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2 Recombination

In diploid organisms recombination happens during meiosis (the production of gametes).
Recombination mixes paternal and maternal material before it is transferred to the next
generation. Each gamete that is produced by an individual therefore contains material
from the maternal and the paternal side. To see what this means, take a look at your two
chromosomes number 1, one of which came from your father and one from your mother.
The one that stems from your father is in fact a mosaic of pieces from his mother and
his father, your two paternal grandparents. In humans these mosaics are such that a
chromosome is made of a couple of chunks or recombination blocks. There is generally
more than one such block, but rarely more than ten per generation. Chromosomes that
do not recombine are not mosaics. The Y -chromosome does not recombine at all, males
inherit it completely from their father and paternal grandfather, etc. Mitochondrial DNA
also does not normally recombine, both females and males inherit mitochondria from their
mother, maternal grandmother, etc. The X-chromosome only recombines when it is in a
female.

There are various mechanisms for recombination. The most well-known one is crossing
over, where matching regions in homologous chromosomes (which pair during meiosis)
experience a double strand break and subsequently are reconnected to the other chromosome
(see Fig. 2.1). There are other recombination mechanisms like gene conversion, where a
stretch of DNA is copied from one chromosome to the matching region of its homologous
partner. Exchange of genetic material can also happen in haploid individuals. In this case
two different individuals exchange pieces of their genome.

Figure 2.1: Single recombination event by crossing over of chromosomes during meiosis.
The figure shows a pair of homologous chromosomes after the initial duplication, before and
after recombination. Black and gray parts derive from different parents. Subsequently, the
duplicated pair will segregate into four gametes, two recombined and two not recombined.
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2.1 Linkage and linkage disequilibrium

Linkage

Mendel’s second law (of independent assortment) states that genes are inherited indepen-
dently of each other. It means that the probability of inheriting a gene at some locus A
from one grandmother is independent of whether or not a gene at a different locus B has
been inherited from the same grandmother. This “law” is generally only true for gene
loci that are located on different chromosomes: they are unlinked. On the other hand, if
genes are on the same chromosome, they are said to be physically linked. Linked genes
are not inherited independently of each other. In particular, if gene loci are very close to
each other, recombination between them is rare and they are typically inherited together.
Mathematically, this is expressed by the recombination fraction r = rAB between loci A
and B, which defines the probability that genes inherited from different grandparents at
these loci end up on the same parental gamete (sperm, egg, pollen) that contributes to the
offspring genotype,
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Here, a1 and b1 (res. a2 and b2) do not denote an allelic state, but only the origin of the
gene either from grandparent 1 or 2.

� r is often also called a recombination rate, but it is really a probability in discrete
generation models. We generally have r = 1/2 as upper limit for unlinked loci on
different chromosomes and 0 ≤ r < 1/2 for linked loci.

� We can define a molecular recombination probability ρ as the probability for recom-
bination between neighboring base pairs along a chromosome. Typical values are
ρ ≈ 10−8 per generation. However, ρ generally depends strongly on the genomic
position x. The estimation of recombination maps ρ(x) from data is an important
task of genomics.

� For a given recombination map, we can define a recombination distance d along a
chromosome in units of Morgans (named after Thomas Morgan). A distance of d =
1M indicates that there is on average one recombination breakpoint per generation
within the stretch (e.g., due to crossing over). Typical lengths of chromosome regions
measure in centi-Morgans (cM).

� The recombination fraction r between loci on the same chromosome is the probability
of an odd number of recombination breakpoints between these loci. Ignoring interfer-
ence of recombination events in neighboring regions, r relates to the recombination
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distance d via Haldane’s mapping function

r =
1

2

(
1− exp[−2d]

)
. (2.2)

Linkage disequilibrium

Assume now that there are k alleles {A1, . . . , Ak} at locus A and l alleles {B1, . . . , Bl} at
locus B. There are then k × l gametes (or haplotypes) AiBj with frequency denoted as
PAiBj

. The allele frequencies derive as

PAi
=

l∑
j=1

PAiBj
; PBj

=
k∑

i=1

PAiBj
. (2.3)

As a measure of non-random association of alleles Ai and Bj at different loci on the same
gamete (or haplotype), we define the linkage disequilibrium (LD)

DAiBj
= PAiBj

− PAi
PBj

. (2.4)

If the linkage disequilibrium is zero, DAiBj
= 0, we say that alleles Ai and Bj are in linkage

equilibrium (LE).

� Mathematically, D is simply the covariance of two indicator random variables that
take value 1 if a randomly picked haplotype shows the corresponding allele at locus
A resp. B, and zero otherwise. Linkage disequilibria depend strongly on the allele
frequencies and (since PAiBj

≤ max[PAi
, PBj

]) we see that

DAiBj
≤ max[PAi

(1− PBj
), PBj

(1− PAi
)] .

In order to make disequilibria between different pairs of alleles better comparable,
one therefore often uses the normalized measure

r2AiBj
=

D2
AiBj

PAi
(1− PAi

)PBj
(1− PBj

)
, (2.5)

which corresponds to the (squared) correlation coefficient of the indicator variables.

