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What is population genetics? – Basic concepts and definitions

Evolution describes the change in heritable characteristics of biological populations over
time. Depending on the type of these characteristics, and depending on the time-scale of
interest, we can distinguish different branches of evolutionary research.

� Phylogenetics is concerned with the construction of the tree of life, following Dar-
win’s insight that all life on earth (and the fossil record) is connected via common
ancestors. Changes in traits and characteristics among species, or the emergence of
new traits happen over macroevolutionary time-scales, millions or billions of years.
Differences among individuals within each species can usually be ignored relative to
the differences among species. Each species is therefore generally only represented
by a single data point, such as a consensus DNA sequence (“the” human genome).

� Population genetics and quantitative genetics are interested in the microevolutionary
process within a population. Microevolution is concerned with heritable characteris-
tics that differ among individuals in a population and describes how the distribution
of these characteristics changes across generations. Going back to Darwin (again) and
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to Wallace, the elementary forces that drive these changes are well-understood: mu-
tation, selection, recombination, genetic drift, and gene flow/migration. In contrast
to phylogenetics, which basically is a historical science, microevolution has a mecha-
nistic basis that can be used to construct theoretical models and to make predictions
for the future.

Genotype and phenotype

Each individual in a population can be characterized by a large number of morphological,
physiological, and behavioral traits, which collectively define its phenotype. Individual
phenotypes may be more or less adapted to the environmental conditions and influence
the viability or reproductive success of its carrier. As a consequence, selection operates
on phenotypes. Phenotypes themselves are not inherited, but phenotypic characteristics,
such as body size, are influenced by heritable and non-heritable factors.

The part of an individual that is directly heritable is its genotype. The genotype of each
individual is largely encoded in its genome and represented by its DNA (DeoxyriboNucleic
Acid) sequence. DNA is a polymer consisting of four types of nucleotides, which differ in
the base that they contain: adenine (A), guanine (G), thymine (T), and cytocine (C). The
nucleotides are organized in two polynucleotide chains that form a double-helix with A-T
and G-C base pairings. In eukaryotic cells (animals, plants, fungi), the cell nucleus contains
several such DNA double strands, called chromosomes. In prokaryotic cells (bacteria and
archea), DNA typically forms a single ring (bacterial chromosome). Through development,
the genotype determines (the heritable part of) the phenotype, but the connection is
exceedingly complex for most phenotypic traits. The genotype naturally decomposes into
genes, functional units of DNA that encode a single protein. Quantitative traits of interest
(such as milk yield in cows) are usually affected by a large number of genes.

Due to the complexity of the genotype-phenotype map, all models of (micro)evolution
must rely on simplifying assumptions. Models of quantitative genetics rely on phenotypic
data, but often do not resolve individual genes. They rather infer heritable and non-
heritable parts of phenotypic traits directly from trait measurements across generations.
On the other hand, models of population genetics directly follow the frequencies of geno-
types and variants of genes in a population. They often do not refer to phenotypes at all,
but assume that selection acts directly on the genes, no matter where the selection pressure
comes from and how it is transmitted via the genotype-phenotype map.

Genes, loci, and alleles

Population genetics is concerned with the evolutionary dynamics of genotypes. It follows
the frequencies of genetic variants or alleles that differ between individuals. The complete
genotype of each individual is given by its DNA sequence (≈ 3 billion base pairs in the
human genome, ≈ 130 million in Drosophila). Usually however, one is only interested in
changes at certain aspects of the genotype, such as the genomic positions, or genetic loci,
that affect a phenotypic trait of interest. On the molecular level, a locus is the position of a
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single base in the DNA. There are four alleles, corresponding to the four different bases, A,
T, G, and C. Frequently, however, the term locus is used on a coarser level as the position
of a gene (or some other significant stretch of sequence). It is always assumed that a locus
is a “unit of recombination” that is not broken up during reproduction. There can be
many different alleles at a single locus (4n different alleles for a gene that is represented by
a DNA sequence of fixed length n), but usually one considers classes of equivalent alleles.
Many population genetic models only distinguish two classes: an ancestral wildtype and a
mutant allele.

Genetic loci can have different levels of ploidy. Most simple life forms (bacteria, mosses,
algae, fungi) have a single copy of each chromosome, they are haploid. For haploids,
a single-locus genotype is determined by a single allele. Almost all higher plants and
animals are diploid, i.e., most of their chromosomes (the so-called autosomes = non-sex-
chromosomes) are represented twice in each adult cell. Some organisms (mostly plants)
have even a higher ploidy level (e.g., tetraploid with a 4-fold set). Consequently, single-locus
genotypes in diploids are given by a pair of alleles (4 alleles in tetraploids, etc).

Mathematical methods

The art of mathematical modeling is to choose the appropriate mathematical methods to
address a scientific question. Since population genetics is concerned with the change of
allele frequencies as a function of time, natural mathematical methods come from fields
that describe such processes. Often, the main decision for a given problem is to decide
whether a deterministic or a stochastic framework is appropriate.

� Deterministic models in population genetics use methods from the theory of dynami-
cal systems and of differential equations (both ODE’s and PDE’s). On the biological
side, this is appropriate if stochastic effects due to a finite population size (genetic
drift) can be ignored. This is usually the case if selection is the dominant population
genetic force and if the total number of individuals that carry a certain allele is not
very small. The dynamics can be modeled in discrete time (using discrete dynamical
systems) if a generation is a natural time unit in the biological system, like in annual
plants. In other cases, a continuous-time dynamics (building on differential equa-
tions) is more appropriate. Since both type of models frequenty lead to equivalent
results, the choice is in practice also a matter of convenience.

