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3 Genetic Drift

In the first part of the lecture, we have described the evolutionary dynamics using a de-
terministic framework that does not allow for stochastic fluctuations of any kind. In a
deterministic model, the dynamics of allele (or genotype) frequencies is governed by the
expected values: mutation and recombination rates determine the expected number of
mutants or recombinants, and fitness defines the expected number of surviving offspring
individuals. In reality, however, the number of offspring of a given individual (and the
number of mutants and recombinants) follows a distribution. Altogether, there are three
possible reasons why an individual may have many or few offspring:

� Good or bad genes: the heritable genotype determines the distribution for the number
of surviving offspring. Fitness, in particular, is the expected value of this distribution
and determines the allele frequency change due to natural selection.

� Good or bad environment: the offspring distribution and the fitness value may also
depend on non-heritable ecological factors, such as temperature or humidity. These
factors can be included into a deterministic model with space- or time-dependent
fitness values.

� Good or bad luck: the actual number of offspring, given the distribution, will de-
pend on random factors that are not controlled by either the genes nor the external
environment. This gives rise to the stochastic component in the change of allele
frequencies: random genetic drift.

For a general evolutionary system, we can define classes of individuals according to geno-
types and environmental parameters. Because of the law of large numbers, genetic drift
can be ignored if and only if the number of individuals in each class tends to infinity (or
if the variance of the offspring distribution is zero). Note that effects of genetic drift may
be relevant even in infinite populations if the number of individuals in a focal allelic class
is finite.

3.1 The Wright-Fisher model

The Wright-Fisher model (named after Sewall Wright and Ronald A. Fisher) is maybe
the simplest population genetic model for genetic drift. We will introduce the model for
a single locus in a haploid population of constant size N . Further assumptions are no
mutation and no selection (neutral evolution) and discrete generations. The life cycle is as
follows

1. Each individual in the parent generation produces an equal and very large number of
gametes (or seeds). In the limit of seed number → ∞, we obtain a so-called infinite
gamete pool.

2. We sample N individuals from this gamete pool to form the offspring generation.
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Sewall Wright, 1889–1988, was an American geneticist. Wright’s earliest studies included
investigation of the effects of inbreeding and crossbreeding among guinea pigs, animals that
he later used in studying the effects of gene action on coat and eye color, among other
inherited characters. His papers on inbreeding, mating systems, and genetic drift make
him a principal founder of theoretical population genetics, along with R.A. Fisher and JBS
Haldane. Wright’s most eminent contribution to population genetics is his concept of genetic
drift and his development of mathematical theory combining drift with the other evolutionary
forces. He was also the inventor/discoverer of key concepts like the fitness landscape and the
inbreeding coefficient and originated a theory to guide the use of inbreeding and crossbreeding
in the improvement of livestock (adapted from Encyclopedia Britannica and Wikipedia).

Obviously, this just corresponds to multinomial sampling with replacement directly from
the parent generation according to the rule:

� Each individual from the offspring generation picks a parent at random from the
previous generation and inherits the genotype of the parent.

Remarks

� Mathematically, the probability for k1, . . . , kN offspring for individual number 1, . . . , N
in the parent generation is given by the multinomial distribution with

Pr
[
k1, . . . , kN

∣∣∑
iki = N

]
=

N !∏
i ki!N

N
. (3.1)

� The number of offspring of a given parent individual is binomially distributed with
parameters n = N (number of trials) and p = 1/N (success probability):

Pr
[
k1
]
=

(
N
k1

)(
1

N

)k1 (
1− 1

N

)N−k1

.

� Under the assumption of random mating (or panmixia), a diploid population of size
N can be described by the haploid model with size 2N , if we follow the lines of
descent of all gene copies separately. Technically, we need to allow for selfing with
probability 1/N .

� The Wright-Fisher model can easily be extended to non-constant population size
N = N(t), simply by taking smaller or larger samples to generate the offspring
generation.

� As long as the population is unstructured and evolution is neutral, the offspring
distribution is invariant with respect to exchange of individuals in each generation.
We can use this symmetry to disentangle the genealogies, as shown in Figure (3.3).

