s geometric
model considered by Orr 1998).

The current moving optimum model has been
designed as a minimal model of adaptation to gradual
environmental change. In its present form, it does not
yet reflect the high dimensionality and nonlinearity
of the genotype-to-phenotype-to-fitness map, which has
rightfully been viewed as an essential characteristic of
whole-organism adaptation (Fisher 1930; Orr 2005a,b).
Future extensions should include multilocus phenom-
ena, such as pleiotropy (as in Fisher’s model) and
epistasis (as in the mutational landscape model), and
strive for a better understanding of the effects of linkage
(as in clonal interference models). Another important
topic is the role of standing genetic variation (Orr and
Betancourt 2001; Hermisson and Pennings 2005;
Barrett and Schluter 2008) in adaptation to gradual
environmental change. Most generally, for a full un-
derstanding of adaptation, it will be necessary to take
into account both the genetic complexities of real
organisms and a realistic ecology.

So far, almost no data exist for testing the predictions
of the moving optimum model. In particular, experi-
mental evolution studies with microbes have almost
exclusively employed constant selection regimes. Nota-
ble exceptions are provided by Collins and Bell

(2004) and Perron et al. (2008), but a recent study by
Collins and De Meaux (2009) is the first to (partly)
resolve the evolutionary dynamics at the genetic level.
For the future, we hope that more experiments will
include gradual variation in environmental factors.

In microbial evolution experiments, it is often not
possible to measure quantitative traits that mediate the
relationship between genotype and fitness. Neverthe-
less, key assumptions and predictions of the moving
model can also be tested in the absence of phenotypic
data. For example, a basic prediction is that adaptation
involves more substitutions in gradually changing envi-
ronments than under constant selection. The number
of substitutions might be estimated from DNA sequence
data or by marker-based approaches as in Imhof and
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Schlötterer (2001). Furthermore, a hallmark of the
moving optimum scenario is a reversal of fitness effects
over time (i.e., selection favors first small and then large
mutations). Thus, fitness assays should reveal evidence
for antagonistic pleiotropy (fitness trade-offs) over the
environments encountered during the experiment, just
as previous studies have found antagonistic pleiotropy
in environments not encountered by the population
(Hughes et al. 2007a,b).

Conclusions: In the present study and the two pre-
vious articles (Kopp and Hermisson 2007, 2009), we
have shown that the adaptive process is strongly influ-
enced by the dynamics of the selective environment. For
adaptation to gradual and long-term environmental
change, this influence is almost unavoidable. In partic-
ular, if the environment changes slowly, environmental
factors are more important than genetic factors. We
believe that this observation is robust also for other
(more complex) models and may change or even
reverse predictions obtained under the assumption of
constant selection (e.g., small instead of large steps first,
unimodal rather than exponential distribution of sub-
stitutions). Thus, our most general conclusion from this
series of studies is also the most important one: Ecology
matters for the genetic basis of adaptation.

Two anonymous reviewers provided helpful comments on a pre-
vious version of the manuscript. The authors are members of the
Mathematics and BioSciences Group at the University of Vienna,
which is funded by a grant from the Vienna Science and Technology
Fund to J.H.
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APPENDIX A: THE DISTRIBUTION OF THE ‘‘FINAL GAP’’ dF IN THE ADAPTIVE-WALK APPROXIMATION

As outlined in the main text, a single step of an adaptive walk in the moving optimum model can be characterized by
three elements: The initial gap di is the distance of the population mean phenotype to the optimum right after the
previous step, the final gap df is this same distance right before the new step, and a is the step size. Here, we derive the
distribution of the final gap df for a given initial gap di. This distribution is a central piece in our derivation of the
distribution of step sizes f(a).

Without loss of generality, we assume that, at time t ¼ 0, the population is monomorphic with phenotype z(0) ¼ 0.
Selection follows the moving optimum model (1) with an optimal phenotype zopt(t) ¼ vt 1 di, where the initial
phenotypic gap di can be positive or negative. New mutations occur at rate Q/2¼ KLu. Their effect a on the focal trait
follows the distribution p(a).

It is convenient to discuss the positive (a . 0) and negative (a , 0) part of the mutation spectrum (i.e., forward and
backward steps) separately. Consider, first, the simple case that all mutations have the same effect a . 0 (i.e., there is
only a single mutational step size) and that the initial gap di¼ 0. The final gap df is a random variable, which depends
on the time at which the step occurs. However, the following analysis is framed directly in terms of df, with time
entering only implicitly. Furthermore, in abuse of notation, we use the same symbol df for both the random variable
and its realization. Then the distribution of the final gap can be derived as follows.