� If genetic drift has a strong effect on the evolutionary process, stochastic models are
needed. Basically all these models build on Markov processes (assuming that evolu-
tion is only affected by the present state of the population, not its entire history),
typical examples being birth-death processes or branching processes. As in the deter-
ministic case, they can proceed in discrete or in continuous time. Coalescent theory,
in particular, is a stochastic process that proceeds in the reversed time direction,
from the present to the past. It turns out that this is particularly appropriate if we
want to explain observed patterns of diversity in data by past evolutionary processes.
If population sizes are large and if selection is not too strong, allele frequencies can be
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treated as a continuous random variable on the unit interval. This leads to diffusion
processes as a model of evolutionary change. Indeed, parts of the theory of diffusions
was developed in the early 20th century with applications in population genetics in
mind.
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1 Selection at a single locus

1.1 Selection at a single haploid locus

Consider a haploid population of size N . We characterize the genotype by the allelic type
at a single locus. There are k alleles, denoted {A1, . . . , Ak}. Generations are discrete and
we assume that the population is sufficiently large that stochastic effects due to genetic
drift can be ignored. Assume that there are initially ni individuals with allele Ai. The
frequency of Ai in the population is thus pi = ni/N . Reproduction is clonal, offspring
inherit the genotype of their (single) parent, without any modification (no mutation). We
are interested in the change of allele frequencies due to selection across a single generation.

Fitness

The fundamental property of individuals that leads to selection and drives adaptive evolu-
tion is their fitness. In population genetics, we assign fitness values directly to genotypes
or alleles, as follows:

� The viability vi ≥ 0 measures the probability that a newborn Ai individual survives
to reproductive age (vi = 0 means that the individual is inviable).

� The fecundity fi ≥ 0 measures the expected number of offspring of an adult Ai

individual (fi = 0 means that the individual is sterile).

� Finally, the (absolute) fitness of allele Ai is defined as

wi = vi · fi .

wi ≥ 0 thus measures the expected number of offspring of a newborn Ai individual.
Ignoring stochastic effects, we thus have n′

i = wini for the number n′
i of Ai individuals

in the next generation.

For the change in a single generation, we obtain

N ′ =
∑
i

n′
i =

∑
i

wini =
(∑

i

wipi

)
N =: w̄N (1.1)

where w̄ =
∑

i piwi is the mean fitness in the population. For the change in allele frequen-
cies, the canonical selection equation for a single haploid locus follows as

p′i =
n′
i

N ′ =
wini

w̄N
=

wi

w̄
pi or: ∆pi = p′i − pi =

wi − w̄

w̄
pi . (1.2)

We see that any fitness differences among alleles that are represented in the population
(wi ̸= wj for pi, pj > 0) entails evolutionary change due to selection.

For allele frequency changes across multiple generations, we need to account for the fact
that absolute fitness values, as defined above, are usually not constant across generations.
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Indeed, wi = wi(N,p, t) is usually not only a function of the allelic type Ai, but also of
the population size N (or density), the distribution of allele frequencies p = (p1, . . . , pk),
and of generation time t.

� Imagine first that fitness does not depend on the population size (or density). We
then have n′

i = wi(p, t)ni and usually obtain unlimited growth or decline of ni over
multiple generations. This is clearly unrealistic.

� Assume next that fitness does depend on density, but not on the allelic state. We
then have w̄(N,p, t) = wi(N,p, t) =: w(N, t) and thus

p′i = pi ; N ′ = w(N, t)N.

This means we have only changes in the population size (population dynamics), but
no changes in the allele frequencies (population genetics) and thus no evolution.
Pure population dynamics is a topic of theoretical ecology. With models like logistic
growth (w(N) = r− cN), population sizes can be regulated and converge to a finite,
non-zero value.

� To obtain a reasonable evolutionary model, we need to combine a model of population
regulation with a model of evolutionary change. A canonical approach that is implicit
to most models in population genetics is to assume that population size regulation
is independent of selection. Absolute fitness values then decompose into two parts

wi(N,p, t) := w(N, t) · wi(p, t) .

This leads to

p′i =
wi(N,p, t)

w̄
pi =

w(N, t)wi(p, t)

w(N, t)
∑

i wi(p, t)pi
pi =

wi(p, t)∑
i wi(p, t)pi

pi (1.3)

and the density dependence drops out. Following this idea, population genetic models
usually do not work with absolute fitness values, but only the relative fitness values.
If population size regulation is independent of selection, relative fitnesses are density
independent (wi = wi(p, t)). We can then ignore changes in the population size in
population genetic models and only follow the dynamics of allele frequencies. Note
that we use the same symbol wi for relative fitness. Since all fitness values in the
following are relative fitness values, this should not lead to any confusion.

� Since any factor that is common to all fitness values wi drops out of the selection
equation, relative fitness values wi are only defined up to a constant factor. We
can use this freedom to normalize the fitness of some reference allele A1 (often: the
ancestral wildtype allele) to w1 = 1.
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� Following these leads, the easiest model of selection results if we assume constant
relative fitness values for all alleles, wi = const. We say that selection is time homo-
geneous and frequency-independent. The change in pi across t generations follows
as

pi(t) =
ni(t)

N
=

wt
i ni(0)∑

j w
t
j nj(0)

=
wt

i pi(0)∑
j w

t
j pj(0)

. (1.4)

If w1 > wj, j ≥ 2, we obtain

pi(t) =
pi(0)∑

j

(
wj

wi

)t

· pj(0)
t → ∞−−−−−→

pi(0)

p1(0) limt→∞

(
w1

wi

)t = δ1,i .

We conclude that with time-homogeneous and frequency-independent selection in
haploids only the fittest allele survives and fixes in the population. There is no
genetic variation maintained.

1.2 Selection at a single diploid locus

Consider a diploid locus with two alleles (wildtype and mutant), A and a. In principle,
there can be 2 × 2 = 4 genotypes at the locus, but if there is no position effect (i.e. it
does not matter on which DNA strand an allele is located), there are only three: the two
homozygous genotypes AA and aa and the heterozygous genotype Aa (= aA). Let x, y,
and z be the frequencies of genotypes AA, Aa, and aa, respectively. We can express the
frequencies p = x + y/2 of the A allele and q = z + y/2 of the a allele in terms of the
genotype frequencies, but note that this is generally not possible vice-versa.