� In addition to two-locus disequilibria, we can also define higher-order linkage disequi-
libria between alleles at three or more loci (e.g. as higher-order cross-locus cumulants,
see chapter 5 of the book by R. Bürger).

� Note that linkage and linkage disequilibrium are concepts on different levels. While
linkage is a property of loci and manifests in each individual, linkage disequilibrium
is a population property and related to allele/haplotype frequencies. Unlinked loci
can certainly have non-zero linkage disequilibria among their alleles, while alleles at
linked loci (even with r = 0) can be in linkage equilibrium.
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2.2 Two-locus model

Only recombination

Consider the two-locus model as described above. Without mutation or selection (or drift),
the single-locus allele frequencies in the population stay constant, P ′

Ai
= PAi

. However,
recombination will change the haplotype frequencies. Assuming HW proportions in the
germ cells prior to meiosis (and recombination), we obtain

P ′
AiBj

= (1− r)PAiBj
+ r · PAi

PBj
= PAiBj

− r ·DAiBj
. (2.6)

Indeed, a fraction of (1 − r) of all gametes that contribute to the new generation has
not undergone any recombination. In this part of the population, haplotype frequencies
maintain their value from the previous generation. Conversely, a fraction of r of new
gametes are recombination products. In HW equilibrium, the probability for them to
result in a AiBj haplotype is PAi

PBj
. For the change in linkage disequilibrium, we obtain

D′
AiBj

= P ′
AiBj

− P ′
Ai
P ′
Bj

= (1− r)PAiBj
+ r · PAi

PBj
− PAi

PBj
= (1− r) ·DAiBj

. (2.7)

� We thus see that for r > 0 all linkage disequilibria decay to zero at geometric rate
(1 − r). The population approaches linkage equilibrium among all alleles, PAiBj

=
PAi

PBj
.

� Note that, in contrast to HW equilibrium, linkage equilibrium among alleles at dif-
ferent loci is not reached in a single generation, but only asymptotically – even for
unlinked loci with r = 1/2.

Recombination and selection in discrete time

Consider a model with two loci under selection and focus on the case of two alleles at each
locus. We can write the fitness schemes for haploid or diploid individuals as follows

B b
A wAB wAb

a waB wab

;

BB Bb bb
AA wABAB wABAb wAbAb

Aa wABaB wABab wAbab

aa waBaB waBab wabab

The diploid scheme assumes that the fitness of a genotype depends only on the number
and type of alleles in the genotype, but not on the association of the allele to a particular
haplotype (no position effect). I.e., the fitness of the diploid genotype (Ab, aB) is the same
as the one of (AB, ab). Assuming HW proportions for diploids in zygote state, marginal
fitness values for the 2-locus haplotypes follow in the usual way, wAB = wABAB PAB +
wABAb PAb + wABaB PaB + wABab Pab, etc. The mean fitness for both haploids and diploids
is

w̄ = wAB PAB + wAb PAb + waB PaB + wab Pab .
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It is convenient to write the linkage disequilibrium as

DAB = PAB − PAPB

= PAB(PAB + PAb + PaB + Pab)− (PAb + PAB)(PaB + PAB)

= PABPab − PAbPaB . (2.8)

It is easy to verify that

D := DAB = Dab = −DAb = −DaB .

Discrete time dynamics

Like for the mutation-selection model, we can construct a recombination-selection model
by including both events as separate steps into a life cycle. This is best done on the
level of haplotype frequencies. Indeed, with random mating, whole genotype frequencies
decompose into haplotype frequencies also in a diploid population. On the other hand,
haplotype frequencies do not factor into allele frequencies as long as D ̸= 0. Starting
with zygotes, we first have selection, followed by recombination during reproduction. This
results in

P ′
AB = P̂AB − rD̂ , (2.9a)

D′ = (P̂AB − rD̂)(P̂ab − rD̂)− (P̂Ab + rD̂)(P̂aB + rD̂)

= P̂ABP̂ab − P̂AbP̂aB − rD̂ , (2.9b)

and similar expressions for the other haplotype frequencies. P̂.. and D̂ are the values for
the frequencies and for LD after selection. We have

P̂AB =
wAB

w̄
PAB .

For D̂, we need to distinguish the haploid and diploid dynamics. For haploids that recom-
bine after random union of gametes after the selective phase, we obtain

D̂ = P̂ABP̂ab − P̂AbP̂aB =
wABwab

w̄2
PABPab −

wAbwaB

w̄2
PAbPaB

and thus
D′ = (1− r)

(wABwab

w̄2
PABPab −

wAbwaB

w̄2
PAbPaB

)
. (2.10)

For diploids, recombination occurs in the diploid phase after selection and we get

D̂ = P̂ABPab − P̂AbPaB =
wABab

w̄

(
PABPab − PAbPaB

)
=

wABab

w̄
D

resulting in

D′ =
wABwab

w̄2
PABPab −

waBwAb

w̄2
PAbPaB − r

wABab

w̄
D (2.11)
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Assume that, initially, D = PABPab − PAbPaB = 0. Eqs. (2.10) and (2.11) show that
selection will create positive or negative LD, depending on the fitness values for haplotypes
and on the so-called level of epistasis. In both cases

wABwab − wAbwaB


> 0 positive epistasis, creates positive LD D′ > 0

= 0 no epistasis, maintains LE D′ = D = 0

< 0 negative epistasis, creates negative LD D′ < 0 .

