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5 The coalescent

Until now, in our outline of the Wright-Fisher model, we have shown how to predict
the state of the population in the next generation (t + 1) given that we know the state
in the current generation (t). This is the classical approach in population genetics and
follows the evolutionary process forward in time. This view is most useful if we want to
predict the evolutionary outcome under various scenarios of mutation, selection, population
size and structure, etc. that enter as parameters into the model. However, these model
parameters are not easily available in natural populations. Usually, we rather start out
with data from a present-day population. In molecular population genetics, this will be
mostly sequence polymorphism data from a population sample. The key question then
becomes: What are the evolutionary forces that have shaped the observed patterns in our
data? Since these forces must have acted in the history of the population, this naturally
leads to a genealogical view of evolution backward in time. This view in captured by the
so-called coalescent process (or simply the coalescent), which has caused a small revolution
in molecular population genetics since its introduction in the 1980’s. There are three main
reasons for this:

� The coalescent is a valuable mathematical tool to derive analytical results that can
be directly linked to observable data.

� The coalescent leads to very efficient simulation procedures.

� Most importantly, the coalescent allows for an intuitive understanding of patterns
in DNA polymorphism data and of how these patterns result from evolutionary pro-
cesses.

For all these reasons, we will introduce this modern backward view of evolution in parallel
to the classical forward picture.

The coalescent process describes the genealogy of a population sample. The key event
of this process is therefore that, going backward in time, two or more individuals share a
common ancestor. We can ask, for example: what is the probability that two individuals
from the population today (t) have the same ancestor in the previous generation (t− 1)?
For the neutral Wright-Fisher model, this can easily be calculated because all individuals
pick a parent at random. If the population size is 2N the probability that two individuals
choose the same parent is

pc,1 = Pr[common parent one generation ago] =
1

2N
. (5.1)

Given the first individual picks its parent, the probability that the second one picks the
same one by chance is 1 out of 2N possible ones. This can be iterated into the past. Given
that the two individuals did not find a common ancestor one generation ago maybe they
found one two generations ago and so on. We say that the lines of descent from the two
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individuals coalescence in the generation where they find a common ancestor for the first
time. The probability for coalescence of two lineages exactly t generations ago is therefore

pc,t = Pr
[ two lineages coalesce
t generations ago

]
=

1

2N

(
1− 1

2N

)t−1

.

Mathematically, we can describe the coalescence time as a random variable that is geo-
metrically distributed with success probability 1

2N
. Figure 5.1 shows an example for the

common ancestry like it can be generated by a simulation animator, such as the Wright-
Fisher animator on www.coalescent.dk. In this case the history of just two individuals is
highlighted. Going back in time there is always a chance that they choose the same parent.
In this case they do so after 11 generations. In all the generations further back in time
they will automatically also have the same ancestor. The common ancestor in the 11th
generation in the past is therefore called the most recent common ancestor (MRCA).

The coalescence perspective is not restricted to a sample of size two but can be applied
to any number of individuals. For a sample of size n from the Wright-Fisher model of size
2N , the probability of coalescence in a single generation is

p
(n)
c,1 = 1−

(
1− 1

2N

)
·
(
1− 2

2N

)
· · ·
(
1− n− 1

2N

)
= 1−

n−1∏
i=1

(
1− i

2N

)
=

1

2N

n−1∑
i=1

i+O
[( n

N

)2]
=

1

2N

(
n

2

)
+O

[( n

N

)2]
. (5.2)

We can interprete this result as follows. In a sample of size n, there are
(
n
2

)
possible

coalescence events between pairs of individuals. If we assume that n ≪ N , multiple
coalescence events in a single generation can be ignored and the leading order term in pnc,1
just accounts for the probability of a single pairwise coalescence event in the sample in
the previous generation. Multiple coalescence events and coalescence events of more than
two lineages simultaneously (so-called “multiple mergers”) only contribute to the error
term ∼ O[N−2], which can be ignored for small samples in a large population. In this
approximation, the coalescence probability after t generation in a sample of size n becomes

p
(n)
c,t ≈ 1

2N

(
n

2

)
·
(
1− 1

2N

(
n

2

))t−1

. (5.3)

We can then construct the genealogical history of the sample in a two-step procedure:

1. First, fix the topology of the coalescent tree. I.e., decide (at random), which pairs
of genealogical lineages from individuals in a sample coalesce first, second, etc., until
the MRCA of the entire sample is found.