Random mating and Hardy-Weinberg proportions

To describe evolutionary dynamics in diploids, even without selection, we first need a
model for the change in genotype frequencies under reproduction. Most diploids reproduce
sexually. Under Mendelian inheritance, each newborn inherits a single allele from both
parents at each autosomal locus. In general, the change of genotype frequencies across
generations depends on the mating pattern. For example, males and females often pre-
fer mating partners with similar phenotypic characteristics such as body size (assortative
mating). However, the simplest mating scheme that is also used by default in population
genetic models just assumes that matings are random. We also assume that sexes are
equivalent and there are no differences in genotype frequencies among males and females
in the population (this is necessarily true for monoecius species, where all individuals act in
male and female roles). We can then summarize the offspring frequencies for each mating
type in a table:

The third column of the table gives the probability of the mating pair under random
mating and columns 4 to 6 the genotype frequencies in the offspring generation under
Mendelian inheritance, conditioned on the mating pair. The total (unconditioned) geno-
type frequencies in the offspring generation derived by summing over all mating pairs. We
observe:
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� �
mating
prob. x′ y′ z′

AA AA x2 1 0 0
Aa xy 1/2 1/2 0
aa xz 0 1 0

Aa AA xy 1/2 1/2 0
Aa y2 1/4 1/2 1/4
aa yz 0 1/2 1/2

aa AA xz 0 1 0
Aa yz 0 1/2 1/2
aa z2 0 0 1

x′ = 1 · x2 + 2
1

2
xy +

1

4
y2 =

(
x+

y

2

)2

= p2

y′ = 2
1

2
xy + 2

1

2
yz + 2xz +

1

2
y2

= 2
(
x+

y

2

)(
z +

y

2

)
= 2pq

z′ = 1 · z2 + 2
1

2
yz +

1

4
y2 =

(
z +

y

2

)2

= q2

� The genotype frequencies after a single generation of random mating are determined
by the allele frequencies, (x′, y′, z′) = (p2, 2pq, q2): Hardy-Weinberg proportions.

� The allele frequencies do not change under random mating

p′ = x′ +
1

2
y′ = p ; q′ = z′ +

1

2
y′ = q .

There is thus no loss of genetic variation under Mendelian inheritance.

� The so-called Hardy-Weinberg law states that, after a single generation of random
mating, both the allele frequencies and the genotype frequencies remain invariant:
They are in Hardy-Weinberg equilibrium.

� It is easy to extend the Hardy-Weinberg law to an arbitrary number of alleles
{A1, . . . , Ak}. Let Pij = Pji denote the frequency of the genotype AiAj. The al-
lele frequency of Ai is pi = Pii +

1
2

∑
j ̸=i Pij . A straight-forward extension of the

2-allele derivation shows that p′i = pi, P
′
ii = p2i and, for j ̸= i, P ′

ij = 2pipj.

The important consequence of the Hardy-Weinberg (HW) law for population genetic mod-
els is that it is sufficient to follow k allele frequencies, rather than the k(k+1)/2 frequencies
of diploid genotypes. However, the law is only valid under a number of assumptions.

� Random mating: with other mating schemes (e.g. assortative mating or selfing),
we obtain different equilibrium frequencies and generally only gradual (asymptotic)
convergence to this equilibrium, rather than convergence in a single generation.

� Discrete Generations: Convergence to HW proportions is only asymptotic if genera-
tions are overlapping (individuals do not all reproduce and die at the same time).

� Equivalent sexes: If the initial allele frequencies in males and females differ, HW
proportions are only reached in two generations of random mating.

� Autosomal loci: For X-linked loci (that are diploid in females, but haploid in males),
HW proportions are only reached asymptotically.
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� No selection, mutation, or drift: all evolutionary forces readily lead to deviations
from HW proportions. However, as we will see below, we can often still make use of
the HW law at certain stages of a diploid life cycle.

Viability selection at a single diploid locus

Consider a diploid population with discrete generations and equivalent sexes and a single
locus with two alleles, A and a with frequencies p and q, respectively. We also assume
that selection acts on the viability, the probability that newborn diploid individuals reach
reproductive age (i.e., all fertilities are equal). We can then dissect the life-cycle of the
population into two phases: a selection phase, during which juveniles grow up and a
reproductive phase where adults mate and produce offspring. The key assumption is that
selection and reproduction can be separated and occur at different stages.

� Consider the reproductive phase first. If reproduction works via random mating
as described above, we can use the results of the HW law: Allele frequencies are
conserved during the reproductive step and genotype frequencies will be in HW
equilibrium directly after reproduction (at the stage of the zygotes = newly fertilized
eukaryotic cell, not yet affected by selection).

� To model the change of allele and genotype frequencies during the selection phase,
we assign fitness values wAA, wAa, and waa to the three genotypes AA, Aa, and
aa, respectively. The genotypes frequencies are PAA, PAa, and Paa, and the allele
frequencies are p = PAA + PAa/2 and q = Paa + PAa/2. The frequency of the
genotypes after selection, denotes as P̃AA, etc, is given by the usual single-generation
selection equation,

P̃AA =
wAA

w̄
= p2

wAA

w̄
; P̃Aa =

wAa

w̄
= 2pq

wAa

w̄
; P̃aa =

waa

w̄
= q2

waa

w̄
.

For the allele frequencies, we derive

p̃ = p2
wAA

w̄
+

1

2
2pq

wAa

w̄
= p

wAAp+ wAaq

w̄
= p

wA

w̄
; q̃ = q

waaq + wAap

w̄
= q

wa

w̄
,

where

wA = wAAp+ wAaq , wa = waaq + wAap .

are the so-called marginal fitness values for the alleles A and a. The mean fitness can
be expressed in terms of the marginal fitnesses as

w̄ = wAAPAA + wAaPAa + waaPaa = wAp+ waq .