According to Equation 10, the selection coefficient for a given df is s(a j df)¼ as(2df – a). The fixation probability of
a new mutation can be approximated as 2s(a j df) for df . a/2 and 0 for df , a/2 (Equation 6). Let Fa(df j di¼ 0) be the
probability that the final gap is larger than df; i.e., 1 – Fa(df j 0) is the cumulative distribution function of the final gap.
Clearly, Fa(df j 0)¼ 1 for df # a/2. For df . a/2, the rate of new mutations that appear in the interval [df, df 1 e] and are
destined for fixation is ½2sða j dfÞQ=ð2vÞ�e 1Oðe2Þ. Fa(df j 0) thus satisfies the differential equation

@Faðdf j 0Þ
@df

¼ �aðsQ=vÞ½2df � a�Faðdf j 0Þ; ðA1Þ

which has the solution

Faðdf j 0Þ ¼
1 for 2df , a;
expf�ða=4ÞðsQ=vÞ½2df � a�2g for 2df $ a

�
ðA2Þ

(cf. Kopp and Hermisson 2007). Fa(df j 0) depends on the basic model parameters only through the combination g¼
v/(sQ). Unlike in the main text, however, the dependence on g is omitted in the following for ease of notation.

Next, we again allow for adaptive steps of different size, but assume for the moment that the distribution of new
mutations, p(a), is discrete. For di¼ 0, the probability F1(df j 0) that no positive step of any size occurs while the gap is
less than df is

F1ðdf j 0Þ ¼
Y
a.0

Faðdf j 0Þ ¼ exp �
X

0,a,2df

apðaÞ
4g
½2df � a�2

" #
: ðA3Þ

In the general case of a continuous distribution of new mutations, p(a) is a density, and the sum must be replaced by
an integral,
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F1ðdf j 0Þ ¼ expð�g ðdf ÞÞ ðA4Þ

with

g ðdÞ ¼ 1

4g

ð2d

0
pðbÞbð2d� bÞ2db: ðA5Þ

Equation A4 is the complementary distribution function of df for di ¼ 0. (Note that, for di , 0, the argument of the
function g may be negative. In this case, integration in (A5) goes from 0 to a negative value. This changes the sign of the
integral, as we then use the convention that

Ð b
a ¼ �

Ð a
b . Since the integrand in g is proportional to b, the two minuses

cancel for b , 0, and g is always positive.)
To derive the distribution of df for general values of the initial gap di, we use the fact that the probability for no

fixation can be decomposed according to F1(d1 1 d2 j 0)¼ F1(d1 j 0)F1(d1 1 d2 j d1). Here, the right-hand side is the
probability that no fixation occurs while the phenotypic gap is between 0 and d1, times the probability that no fixation
occurs while the gap is between d1 and d2. These two events are independent (i.e., the probabilities are multiplicative),
because the appearance of a mutation destined for fixation is a (inhomogeneous) Poisson process (see also Figure
A1). In the above decomposition, d1 can be negative, but d2 should be positive. For an arbitrary initial gap di, we thus
obtain F1(df j di) ¼ 1 for df , di and

F1ðdf j diÞ ¼
F1ðdf j 0Þ
F1ðdi j 0Þ

; df $ di: ðA6Þ

For negative di, we also need to consider the possibility of backward steps, which have to occur while the final gap df is
still negative. We can then use the symmetry that the fixation probability of an allele with effect a at gap value df is the
same as for an allele with effect –a at gap –df. If also the distribution of new mutations is symmetric, p(–a) ¼ p(a), we
can express the distribution function for backward steps by the distribution function for forward steps as F–(df j di)¼ 1
for df , di and

F�ðdf j diÞ ¼ F1ð�di j � dfÞ ¼
F1ð�di j 0Þ
F1ð�df j 0Þ

ðA7Þ

(illustrated in Figure A1, B and C). Combining Equations A6 and A7, the probability that no step of any size and
direction occurs before the gap has reached df is given by