(2.12)

For haploids, we can normalize the fitness of the wildtype (ab) to 1 and set

wab = 1 ; wAb = vA ; waB = vB ; wAB = vAvB + ε

where vA and vB are the single-mutant fitness values and the epistasis parameter measures
the deviation of the double mutant fitness from the multiplicative effects of the single
mutants. Obviously, ε > 0 (ε < 0) implies positive (negative) epistasis and leads to
positive (negative) LD if evolution starts in LE. For the diploid case, the haplotype fitnesses
are marginal fitnesses and depend on the haplotype frequencies. We can still verify that
epistasis vanishes for all frequencies if the genotype fitnesses are multiplicative across loci
(wABAb = vAAvBb, etc). In contrast to the haploid case, there is more than one epistasis
parameter needed to parametrize deviations from multiplicative fitnesses in the full fitness
scheme.

In the absence of epistasis, we see that the LE manifold is invariant in both the haploid
and the diploid case. We can thus consider the dynamics restricted to this manifold and
search for equilibria. However, in general the LE manifold need not be attracting and
there may be additional equilibria with D′ ̸= 0 (see the books by Bürger, chapter 2 and
by Nagylaki, chapter 8 for solutions in special cases).

Continuous time dynamics

As in the case of mutation and selection we assume that selection and recombination
occur in parallel and independently of each other in continuous time. This is a good
approximation, in particular, if selection and recombination are both weak. For simplicity,
we focus on the haploid case. We assign Malthusian fitness values to the four hapotypes,
mab, mAb, maB, and mAB. The dynamical equations for the haplotype frequencies read

ṖAB = PAB(mAB − m̄)− rD (2.13a)

ṖAb = PAb(mAb − m̄) + rD (2.13b)

ṖaB = PaB(maB − m̄) + rD (2.13c)

Ṗab = Pab(mab − m̄)− rD (2.13d)

where m̄ is the mean Malthusian fitness. We focus on the case of no epistasis. On the
logarithmic scale of Malthusian fitnesses, this corresponds to additive contributions across
loci. Normalizing the wildtype fitness to zero, we have

mab = 0 ; mAb = mA ; maB = mB ; mAB = mA +mB .
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The dynamics of the mean fitness then becomes independent of the recombination rate,

˙̄m = ṖAbmA + ṖaBmB + ṖAB(mA +mB)

= PAbmA(mA − m̄) + PaBmB(mB − m̄) + PAB(mA +mB)(mA +mB − m̄)

= PAb(mA − m̄)2 + PaB(mB − m̄)2 + PAB(mA +mB − m̄)2 + Pab(0− m̄)2 . (2.14)

We see that mean fitness is non-decreasing (a Lyapunov function), with ˙̄m = 0 if and only if
the allele frequencies are at an equilibrium point. We conclude that PAB(mAB−m̄) = 0 and
thus with Eq. (2.13a) also D = 0 at each equilibrium. The dynamics of the disequilibrium
is

Ḋ = ṖABPab + PABṖab − ṖAbPaB − PAbṖaB

= PABPab(mAB +mab − 2m̄)− PAbPaB(mAb +maB − 2m̄)− rD

= (mA +mB − 2m̄− r)D . (2.15)

Like in discrete time, the dynamics with non-epistatic fitness thus maintains LE D = 0.
For the search of equilibrium points, we can thus restrict the dynamics to the LE manifold,
where we obtain

ṗA = ṖAB + ṖAb = PAB

(
mA(1− pA) +mB(1− pB)

)
+ PAb

(
mA(1− pA)−mBpB

)
= pA(1− pA)mA + (PAB − pApB)mB

= pA(1− pA)mA , (2.16)

and equivalently for pB. We see that the dynamics on the LE manifold simply reduces to
the single locus dynamics.

� The result shows under which conditions the use of simple single locus models is
meaningful in complex biological scenarios: If fitness epistasis is absent, all linkage
disequilibria vanish in the continuous-time formulation – and thus, approximately,
also in discrete time. Furthermore on the LE manifold, the multi-locus dynamics
reduces to the single-locus dynamics. The long-term dynamics can thus be fully
described by the single-locus formalism. Absence of epistasis is biologically plausible
if both loci affect unrelated traits, where the state of one trait does not affect the
fitness effect of the other trait. one locus thus does

� Unless epistasis is very strong and/or linkage very tight, the mutilocus dynamics
usually converge to a parameter range very close to the LE manifold. One can then
solve the problem under the assumption of LE first and treat linkage disequilibria as
a perturbation. This is the idea of the quasi linkage equilibrium approximation, see
e.g. the book by Bürger.