With these definitions, the changes in genotype and allele frequencies over a life cycle can
be summarized in the following table.
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AA Aa aa A a
frequency

after random mating PAA = p2 PAa = 2pq Paa = q2 p q

frequency
after selection P̃AA = p2wAA

w̄
P̃Aa = 2pqwAa

w̄
P̃aa = q2waa

w̄
p̃ = pwA

w̄
q̃ = qwa

w̄
′

next gener. frequency
after random mating P ′

AA = p′2 P ′
Aa = 2p′q′ P ′

aa = q′2 p′ = p̃ q′ = q̃

Note that the diploid selection equation for the allele frequencies takes the same functional
form as in the haploid case if we replace the allelic fitness value by the corresponding
marginal fitness. Note that the marginal fitnesses are not constant, but change with the
genetic composition of the population. In general, they depend on the full genotype fre-
quencies and the equations on the level of allele frequencies do not form a closed dynamical
system. However, in the special case of random mating and viability selection, however,
we can express genotype frequencies as HW proportions and the dynamical system for the
allele frequencies closes.

Selection scenarios

We have seen that viability selection on a single diploid locus with random mating leads
to a selection equation that is formally equivalent to the haploid case. The difference is
that the marginal fitness values for the alleles depend on the allele frequencies, even if
the genotypic fitness values are constant. This leads to differences in the evolutionary
dynamics. To characterize these differences, we use the following classical parametrization
of the genotypic fitness values.

waa = 1 normalization of the (relative) wildtype fitness (1.5a)

wAA = 1 + s s: selection coefficient for the homozygote mutant (1.5b)

wAa = 1 + hs h: dominance coefficient for heterozygote fitness (1.5c)

Depending on the value of the dominance coefficient, we distinguish the following biological
scenarios for the mutant allele A

h



> 1 overdominant
= 1 (fully) dominant
∈ (1

2
, 1) partially dominant

= 1
2

codominant (or no dominance)

∈ (0, 1
2
) partially recessive

= 0 (fully) recessive
< 0 underdominant

For all cases, the marginal allele fitnesses and mean fitness in HW equilibrium follow as

wa = 1 + p · hs (1.6a)

wA = 1 + q · hs+ p · s (1.6b)

w̄ = 1 + 2pq · hs+ p2 · s (1.6c)
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and the allele frequency change per generation of the mutant allele is

∆p = p′ − p =
wA − w̄

w̄
p = pq

s(h+ (1− 2h)p)

w̄
.

In contrast to the haploid case, there is usually no explicit solution for the allele frequency
p(t) as a function of time. However, it is straightforward to derive the equilibrium frequen-
cies of the dynamical system. We have ∆p = 0 for

p = 0 , p = 1 [⇔ q = 0] (monomorphic equilibria)

h+ (1− 2h)p = 0 ⇒ p = p̂ =
h

2h− 1
(polymorphic equilibrium)

The equilibrium at p̂ is in the interior of the frequency space, 0 < p̂ < 1, if and only if
either h > 1 (A is overdominant) or h < 0 (A is underdominant). We can distinguish three
parameter ranges, based on the dominance coefficient, that lead to qualitatively different
dynamical behavior.

1. In the whole parameter range 0 ≤ h ≤ 1, ranging from complete recessiveness to
complete dominance of the mutant allele A, we have

h+ (1− 2h)p > 0 for 0 < p < 1

and thus ∆p > 0 for a beneficial mutant (s > 0), resp. ∆p < 0 for a deleterious
mutant (s < 0). The dynamical system therefore converges monotonically either to
the equilibrium at p = 1 or to p = 0 for the beneficial or deleterious case, respectively.

2. If an equilibrium p̂ at an intermediate frequency exists, we can write

∆p =
pqs(2h− 1)

w̄
(p̂− p) .

With s > −1, we also have

w̄ − pqs(2h− 1) = 1 + 2pqhs+ p2s− pqs(2h− 1) = 1 + ps > 0 .

We therefore obtain monotone convergence of p(t) toward the polymorphic equilib-
rium p̂ for the overdominant case (h > 1) if s > 0 and for the underdominant case
(h < 0) if s < 0. In both cases, the heterozygote is the fittest genotype (heterozygote
advantage). Note that an underdominant allele A corresponds to an overdominant
allele a. The term overdominance is often used as synonymous to heterozygote ad-
vantage, implicitly using the allele with the higher fitness as reference.

3. Analogously, we find monotonic divergence from p̂ toward either p = 0 or p = 1
for the underdominant beneficial case (h < 0 and s > 0) and for the overdominant
deleterious case (h > 1 and s < 0).
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We see that heterozygote advantage (“overdominance”) is necessary and sufficient for the
maintenance of genetic variation under selection at a single diploid locus. With w̄ =
1 + 2p(1− p)hs+ p2s we have

∂w̄

∂p
= 2s

(
h+ p(1− 2h)

)
and thus

∆p =
1

2
pq

1

w̄

∂w̄

∂p
=

pq

2

∂ ln w̄

∂p
.

We can therefore understand the evolutionary dynamics also as a process in the direction of
increasing mean fitness w̄. This is an example of Fisher’s fundamental theorem (see below).
Mathematically, this means that w̄ is a so-called Lyapunov function of the dynamics.

Multiple alleles

It is easy to extend the 2-alleles case for a single diploid locus to the general case of k alleles,
{A1, . . . , Ak} with frequencies {p1, . . . , pk}. Let wij = wji be the fitness value of genotype
AiAj, with frequency Pij in the population. After random mating, the population is in
HW equilibrium, thus Pii = p21 and Pij = 2pipj for i ̸= j. The marginal allelic fitnesses
and the mean fitness are

wi =
∑
j

wijpj , w̄ =
∑
i

wipi =
∑
i,j

wijpipj

and the change in allele frequencies is

p′i =
wi

w̄
pi resp. ∆pi = p′i − pi =

wi − w̄

w̄
pi . (1.7)

Using

wi =
1

2

∂w̄

∂pi
and w̄ =

1

2

∑
i

pi
∂w̄

∂pi

we can also write

∆pi =
pi
2w̄

(∂w̄
∂pi

−
∑
j

pj
∂w̄

∂pj

)
(1.8)