2. Second, specify the times in the past when these coalescence events have happened.
I.e., draw a so-called coalescent time for each coalescent event. This is independent
of the topology.
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Figure 5.1: The coalescent of two lines in the Wright-Fisher Model
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5.1 Topologies

With only pairwise coalescence events, the topology of a coalescence tree is easy to model.
Consider a sample of size n and represent the ancestry of this sample as coalescing lineages
back in time. Since each coalescence event reduces the number of ancestral lines by one, it
takes n− 1 such events to reach the MRCA as the root of the tree. We say that the tree
is in state k at some time t in the past if there are k ancestral lines at this time. Looking
further back in time, all k(k − 1)/2 pairs of lines that can be chosen from these k lines
are equally likely to be involved in the next coalescence event. If we start the coalescent
process with labeled individuals (representing the n tips of the tree in our sample), we thus
have

n∏
k=2

(
k

2

)
=

n!(n− 1)!

2n−1
(5.4)

different labeled and time-ordered histories, where we do not only distinguish who coa-
lesces with whom, but also different time orders in the coalescence events. In many cases,
however, we are not interested in the genealogy of a specific sample, but in the statistical
properties of (e.g. neutral) coalescent trees, such as the number of subtrees of a certain
size – irrespectively of any labels at the tips of the tree. In this case, it is sometimes easier
to construct the coalescent tree forward in time: For a tree currently in state k, we simply
pick one of the lines at random and split it to obtain state k + 1. For example, we can
prove the following

Theorem 1 Take a random coalescent tree of size n and consider the k branches that
exist at state k of the tree. Let λi, i = 1, . . . , k be the number of offspring of the ith
branch. Such a branch is also called a branch of size λi. Then, the offspring (λ1, . . . , λk)
of all k branches is uniformly distributed over all k-dim vectors with entries λi ∈ N+ and∑

i λi = n.

� Note that there are (
n− 1

k − 1

)
(5.5)

such vectors. To see this, imagine that we distribute n (identical) balls over k (la-
beled) groups. We can put all n balls next to each other in a single line and then
place vertical lines between the balls to delimit the groups. Then, k− 1 demarcation
lines are needed, which can go in any of the n− 1 spaces between the balls.

Proof To prove the theorem, consider first a specific history, forward in time, starting
at state k: Imagine that the first λ1 − 1 split events all occur in descendants of the first
branch, followed by λ2 − 1 split events in offspring of the second branch, and so on until
the k-th branch, which needs λk − 1 split events in its offspring. The probability of this
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particular history is(
1

k
· 2

k + 1
· · · λ1 − 1

k + λ1 − 2

)
·
(

1

k + λ1 − 1
· · · λ2 − 1

k + λ1 + λ2 − 3

)
· · ·

· · ·

(
1

k +
∑k−1

i=1 λi − k + 1
· · · λk − 1

k +
∑k

i=1 λi − k − 1

)
=

(k − 1)!
∏k

i=1(λi − 1)!

(n− 1)!
. (5.6)

As long as there are λi−1 splitting events in the descendants of the ith branch (i = 1, . . . , k),
we will always obtain the same distribution (λ1, . . . , λk), irrespective of the order of these
splitting events. If we can calculate the probability of each of these alternative histories
in a stepwise procedure like in (5.6), it is easy to see that the only difference to (5.6)
is a permutation of the numbers in the numerator. We conclude that the probability of
all alternative histories to obtain a specific offspring distribution (λ1, . . . , λk) is identical.
The number of alternative histories for a given distribution is given by the multinomial
coefficient

(
n−k

λ1−1,...,λk−1

)
, and thus

Pr[(λ1, . . . , λk)] =
(k − 1)!(n− k)!

(n− 1)!
=

(
n− 1

k − 1

)−1

. (5.7)

� The splitting scheme is also known as the Polya urn scheme in the mathematical
literature. This scheme starts with an urn containing k balls with k different colors.
Then, each round, take out one ball, put it back in and add another ball of the same
color.

� For k = 2, the result says that if we pick one of the branches after the first split,
the size of this branch will be uniformly distributed on 1, 2, . . . , n − 1. In the limit
n → ∞, we obtain a coalescent tree of the “whole population”. Then, the proportion
X of lines that derive from the left branch after the first split is uniformly distributed
on the interval (0, 1). Consider now the coalescent tree of a random sample of size
m. The MRCA of the sample tree will be the same one as for the population tree
unless either all m lines or no lines at all trace back to the left branch after the first
split of the population tree. This occurs with probability∫ 1

0

(
xm + (1− x)m

)
dx =

2

m+ 1
.