Figure A1.—Illustration of Equation A8 for
the distribution of the final phenotypic gap df

given the initial gap di. F(df j di) is the probability
that no adaptive step occurs before the pheno-
typic gap reaches the value df. The three princi-
pal cases di, df $ 0 (A), di, df , 0 (B), and di , 0,
df $ 0 (C) are shown. Both axes show the general
phenotypic gap d, which increases from min(0,
di) to max(0, df). Time can be thought of as run-
ning along the main diagonal. The shaded areas
symbolize intervals (of d or, equivalently, time)
during which a step might occur, with the corre-
sponding probabilities written next to them.
Areas above the main diagonal stand for forward
steps and areas below for backward steps.
Hatched areas indicate intervals that are not of
current interest and need to be deducted. Note,
however, that the shaded areas themselves are not
proportional to the corresponding probabilities
and that the probabilities are multiplicative
rather than additive.

1472 M. Kopp and J. Hermisson



F ðdf j diÞ ¼ F1ðdf j diÞ F�ðdf j diÞ ¼
1 for df , di;
F1ðdf j 0Þ
F1ðdi j 0Þ

F1ð�di j 0Þ
F1ð�df j 0Þ for df $ di:

(
ðA8Þ

For df $ di, this yields the compact formula given in Equation 8. The three principal cases (di, df $ 0, di, df , 0, and di ,

0, df $ 0) are illustrated in Figure A1.
Specific distributions of new mutations: For specific distributions of new mutations, some of the integrals in the

above equations can be evaluated explicitly (e.g., by using Mathematica). In particular, we can often obtain closed
solutions for the function g(d) (Equation A5).

Reflected exponential distribution: For the reflected exponential distribution (4) used throughout most of this article,
Equation A5 evaluates to

g ðdÞ ¼ m3

4g
ð3� 4m�1 jdj 1 2m�2d2 � e�2m�1 jdj ð3 1 2m�1 jdj ÞÞ; ðA9Þ

where m ¼ v=
ffiffiffi
2
p

.
Gaussian distribution: For a Gaussian distribution of new mutations (with mean 0 and standard deviation v¼ 1), we

obtain

g ðdÞ ¼ 1

2g
ffiffiffiffiffiffi
2p
p ð1 1 2d2 � e�2d2 � d

ffiffiffiffiffiffi
2p
p

Erfð
ffiffiffi
2
p

dÞÞ; ðA10Þ

where Erf(.) is the error function.
Quartic Gaussian distribution: For the quartic Gaussian distribution

pqðaÞ ¼
2 expð�a4=n4Þ

nGð1=4Þ

employed in Figure B1, g(d) evaluates to

g ðdÞ ¼ 1

2gGð1=4Þ

3 n
ffiffiffiffi
p
p

d2Erfðð2d=nÞ2Þ1 n3

4
1� e�ð2d=nÞ4 � 4

n
Gð3=4Þd 1

4d

n
Gð3=4; ð2d=nÞ4Þ

� �	 

: ðA11Þ

Reflected Gamma distribution: A reflected Gamma distribution has two free parameters. If we rescale the standard
deviation to v ¼ 1, there is still one parameter left,

pGða; hÞ ¼ jaj h�1 e� jaj
ffiffiffiffiffiffiffiffiffi
h1h2
p

2ðh 1 h2Þh=2GðhÞ
; ðA12Þ

and Equation A5 evaluates to

g ðdÞ ¼ ðh 1 h2Þ3=2

8qGðhÞg ðe
�r r h13ðr � hÞ1 ðq � 2rðh 1 1Þ1 r 2ÞðqGðh 1 1Þ � Gðh 1 3; rÞÞÞ ðA13Þ

with r ¼ 2jdj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 h2

p
and q ¼ 2 1 3h 1 h2.

Uniform distribution: Finally, for a uniform distribution of new mutations, which can be viewed as a limiting case if
environmental limitation is strong (see main text), additional derivations are possible. Let pu(a)¼ po. As a probability
distribution, pu must be normalized and should therefore be defined on a finite range. However, we assume that this
range is large enough (relative to the typical phenotypic gap df) to cover all mutations with a chance at fixation (i.e.,
with a positive selection coefficient). Adaptation is then always environmentally limited, and the boundaries of pu can
be ignored. Keeping po as a free parameter, Equation A5 becomes

g ðd; gÞ ¼ pod4

3g
: ðA14Þ

The conditional distribution of step sizes given the final gap df (Equation 11) evaluates to
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fða j dfÞ ¼
3að2df � aÞ