Defining

∇⃗(ln w̄) =
(∂ ln w̄

∂p1
, . . . ,

∂ ln w̄

∂pk

)(t)

(· · · )(t) denoting transposition, and

G =

p1(1− p1) −p1p2 −p1p3 · · ·
−p2p1 p2(1− p2) p2p3 · · ·

...
. . .
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we can write the evolution equation in matrix form,

∆p =
1

2
G · ∇⃗(ln w̄) . (1.9)

Here, the selection gradient ∇⃗(ln w̄) is a vector that points into the direction of steepest
ascent in mean fitness w̄. G is the covariance matrix of allele frequencies (Gij = cov[ri, rj],
where ri = 1 if a randomly drawn allele is Ai and zero otherwise). The diagonal elements
pi(1−pi) are the variances of Bernoulli distributions with parameter pi, they are largest for
pi = 1/2. We see that selection does not necessarily drag a population into the direction

of steepest fitness increase (direction of ∇⃗(ln w̄)), but always needs to “work on” genetic
variation that is present in the population. Evolution proceeds in a direction where the
fitness gain times the genetic variation is largest.

� In the case of multiplicative fitness, wij = vivj, the mean fitness factorizes as w̄ =
(
∑

j vjpj)
2 =: v̄2 and the marginal fitness is wi = vi

∑
j vjpj = viv̄. The change in

allele frequencies therefore becomes

∆pi =
vi − v̄

v̄

and reproduces the dynamics of the haploid case. The haploid dynamics is therefore
a special case of the diploid dynamics. Also, multiplicative fitness is the only case
where selection does not lead to deviations from HW equilibrium.

� The equilibrium structure of the diploid dynamics can be complex. There are clearly
at least k equilibria (all monomorphic states). In general, we have either pi = 0, or
wj = w̄ for all j with pj ̸= 0, at any equilibrium. For each choice of a (potentially
empty) subset S ⊂ {1, . . . , k}, with pi = 0 for i ∈ S and pj > 0 for j /∈ S (with j1
the smallest index with pj > 0), we can express the equilibrium condition as a linear
equation system

pi = 0, i ∈ S

wj = wj1 , j /∈ S, j > j1 (1.10)

k∑
i=1

pi = 1 .

There are 2k − 1 such equation systems for different choices of the subsets S. Each
system has either zero, one, or infinitely many solutions. We conclude that in non-
degenerate cases with a finite number of equilibria there are at most 2k−1 equilibrium
points. In particular, there is at most a single fully polymorphic equilibrium with
pi > 0 for all i.

� An easy example of a system with 2k − 1 coexisting equilibria is given by the fitness
values wii = 1 for all i and wij = 0 for i ̸= j. Frequently one is interested in the
number of stable equilibria that can coexist. The maximum number of coexisting
stable equilibria for a single diploid locus with k alleles is unknown.
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� One can show that dominance of the fitter allele for all pairs of alleles is a necessary
condition for a stable fully polymorphic equilibrium,

wij >
wii + wjj

2
, ∀i ̸= j

[see Nagylaki 1992, p. 62]. However, pairwise overdominance, wij > max[wii, wjj], is
not necessary, while the stronger condition of global overdominance, wij > maxk wkk,
is in general not sufficient. Computer simulations show that overdominance alone is
not very efficient in maintaining many alleles segregating at a single locus.

� Since mean fitness is non-decreasing (see below) and thus a Lyapunov function, we
can exclude cycling behavior for the dynamics.

Theorem: Mean fitness does not decrease [following Nagylaki 1992, p. 57/58]
Mean fitness is a non-decreasing function under selection on a single diploid locus, w̄′ ≥ w̄.
For a proof, we use Jensen’s inequality∑

i

pix
α
i ≤

(∑
i

pixi

)α

, α ≤ 1; pi probabilities

to obtain a lower bound for the mean fitness w̄′ of the offspring generation,

w̄′ =
∑
ij

p′ip
′
jwij =

1

w̄2

∑
ij

piwipjwjwi,j /wi =
∑
k

pkwik

=
1

w̄2

∑
i,j,k

pipjpkwijwik
wj + wj

2
=

1

w̄2

∑
i,j,k

pipjpkwijwik
wj + wk

2
/ (a+ b) ≥ 2

√
ab

≥ 1

w̄2

∑
i,j,k

pipjpkwijwik(wjwk)
1/2 =

1

w̄2

∑
i

pi

(∑
j

pjwijw
1/2
j

)2

/ (Jensen)

≥ 1

w̄2

(∑
i

pi
∑
j

pjwijw
1/2
j

)2

=
1

w̄2

(∑
j

pjw
3/2
j

)2

/ (Jensen)

≥ 1

w̄2

((∑
j

pjwj

)3/2
)2

= w̄ (1.11)

Continuous time model for selection

Mathematically, our model so far for the evolutionary dynamics has been a discrete dy-
namical system. A model in discrete time is realistic for some biological species (e.g. annual
plants), it has some technical advantages (in particular, it allows for a separation of repro-
duction and selection) and it is easy to simulate on a computer. However, we have also
seen that the number of explicit mathematical results that we can obtain is limited. It is
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often more convenient (and/or more realistic biologically) to model evolution in continu-
ous time. As we will see, we naturally obtain such a model if we study the discrete time
model in a limit of weak selection. To this end, consider again a single locus with k alleles,
{A1, . . . , Ak} with genotypic and marginal fitness values defined as

wij := 1 + εmij ; wi = 1 + εmi ; mi =
∑
j

mijpj

and corresponding mean fitness

w̄ = 1 + ε m̄ ; m̄ =
∑
i,j

mijpipj

The dynamical equation reads

∆pi = p′i − pi =
ε (mi − m̄)

1 + ε m̄
pi .