The probability that the population MRCA coincides with the sample MRCA is thus

1− 2

m+ 1
=

m− 1

m+ 1
. (5.8)

In more general, if we pick a subsample of size m of a sample of size n, the probability
that both samples go back to the same MRCA is

(m− 1)(n+ 1)

(m+ 1)(n− 1)
. (5.9)
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For a proof, consider the n-tree after the first split and calculate the probability that
all m lines of the subsample go back to the left branch,

pl =
1

n− 1

n−1∑
k=m

k

n

k − 1

n− 1
· · · k −m+ 1

n−m+ 1
=

m!(n−m)!

(n− 1)n!

n−1∑
k=m

(
k

m

)
=

n−m

(n− 1)(m+ 1)

using the summation formula Eq. (??). The result (5.9) is then obtained as 1 −
2pl, since the m lines can either go back to the left or the right branch with equal
probability.

� In general, the uniform distribution over the branch sizes leads to a much higher
variance in branch size than expected under a binomial or multinomial distribution:
neutral coalescent trees can be both balanced or unbalanced.

Number of possible rooted and unrooted trees

In the examples above, we did not distinguish trees according to their branch length, but
we have still accounted for the order of coalescence events. However, we can also count
coalescence trees without any reference to time order.

For a sample of size n, we have n − 1 coalescence events until we reach the MRCA
(the root). This creates 2n − 1 so-called vertices in the tree: n are external (the leaves)
and n− 1 are internal. Every vertex has a branch directly leading to the next coalescence
event. Only the root, which is also a vertex in the tree, does not have a branch. This
makes 2n − 2 branches in a rooted tree with n leaves. As two branches lead to the root,
the number of branches in an unrooted tree with n leaves is 2n− 3.

Let Bn be the number of topologies of unrooted trees with n leaves. We can derive this
number recursively. Assume we have a tree with n− 1 leaves, representing the first n− 1
sampled sequences. We can ask in how many ways the nth sequence can be added to this
tree. There are 2n− 5 branches in a tree with n− 1 leaves. Since any branch can have the
split leading to the nth leave, we obtain

Bn = (2n− 5)Bn−1.

It is easy to see that there is only a single unrooted tree with three leaves. Thus

Bn = 1 · 3 · 5 · · · (2n− 7) · (2n− 5) = (2n− 5)!! . (5.10)

5.2 Coalescence times

For the branch lengths of the coalescent tree, we need to know the coalescence times. For a
sample of size n, we need n−1 times until we reach the MRCA. As stated above, these times
are independent of the topology. Mathematically, we obtain these times most conveniently
by an approximation of the geometrical distribution by the exponential distribution for
large N :
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� If X is geometrically distributed with small success probability p and t is large then

Pr[X ≥ t] = (1− p)t ≈ e−pt.

This is the distribution function of an exponential distribution with parameter p.

Let tn be the time until the first coalescence occurs in a smaple of size n. This time is
geometrically distributed according to

Pr[tn > t] =

[
1−

(
n
2

)
2N

]t
=

[
1− n(n− 1)

4N

]t
. (5.11)

The mean waiting time until the first coalescence event is E[tn] = 4N/n(n − 1) and thus
proportional to the population size. It is standard to integrate this dependence into a
“coalescent time scale”

τ :=
t

2N
.

We can then take the limit N → ∞ to obtain a stochastic process with a continuous time
parameter τ . Coalescence times Tn := tn/2N in this limiting process are distributed like

Pr[Tn > τ ] = lim
N→∞

[
1−

(
n
2

)
2N

]2Nτ

= exp

[
−τ

(
n

2

)]
. (5.12)

In a sample of size n, the time to the first coalescence is thus exponentially distributed
with parameter λ = n(n−1)/2. The fact that in the coalescent the times are exponentially
distributed enables us to derive several important quantities.