� Inclusion of mutation, selection, and migration (population structure) is straightfor-
ward, as shown in later sections.
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Figure 3.1: The first generation in a Wright-Fisher Model of 5 diploid or 10 haploid
individuals. Each of the haploids is represented by a circle.
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Figure 3.2: The second generation (first offspring generation) in a Wright-Fisher Model.
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Figure 3.3: The tangled and untangled version of the Wright-Fisher Model after several
generations. Both pictures show the same process, except that the individuals in the
untangled version have been shuffled to avoid line crossings. The genealogical relationships
are still the same, but the children of one parent are now put next to each other and close
to the parent. (Web resource: www.coalescent.dk, Wright-Fisher simulator.)

3.2 Consequences of genetic drift

Genetic drift is the process of random changes in allele frequencies in populations. We will
now study the effects of genetic drift quantitatively using the Wright-Fisher model. To
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this end, consider a single locus with two neutral alleles a and A in a diploid population
of size N . We thus have a haploid population size (= number of gene copies) of 2N . We
denote the number of A alleles in the population at generation t as nt and its frequency as
pt = nt/2N . The transition probability from state nt = i to state nt+1 = j, 0 ≤ i, j,≤ 2N
is given by

Pij := Pr[nt+1 = j|nt = i] =

(
2N
j

)
·
( i

2N

)j

·
(
1− i

2N

)2N−j

. (3.2)

This defines the transition matrix P with elements Pij, 0 ≤ i, j ≤ 2N , of a time-
homogeneous Markov chain. If xt is the probability vector (of length 2N + 1) on the
state space at generation t, we have xt+1 = xtP. Some elementary properties of this
process are:

1. For the expected number of A alleles, we have E[n1|n0] = 2N · n0

2N
= i = n0 , and thus

E[n1] = E[n0] and
E[pt] = E[p0] .

The expected allele frequency is constant. The stochastic process defined by the
neutral Wright-Fisher model is thus a martingale. This holds true, in more general,
for any neutral model of pure random drift (no mutation and selection) in an un-
structured population. We can also express this in terms of the expected change in
allele frequencies as E[δp|p = p0] = E[p1 − p0] = 0.

2. For the variance among replicate offspring populations from a founder population
with frequency p0 = n0/2N of the A allele, we obtain: Var[n1|n0] = 2Np0(1 − p0)
and thus

V := Var[p1|p0] =
p0(1− p0)

2N
.

The variance is largest for p0 = 1/2. In terms of allele frequency changes, we can
also write Var[δp|p = p0] = Var[p1 − p0] = Var[p1|p0] = V .

3. There are two absorbing states of the process: Fixation of the A allele at pt = 1,
corresponding to a probability vector x(1) = (0, 0, . . . , 1), and loss of the allele at
pt = 0, corresponding to x(0) = (1, 0, . . . , 0). Both x(0) and x(1) are left eigenvectors
of the transition matrix with eigenvalue 1.

4. The absorption probabilities in x(0) and x(1) for an initial frequency p0 = n0/2N
are given by the corresponding right eigenvectors, y(0) and y(1), with normalization
x(i) · y(j) = δij: If we define as πi the fixation probability (absorption in x(1)) for a
process that starts in state p0 = i/2N , then y(1) = (0, π1, π2, . . . , π2N−1, 1). Indeed,
we have the single-step iteration

πi =
2N∑
j=0

Pijπj

which is just the eigenvalue equation for P with eigenvalue λ = 1.
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5. For a neutral process with two absorbing states, we can immediately determine the
fixation probability from the martingale property of the process. Assume that we
start in state p0 = i/2N . Since any process will eventually be absorbed in either x(0)

or in x(1), we have

lim
t→∞

E[pt] =
i

2N
= πi · 1 + (1− πi) · 0 ⇒ πi =

i

2N
.

In particular, the fixation probability of a single new mutation in a population is
π1 = 1/2N .

Random genetic drift has consequences for the variance of allele frequencies among and
within populations. For the variance among colonies that derive from the same ancestral
founder population, we have already derived above that V = p0(1− p0)/2N after a single
generation. After a long time, we get

V∞ = lim
t→∞

(
E[(pt)

2]−
(
E[pt]

)2)
= p0 − p20 = p0(1− p0) .