4 jd3
f j

ðA15Þ

for a between 0 and 2df. Since f(a j df) is symmetric around the df, the mean step size equals the mean gap value before
the step, �a ¼ �df . The density of df becomes

f ðdf j diÞ ¼
4po jd3

f j
3g

exp
po

3g
signðdiÞd4

i � signðdfÞd4
f

� �	 

: ðA16Þ

Using this relation, we can derive the mean gap �df and the mean and the distribution of the step size a for any given
initial gap di. In particular, for di ¼ 0,

�a ¼ Gð5=4Þð3g=poÞ1=4; ðA17Þ

where G(.) is the gamma function, and

fða j 0Þ ¼ 3
a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ppo=ð3gÞ

p
Erfcð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
po=ð3gÞ

p
ða=2Þ2Þ � a

2
ðpo=3gÞ3=4Gð1=4; ða=2Þ4po=ð3gÞÞ

	 

; ðA18Þ

where Erfc is the complementary error function and G(�, �) is the (upper) incomplete gamma function. For an
arbitrary mutation distribution p(a), we can use Equation A18 with the choice p0 :¼ pð0Þ as an approximation for fð1Þg

in the case of small values of g (see Equation 21).

APPENDIX B: TRANSITION BETWEEN ENVIRONMENTALLY AND MUTATION-LIMITED ADAPTATION

In the main text, we have described the transition between environmentally and mutation-limited adaptation as a
transition of the distribution of adaptive substitutions, f(a), between the two limiting distributions fg>1 (Equation
21) and fg/‘ (Equation 24). We have also noted that the substitution rate of small mutations is limited by the static
sieve Cs (i.e., the fixation probability), whereas the substitution rate of large mutations is limited by either the dynamic
sieve Cd (in the environmentally limited regime) or the distribution of new mutations, p(a) (in the mutation-limited
regime). In Figure B1, we further illustrate this transition and provide additional details.

The shading in Figure B1 indicates which of the above factors is limiting the substitution rate of mutations with a
given phenotypic effect a. To demarcate the boundaries, we used the following (heuristic) criteria: The increasing part
of f(a) is always attributed to the static sieve, since Cs is the only factor of Equation 20 that increases with a. The
decreasing part is attributed to either Cd or p(a). Which of these factors is more important can be decided by
comparing their effect on the local slope of f(a). Cd is limiting if

j @aCdða; gÞ=Cdða; gÞ j . j @apðaÞ=pðaÞ j :

Otherwise, p(a) is limiting.
For an exponential distribution of new mutations, the substitution rate of alleles with intermediate effect tends to be

limited by p(a), whereas sufficiently large alleles are always limited by Cd. For increasing g, the boundary between the
two regions is shifted to the right, until virtually all mutations are limited by p(a) (Figure B1, A–C). (Since the tail of
the exponential distribution extends to mutations of arbitrary size, there is formally always a part dominated by Cd, but
this is of no practical relevance.)

In general, however, the observed pattern depends on the shape of p(a). For any distribution p(a) with existing first
to third moments, the dynamic sieve has the limiting behavior

Cdða/‘; gÞ} exp � a2

4g
m

� �
; ðB1Þ

which corresponds to the tail behavior of a Gaussian distribution. Therefore, the slope of fg for sufficiently large a will
be dominated by Cd if the distribution of new mutations is leptokurtic (i.e., has a heavier tail than a Gaussian), as is the
case for the exponential distribution. In contrast, for a platykurtic distribution of new mutations, the right-hand tail of
fg is primarily shaped by p(a), and the dynamic sieve is most important for intermediate a. Therefore, in this case, the
boundary between the domains of the two limiting factors moves from right to left as g increases (Figure B1, D–F). In
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both cases, however, the entire decreasing part of f(a) is (practically) dominated by Cs if g is sufficiently small
(environmentally limited regime) and by p(a) if g is sufficiently large (mutation-limited regime). (It should be noted,
however, that the shading in Figure B1 does not mean that the nonhighlighted factor is irrelevant. For example, even
though the dynamic sieve does not seem to play a role in Figure B1C, the distribution f(a) is still very different from
the limiting distribution f‘ (Figure 4C). Indeed, Figure 4F suggests that for g ¼ 1 the adaptive process is right in the
transition region between the two limiting regimes.)