Assume now that fitness differences per generation are small (weak selection), generation
time is short (we thus have many generations per unit time interval). This can be done by
scaling both fitness differences and generation time by ε. In the limit of ε → 0, we then
obtain

ṗi =
dpi(t)

dt
= lim

ε→0

pi(t+ ε)− pi(t)

ε
= lim

ε→0

p′i − pi
ε

and thus
ṗ(t) = (mi − m̄) pi . (1.12)

This is the evolution equation in continuous time. Note that mi and m̄ depend on all allele
frequencies and m̄ is quadratic in the pj. We thus have a system of coupled non-linear
ordinary differential equations.

� The mij and mi are also called Malthusian fitness parameters (or log fitness). They
have the interpretation of growth rates per generation,

mi = lim
ε→0

logwi

ε
.

� The continuous-time evolution equation can alternatively be derived from a growth
model with overlapping generations, where birth and death events occur continuously
with given rates [e.g. Rice 2004, p. 15-17]. We note that the ODE (1.12) is only
approximate, since a diploid population under selection in continuous time will always
deviate from HW equilibrium (unless Malthusian fitness is additive, mij = mi+mj).
Deviations only vanish in the limit of weak selection. A comprehensive derivation
should also account for age structure in a population, with birth and death rates
depending on age [see Nagylaki 1992 for a detailed model]. In this case, the dynamics
can be much more complicated, but can reproduce (1.12) after the population has
reached a stable age distribution [see the Mathematical ecology lecture for more on
age-structured populations].
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Sir Ronald A. Fisher, 1890–1962, is well-known for both his work in statistics and genetics.
He is one of the founding fathers of population genetics (together with JBS Haldane and S
Wright) that combined Darwinian selection and Mendelian inheritance in the so-called Mod-
ern Synthesis and led to the breakthrough of Darwinism in the early 20th century. Fisher’s
1930 article on The Genetical Theory of Natural Selection defined large parts of the field.
In statistics, Fisher’s key achievement was his invention of the analysis of variance, or
ANOVA. This statistical procedure allows to connect the observed deviations in experimen-
tal data to different controlled and uncontrolled underlying factors. It constituted a notable
advance over the prevailing procedure of varying only one factor at a time in an experiment.
Fisher summed up his statistical work in his book Statistical Methods and Scientific Inference
(1956). Fisher became Galton Professor of Eugenics at University College, London in 1933.
From 1943 to 1957 he was Balfour Professor of Genetics at Cambridge. He was knighted
in 1952 and spent the last years of his life conducting research in Australia (adapted from
Encyclopedia Britannica and Wikipedia).

� The continuous-time single-locus selection dynamics has the same equilibria as the
discrete-time model and does therefore not lead to a simplification for this particular
problem. However, as we will see below and in the next section, model derivations
and extensions to include further evolutionary forces are often easier in continuous
time.

� It is straightforward to show that mean Malthusian fitness is non-decreasing under
(1.12),

˙̄m =
∑
ij

mij(ṗipj + piṗj) = 2
∑
ij

mijpipj(mi − m̄)

= 2
∑
i

pimi(mi − m̄) = 2
∑
i

pi(mi − m̄)(mi − m̄)

= 2Vg (1.13)

where Vg > 0 is the genetic variance in fitness. We thus see that the increase in mean
fitness is not just non-negative, but is always given by (twice) the current variance
in fitness in the population. This is the assertion of Fisher’s fundamental theorem
of natural selection that goes back to R.A. Fisher (1930) and has been discussed in
many population genetic textbooks. However, this theorem is only exact for a single
locus in continuous time and only holds approximately for discrete time and in more
general evolutionary situations.

1.3 Mutation-selection models

The ultimate source of all genetic variation in a population is mutation. So far, we have
assumed that genetic variation is just given as an initial condition and have not modeled
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its creation explicitly. Since selection is usually a much stronger force that mutation
and leads to allele frequency changes over shorter time scales, this is often a reasonable
approximation. However, for a more complete description of evolution over longer time
scales, we need to include mutation into the model.

Only mutation

Usually, mutation occurs during reproduction (or: the production of gametes) due to errors
in DNA copying. Each generation, there is a probability that an offspring individual does
not inherit the allelic state of (one of) its parent(s), but rather a mutated allele. For a
single locus and two alleles, A and a, assume that there is a fixed probability µ that an
ancestor carrying the ancestral allele a produces an offspring with A allele. Vice-versa,
there is a probability ν that A mutates back to a during reproduction. If the frequency of
A alleles is p, the single-generation dynamics reads

∆p = p′ − p = µ(1− p)− νp (1.14)

with equilibrium (∆p = 0)

p = p̂ =
µ

µ+ ν
.

For an arbitrary number of alleles A1, . . . , Ak and mutation probability from allele Ai to
allele Aj denoted as µij (= µi→j), we can define a mutation matrix U as follows

Uij = µij , i ̸= j ; Uii = 1−
∑
j ̸=i

µij . (1.15)

With p = (p1, . . . , pk) the probability vector of allele frequencies, we can then write the
evolution equation in matrix form as

p′ = p ·U and p(n) = p ·Un for n generations . (1.16)

We note the following

� The mutation matrix U is a stochastic matrix that transforms probability vectors
into probability vectors. All entries are non-negative and all rows of the matrix sum
to 1.

� Assume that U is irreducible and aperiodic. This is always the case, in particular, if
all diagonal entries are positive (all alleles can be inherited without being mutated)
and if we can get from each allele state to any other allele through mutation (or a
series of mutations). Then we can use the Perron-Frobenius theorem to conclude that
U has a unique largest eigenvalue λmax = 1 with corresponding left eigenvector pmax

that holds the equilibrium frequencies of the alleles A1 to Ak under mutation. [See
e.g. the lecture Mathematical Ecology for a proof of the Perron-Frobenius theorem.]

� Note that the mutation dynamics is the same for haploids or diploids.
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Mutation and selection in discrete time

In discrete time, we can simply include mutation as a separate step into the life cycle. We
define the allele frequency change during one generation, starting with newborn zygotes,
as pi → p

(s)
i → p′i with

p
(s)
i =

wi

w̄
pi , (1.17a)

p′i =
(
1−

∑
j

µij

)
p
(s)
i +

∑
j

µjip
(s)
j . (1.17b)

The scheme applies to both haploids and (random mating) diploids, with wi as marginal
fitness for diploids. The first step accounts for viability selection, the second step for
mutation during reproduction. It is easy to check that mutation in HW equilibrium changes
the allele frequencies, but maintains HW proportions.