The variance among populations thus increases with drift to a finite limit. To measure
variance within a population, we define the homozygosity Ft and the heterozygosity Ht as
follows

Ft = p2t + (1− pt)
2 ; Ht = 2pt(1− pt) = (1− Ft) .

The homozygosity (heterozygosity) is the probability that two randomly drawn individuals
carry the same (a different) allelic state, where the same individual may be drawn twice
(i.e. with replacement). We can generalize this definition for a model with k different alleles

with frequencies p
(1)
t , . . . , p

(k)
t and

∑
i p

(i)
t = 1,

Ft =
k∑

i=1

(
p
(i)
t

)2
= 1−Ht .

We obtain the single-step iteration

Ft =
1

2N
+
(
1− 1

2N

)
Ft−1

Indeed, if we take two random alleles (with replacement) from the population in generation
t, the probability that we have picked the same allele twice is 1/2N . If this is not the case,
we choose parents for both alleles in the previous generation t − 1. By definition, the
probability that these parents carry the same state is Ft−1. From this we get for the
heterozygosity

Ht =
(
1− 1

2N

)
Ht−1 =

(
1− 1

2N

)t

H0 ≈ H0 exp[−t/2N ] .
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Figure 3.4: Frequency curve of one allele in a Wright-Fisher Model. Population size is
2N = 2000 and time is given in generations. The initial frequency is 0.5.

We see that drift reduces variability within a population and Ht → 0 as t → ∞. The char-
acteristic time for approaching a monomorphic state is given by the (haploid) population
size. We can derive the half time for Ht as follows

Ht

H0

=
(
1− 1

2N

)t1/2
≈ exp[−t1/2/2N ] :=

1

2

and thus
t1/2 = 2N log[2] ≈ 1.39N .

The half time scales with the population size. Note that the time scale to approach a
monomorphic state does not depend on the number of alleles that are initially present.

Note finally that heterozygosity and homozygosity (as defined here) should not be
confused with the frequency of heterozygotes and homozygotes in a population. Both
quantities only coincide under the assumption of random mating. For this reason, some
authors (e.g. Charlesworth and Charlesworth 2010) prefer the terms gene diversity for Ht

and identity by descent for Ft.

Exercises

1. We have defined homozygosity and heterozygosity by drawing individuals with re-
placement. How do the formulas look like if we define these quantities without
replacement (which is sometimes also done in the literature)?

2. Consider the neutral Wright-Fisher model with a variable population size. What is
then the fixation probability of a new mutant that arises in generation 1?
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4 Neutral theory

In a pure drift model, genetic variation within a population can only be eliminated, but
never created. To obtain even the most basic model for evolution, we need to include
mutation as the ultimate source for new variation. Just these two evolutionary forces,
mutation and drift, are the only ingredients of the so-called neutral theory, developed by
Motoo Kimura in the 50s and 60s. Kimura famously pointed out that models without
selection already explain much of the observed patterns of polymorphism within species
and divergence between species. Importantly, Kimura did not claim that selection is not
important for evolution. It is obvious that purifying selection is responsible for the main-
tenance of functional important parts of the genome (e.g. in coding regions). However,
Kimura claimed that most differences that we see within and among populations are not
influenced by selection. Today, selection is thought to play an important role also for these
questions. However, the neutral theory is the standard null-model of population genetics.
This means, if we want to make the case for selection, we usually do so by rejecting the
neutral hypothesis. This makes understanding of neutral evolution key to all of population
genetics.

Motoo Kimura, 1924–1994, published several important, highly mathematical papers on ran-
dom genetic drift that impressed the few population geneticists who were able to understand
them (most notably, Wright). In one paper, he extended Fisher’s theory of natural selection
to take into account factors such as dominance, epistasis and fluctuations in the natural envi-
ronment. He set out to develop ways to use the new data pouring in from molecular biology
to solve problems of population genetics. Using data on the variation among hemoglobins and
cytochromes-c in a wide range of species, he calculated the evolutionary rates of these proteins.
Extrapolating these rates to the entire genome, he concluded that there could not be strong
enough selection pressures to drive such rapid evolution. He therefore decided that most
evolution at the molecular level was the result of neutral processes like mutation and drift.
Kimura spent the rest of his life advancing this idea, which came to be known as the “neutral
theory of molecular evolution” (adapted from http://hrst.mit.edu/groups/evolution.)