APPENDIX C: THE DISTRIBUTION OF FITNESS EFFECTS IN THE ADAPTIVE WALK APPROXIMATION

In this appendix, we investigate the distribution of fitness effects of adaptive substitutions, xg(s). Unlike the
distribution of phenotypic effects, this distribution is unimodal and strictly positive. Figure C1 shows how it depends
on g. The following points are noteworthy.

In the mutation-limited regime (i.e., for moderate and large g), the equilibrium distribution of fitness effects,
xð‘Þg (s), is not well predicted by the distribution of the first step, xð1Þg (s) (Equation 18). The reason is that, unlike the
distribution of phenotypic effects, the distribution of fitness effects depends strongly on the (final) phenotypic gap df,
which tends to increase after the first step. For the same reason, xg(s) does not converge to a limiting distribution as
g / ‘, but increases without bounds. Note, however, that for large finite g (or large zmax in the case of a sudden
environmental change), the distribution of fitness effects is always proportional to the distribution of phenotypic
effects f‘(a). This is because for a>df, the relationship between a and s is effectively linear.

In the environmentally limited regime (small g), the distribution of fitness effects converges to a limiting
distribution xg>1ðsÞ, which can be derived by replacing p(a) with a uniform distribution of the same mutational
density at a ¼ 0, in analogy to the derivation of the limiting distribution fg>1ðaÞ for phenotypic effects. However,
xg>1ðsÞ behaves differently from fg>1ðaÞ in at least two ways. First, the mean of xg>1ðsÞ is smaller, not larger, than the
mean of xg(s). This is because, with a uniform distribution of new mutations, many substitutions overshoot the
optimum, and these have high a but low s. Second, the convergence toward the limiting distribution is slower for
fitness effects than for phenotypic effects. For example, for g # 0.1, the fitness distributions xg(s) and xg>1ðsÞ are
markedly different (Figure C1, A and B), whereas the corresponding phenotypic distributions fg(a) and fg>1ðaÞ are
surprisingly similar (Figure 4, A and B), given that p(a) declines significantly (i.e., is clearly nonuniform) over the

Figure B1.—The transi-
tion from environmentally
to mutation-limited evolu-
tion and the limiting fac-
tors for the substitution
rate. The plots are similar
to those shown in Figure
3 (but note that the distri-
bution f‘ is not shown).
In addition, the shading
under the distribution of
adaptive substitutions indi-
cates which of the three
factors in Equation 20 is
dominating the shape
(i.e., the slope) of fg. The
rising part is due to the
static sieve Cs, which re-
duces the fixation proba-
bility of mutations with
small effect. The decreas-
ing part is either due to
the distribution of new mu-
tations, p(a), or due to the
dynamic sieve Cd, both of
which limit the substitution
rate of large mutations. For

intermediate g, both factors are limiting for different ranges of mutational effects a, but their order depends on whether the dis-
tribution of new mutations is leptokurtic (first row; exponential distribution of new mutations, Equation 4) or platykurtic [second
row; quartic Gaussian distribution with variance 1, p(a) ¼ 2/(nG(1/4))exp(–a4/n4) with n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð1=4Þ=Gð3=4Þ

p
]. The arrow at the

bottom shows the continuum between (overall) environmentally and mutation-limited adaptation, as used in the main text.
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range of fg(a) (see Figure 2B1). How is it possible that mutations with the same phenotype distribution have different
fitness distributions in the two cases? The answer is that, with a uniform distribution of new mutations, the overall
density of new mutations is higher and, hence, the time to the next adaptive step is shorter than with an exponential
distribution. This results in a decreased phenotypic gap, which compensates for the increased probability of
overshooting the optimum, leading to a cancellation of opposite effects with respect to phenotypes but not fitnesses.

Figure C1.—The distribution of fitness effects of adaptive substitutions, xg(s), in the adaptive-walk approximation. The figure is
analogous to Figure 4 of the main text. (A–E) The shaded area is the equilibrium distribution xð‘Þg over 100,000 iterations of the
adaptive-walk approximation (note the different scales for the s-axes). The solid line is the distribution of the first step, xð1Þg , ac-
cording to Equation 18. The dotted line is the limiting distribution xg>1 (see appendix c text). No limiting distribution exists for
the mutation-limited case (g / ‘). (F) The mean fitness effect �s of the first step for xg(s) and the limiting distribution xg>1ðsÞ.
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