In the haploid case, we can still write down the explicit solution of the evolutionary
process. Defining the mutation-selection matrix C = W · U, where U is the mutation
matrix (1.15) and W = diag[w1, w2, . . . ] is the diagonal matrix holding the fitness values,
we obtain

p′ =
p ·C
w̄

, (1.18a)

p(t) =
p(0) ·Ct∑
i

[
p(0) ·Ct

]
i

. (1.18b)

The denominator in both equations just serves for the normalization of the frequency
vector. If the matrix C is primitive (aperiodic and irreducible), there is a unique globally
stable and fully polymorphic equilibrium of the dynamics.

Perturbation analysis

For the diploid mutation-selection equation, there is no explicit solution and multiple
equilibria can exist (just like for the case without mutation). For two alleles A and a,
genotypic fitnesses as in Eq. (1.5), and forward and backward mutation rates µ and ν,
respectively, the frequency change of the mutant allele A is

p′ = f(p) = (1− ν)
wA

w̄
p+ µ

(
1− wA

w̄
p
)

(1.19)

with

wA = 1 + (1− p) · hs+ p · s (1.20a)

w̄ = 1 + 2p(1− p) · hs+ p2 · s (1.20b)

as in Eq. (1.6). The equilibrium points p̂ = f(p̂) are zeros of a third-order polynomial.
Since the absorptions points p̂ = 0 and p̂ = 1 are no longer equilibria, the exact solution is
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no longer a simple expression. However, we can make use of the fact that mutation rates
are usually very small (∼ 10−8 per base or ∼ 10−5 per gene and generation). Because
we know the solution in the absence of mutation, we can obtain an approximate solution
for the mutation-selection dynamics by means of perturbation analysis. Since this is a
technique that can be used more generally, we will present the steps in some detail, with
the above problem as application.

Step 1 Identify the small parameters of the problem and write them as a product of a
constant times a small perturbation parameter ε,

µ = µ̃ · ε ; ν = ν̃ · ε .

This way, the dynamical equation (1.19) becomes a function of ε, p′ = f(ε, p).

Step 2 Write the (unknown) equilibrium solution as a formal power series in ε,

p̂(ε) := p̂0 + εp̂1 + ε2p̂2 + . . .

and define

F (ε) : = f(ε, p̂(ε))− p̂(ε)

= (1− ν̃ε− µ̃ε)
1 + hs(1− p̂(ε)) + sp̂(ε)

1 + 2hsp̂(ε)(1− p̂(ε)) + s(p̂(ε))2
p̂(ε) + µ̃ε− p̂(ε) .

We can then write the equilibrium condition as F (ε) = 0.

Step 3 Expand F (ε) into a Taylor series in ε around 0

F (ε) = F (0) + F (1)(0) · ε+ 1

2
F (2)(0) · ε2 + 1

6
F (3)(0) · ε3 + . . .

where F (n)(0) = ∂nF (ε)/∂εn|ε=0 denotes the nth derivative of F (ε) at ε = 0. As-
suming that the Taylor series converges, F (ε) = 0 implies F (0) = 0 and F (n) = 0 for
all derivatives.

Step 4 Solve the equations to the order desired.

(i) F (0) = 0 The 0th order leads back to the selection dynamics without muta-
tion.

1 + hs(1− p̂0) + sp̂0
1 + 2hsp̂0(1− p̂0) + sp̂20

p̂0 − p̂0 = 0

We can pick any solution of this equation to derive correction terms. Here, we
assume that the A mutant is deleterious, s < 0, in which case p̂0 = 0 is the
stable equilibrium of the selection dynamics in the absence of overdominance.
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(ii) F (1)(0) = 0

F (1)(0) = p̂0 ·
∂

∂ε

[
(1− ν̃ε− µ̃ε)

. . .

. . .

]
+ p̂1

1 + hs(1− p̂0) + sp̂0
1 + 2hsp̂0(1− p̂0) + sp̂20

− p̂1 + µ̃ = 0

Since p̂0 = 0, this results in p̂1(1 + hs)− p̂+ µ̃ = 0 and thus

p̂1 = − µ̃

hs
. (1.21)

(iii) F (2)(0) = 0

F (2)(0) = 2p̂2(1 + hs) + 2p̂1

[
(−ν̃ − µ̃− 2hsp̂1)(1 + hs) + sp̂1(1− h)

]
− 2p̂2

= 2hsp̂2 −
2µ̃

hs

[
(µ̃− ν̃)(1 + hs) + µ̃− µ̃/h

]
using p̂0 = 0 and p̂1 from (1.21). Thus

p̂2 =
( µ̃

hs

)2 [
1− 1

h
+
(
1− ν̃

µ̃

)
(1 + hs)

]
. (1.22)

Step 5 Collect all terms in p̂(ε), using the original biological parameters µ̃ε = µ and ν̃ε = ν,

p̂ =
µ

|hs|
+
( µ

|hs|

)2[
1− 1

h
+
(
1− ν

µ

)
(1− |hs|)

]
+O[ε3] . (1.23)

We see that frequency of a deleterious mutant in mutation-selection balance is

p̂ ≈ µ

|hs|
(1.24)

as long as selection is much stronger than mutation, |hs| ≫ µ. Back mutations do
not affect this leading-order result.