4.1 Mutation schemes

There are three widely used schemes to introduce (point) mutations to a model of molecular
evolution:

1. With a finite number of alleles, we can define transition probabilities from any allelic
state to any other state. For example, there may be k different alleles Ai, i = 1, . . . , k
at a single locus and a mutation probability from Ai to Aj given by µij. Then µi =∑

j ̸=i µij is the total mutation rate per generation in state Ai. Mutation according
to this scheme is most easily included into the Wright-Fisher model as an additional
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step on the level of the infinite gamete pool,

pt → p′
t+1 = pt ·U

where pt is the (row) vector of allele frequencies and the mutation matrix U has
elements µij for i ̸= j and µii ≡ 1 − µi. We then obtain the frequencies in the
next generations pt+1 from p′

t+1 by multinomial sampling as in the model without
mutation.

2. If we take a whole gene as our locus, we get a very large number of possible alleles
if we distinguish different amino acid sequences. In particular, back mutation to an
ancestral allelic state becomes very unlikely. In this case, it makes sense to assume
an effectively infinite number of alleles in an evolutionary model,

A1 → A2 → A3 → . . .

Usually, a uniform mutation rate u from one allelic state to the next is assumed.
Formally, the infinite alleles model corresponds to a Markov chain with an infinite
state space.

3. In the infinite alleles model, we assume that the latest mutation erases all the memory
of the previous state. Only the latest state is visible. However, for a stretch of DNA,
point mutation rates at a single site (or nucleotide position) are very small. We can
thus assume that subsequent point mutations will always happen at different sites
and remain visible. This leads to the so-called infinite sites model for mutation that
is widely applied in molecular evolution. In particular, under the assumptions of
the infinite sites model (no “double hits”), we can count the number of mutations
that have occurred in a sequenced region – given that we have information about the
ancestral sequence.

4.2 Predictions from neutral theory

We can easily derive several elementary consequences of neutral theory, given one of the
mutation schemes above.

� Under the infinite sites model, new mutations enter a population at a constant rate
2Nu, where u is the mutation rate per generation and per individual for the lo-
cus (stretch of DNA sequence) under consideration. Since any new mutation has a
fixation probability of 1/(2N), we obtain a neutral substitution rate of

k = 2Nu · 1

2N
= u .

Importantly, the rate of neutral evolution is independent of the population size and
also holds if N = N(t) changes across generations. As long as the mutation rate u can
be assumed to be constant, neutral substitutions occur constant in time. They define
a so-called molecular clock, which can be used for molecular dating of phylogenetic
events.
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� For the evolution of the homozygosity Ft or heterozygosity Ht under mutation and
drift, we obtain for the infinite alleles model or the infinite sites model

Ft = 1−Ht = (1− u)2
(
1−

(
1− 1

2N

)
Ht−1

)
.

In the long term, the population will approach a state where both forces, mutation
and drift balance. We thus reach an equilibrium, Ht = Ht−1 = H, with

H =
1− (1− u)2

1− (1− u)2(1− 1/2N)
=

Θ(1− u/2)

Θ(1− u/2) + (1− u)2
≈ Θ

Θ+ 1

where Θ = 4Nu is the population mutation parameter. In the case with a finite
number of alleles, we need to account for cases where one allelic state can be produced
by multiple mutations (i.e., Ft measures the identity in state rather than just the
identity by descent). For two alleles with symmetric mutation at rate u in both
directions,

1−Ht = (1− 2u)

(
1−

(
1− 1

2N

)
Ht−1

)
+ 2u

(
1− 1

2N

)
Ht−1

and thus

H =
Θ

2Θ + 1− 4u
≈ Θ

2Θ + 1
.

� For the special case of the expected nucleotide diversity, denoted as E[π], where the
focus is on a single nucleotide site, we usually have Θ ≪ 1. We can then further
approximate

E[π] = Hnucleotide ≈ Θ ,

independently of the mutational scheme that is used.