In our derivation above, we have derived an approximation for the equilibrium frequency
in mutation-selection balance, using perturbation theory around the stable equilibrium of
the pure selection dynamics. To complete our analysis, we still need to assess the stability
of the perturbed equilibrium. For a general discrete dynamical system p′ = f(p), an
equilibrium point p̂ is asymptotically stable if for sufficiently small δ,

|δ′| = |f(p̂+ δ)− f(p̂)| < |δ|

If f is continuously differentiable, we have

δ′ = λp̂ · δ +O(δ2) ; λp̂ =
∂

∂p
f(p)|p̂
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and thus a stable equilibrium at p̂ if |λp̂| < 1. For |λp̂| > 0 the equilibrium is unstable, while
for |λp̂| = 1 stability depends on higher-order derivatives. At an perturbed equilibrium,
we derive

λp̂(ε) : =
∂

∂p
f(ε, p)|p̂(ε)=p̂0+εp̂1+...

= λp̂(0) +
∂

∂ε
λp̂(ε)|ε=0 · ε+O[ε2]

If the unperturbed equilibrium is stable with |λp̂(0)| = |λp̂0| < 1, this implies stability of
the perturbed equilibrium for sufficiently small ε. Similarly. |λp̂| > 1 implies that also the
perturbed equilibrium is unstable. For the mutation-selection dynamics discussed above,
we have λp̂ = λ0 = 1+hs < 1 for a deleterious mutant. In general, for hs ̸= 0, the stability
of the perturbed equilibrium is the same as the unperturbed one.

Mutation load

The effect of a deleterious mutation on an individual is measured by the corresponding
reduction in fitness, given by the selection coefficient s (or by hs in a diploid heterozygote).
Similarly, we can assess the effect of a deleterious mutation on the population level by the
reduction in mean fitness in mutation-selection balance. The standard measure is the
mutation load

Lm =
wopt − w̄

wopt

, (1.25)

where wopt is the fitness of an “optimal” genotype that is free from deleterious mutations.
If we normalize the optimal fitness wopt = 1 (as in the mutation model) studied above, we
simply have Lm = 1− w̄. With (1.20b) we obtain at the equilibrium p̂ = −µ/(hs)+O[µ2],

Lm = −2hsp̂− (s− 2hs)p̂2 = 2µ+O[µ2], (1.26)

as long as µ ≪ |hs|. For arbitrarily many deleterious alleles Ai with mutation rates µi0

from a fittest wildtype a, we obtain more generally

Lm = 2
∑
i≥1

µi0 +O[µ2] .

We see that the mutation load depends (to leading order) only on the mutation rates,
but not on the fitness effects of the deleterious mutations. The reason is that a milder
mutation with small |hs| will segregate at a higher frequency p̂ = µ/|hs| in the population.
To leading order, the effects of mutation frequency and mutation size on the mean fitness
just cancel. This is also called Haldane’s rule or the Haldane-Muller principle. This has
relevant consequences for programs of public health that aim for an increase of population-
level parameters like the mean fitness. Indeed, according to the Haldane-Muller principle,
the mean fitness in a population is neither altered by eugenics (birth control for diseased
people, effectively increasing the deleterious fitness effect of a mutation) nor by a partial
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JBS (John Burdon Sanderson) Haldane, 1892–1964, was a British geneticist, biometrician,
physiologist, and popularizer of science who opened new paths of research in population
genetics and evolution. Together with R.A. Fisher and Sewall Wright, but in separate math-
ematical arguments, he related Darwinian evolutionary theory and Gregor Mendel’s laws of
heredity. Haldane also contributed to the theory of enzyme action and to studies in human
physiology. He possessed a combination of analytic powers, literary abilities, a wide range of
knowledge, and a force of personality that produced numerous discoveries in several scientific
fields and proved stimulating to an entire generation of research workers.
Haldane announced himself a Marxist in the 1930s but later became disillusioned with the
official party line and with the rise of the controversial Soviet biologist Trofim D. Lysenko. In
1957 Haldane moved to India, where he took citizenship and headed the government Genetics
and Biometry Laboratory in Orissa (adapted from Encyclopedia Britannica).

Herrmann Joseph Muller 1890–1967, Nobel laureate in Medicine (1946) for his discovery of
the mutagenic effect of X-rays was very concerned about the reduction of mean fitness in
humans by radiation, also due to nuclear fallout caused by nuclear testing. Together with
fellow scientists, he was a vocal critic of nuclear weapons testing (from Wikipedia).

cure of a genetic disease (reduction of |hs|). For population-level fitness, mildly deleterious
mutations are as harmful as strongly deleterious ones. Only the reduction of mutation
rates has a lasting effect on mean fitness.

Mutation and selection in continuous time

There are various ways to write down a mutation-selection equation in continuous time.
The most widely used formalism is simply to assume that mutation and selection are
independent processes that occur in parallel. This leads to the differential equation

ṗi = (mi − m̄)pi +
∑
j

(
µjipj − µijpi

)
(1.27)

extending Eq. (1.12). The mi are Malthusian fitness values (marginal fitnesses for diploids)
and the µij have the interpretation of mutation rates per time unit. Like for discrete time,
the dynamics for haploids is fully solvable also in continuous time. For mi = const and
m̄ =

∑
i mipi, we can write

ṗ = p ·A− p m̄ (1.28)

with matrix A with entries aij = miδij + µij −
∑

l µilδij. Like in the discrete case, the
mean fitness m̄ is a common factor for all allele frequencies. It enforces normalization of
the frequency vector p during the dynamics, but does not affect the relative size of allele
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frequencies pi/pj. We thus have a normalized linear dynamics for p with solution

p(t) =
exp[p(0) ·A t]∑

i

[
exp[p(0) ·A t]

]
i

. (1.29)

For a diploid locus with two alleles a and A, mutation rates µ from a to A and ν from
A to a, and Malthusian fitness values

maa = 0 ; mAa = hs ; mAA = s (1.30)

we have mA = spA + hs(1− pA) and m̄ = sp2A + 2hspA(1− pA) and Eq. (1.27) results in

ṗA = s
(
pA + h(1− 2pA)

)
pA(1− pA) + µ(1− pA)− νpA . (1.31)

This is a thrid-order equation unless h = 1/2 (case of no dominance), where the diploid
dynamics reduces to an effective haploid one (mA − m̄ = (s/2)(1− pA), as in the haploid
model with mA = s/2 and m̄ = (s/2)pA).