� The time to the MRCA,

TMRCA(n) =
n∑

k=2

Tk,

is the sum of n−1 mutually independent exponentially distributed random variables.
Its expectation and variance derive to

E[TMRCA(n)] =
n∑

k=2

E[Tk] =
n∑

k=2

2

k(k − 1)
= 2

n∑
k=2

( 1

k − 1
− 1

k

)
= 2
(
1− 1

n

)
(5.13)

and

Var[TMRCA(n)] =
n∑

k=2

Var[Tk] =
n∑

k=2

4

k2(k − 1)2
= 8

n∑
k=2

1

k2
− 4
(
1− 1

n

)2
. (5.14)

We have E[TMRCA(n)] → 2 for large sample sizes n → ∞. Note that E[TMRCA(2)] = 1,
so that in expectation more than half of the total time to the MRCA is needed for the
last two ancestral lines to coalesce. Similarly, Var[TMRCA(n)] → 4π2/3 − 12 ≈ 1.16
for n → ∞ is dominated by Var[T2] = 1.
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� Due to the independence of the coalescence times, the full distribution of TMRCA(n)
can be derived as an (n− 2)-fold convolution,

fTMRCA(n)(τ) =
n∑

k=2

(
k

2

)
exp

[
−
(
k

2

)
τ

] n∏
j=2,j ̸=k

(
j
2

)(
j
2

)
−
(
k
2

) . (5.15)

� For the total tree length,

L(n) =
n∑

k=2

kTk,

we obtain the expected value

E[L(n)] =
n∑

k=2

k E[Tk] = 2
n∑

k=2

1

k − 1
= 2

n−1∑
k=1

1

k
. (5.16)

and the variance

Var[L(n)] =
n∑

k=2

k2Var[Tk] = 4
n−1∑
k=1

1

k2
. (5.17)

Increasing the sample size will mostly add short twigs to a coalescent tree. As a
consequence, also the total branch length

E[L(n)] ≈ 2(log(n− 1) + γ) ; γ = 0.577216 . . . .

increases only very slowly with the sample size (γ is the Euler constant). The variance
even approaches a finite limit 2π2/3 ≈ 6.58 for n → ∞.

� Again, also the entire distribution can be derived and takes a relatively easy form,

fL(n)(τ) =
n− 1

2
exp[−τ/2]

(
1− exp[−τ/2]

)n−2

(5.18)

� As we have seen above, the probability that the coalescent of a sample of size n
contains the MRCA of the whole population is (n−1)/(n+1) (for large, finite N). An
important practical consequence of these findings is that, under neutrality, relatively
small sample sizes (typically 10-20) will usually be enough to gain all statistical power
that is available from a single locus.

5.3 Polymorphism patterns

In order to generate DNA diversity patterns using the coalescent, we need to add mutations
to the process. This can be done according to any of the mutation schemes introduced
in section (??). Most frequently used are the infinite sites and the infinite alleles model,
which we will discuss in the following.
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The key insight for the description of neutral DNA diversity using the coalescent is that
neutral mutations do not interfere with the genealogy: state (the genotype) and descent
(the genealogical relationships) are decoupled for neutral evolution. This is easy to see from
the time-forward dynamics, since parents carrying different variants of a neutral allele are
still equivalent concerning the distribution of their offspring in all future generations. If
we want to create a random neutral polymorphism pattern using the coalescent process,
we can therefore pick a genealogy first (as described in the previous section) and decide
on the state later on. This is done by so-called mutation dropping, where mutations are
added to all branches of the tree.

Let us first discuss the infinite sites mutation scheme. I.e. each mutation hits a new
site (and thus leads to a new allele) and all mutations on a genealogy remain visible. If a
mutation occurs on a branch of size i in the genealogy of n individuals, it will give rise to
a polymorphism with frequency i/n of the derived allele. This means: the mutant allele
is seen in i out of n sequences in the sample. Note that we do not need to know the
precise time for the origin of the mutations in the genealogy, all that is needed is the total
number of mutations that fall on each branch. On genealogical time scales (as opposed
to phylogenetic time scales), we can usually assume that the mutation rate u (per haploid
individual and generation) is constant.

For a branch of length l, we therefore directly get the number of neutral mutations
on this branch by drawing from a Poisson distributed with parameter 2Nlu. The factor
2N accounts for the fact that branch length l is measured on the coalescent time scale (in
units of 1/2N). In particular, the total number of mutations in an entire coalescent tree of
length L is Poisson distributed with parameter 2NLu. Let S be the number of segregating
(polymorphic) sites in a sample. Since each polymorphic site corresponds to exactly one
mutation on the tree under the infinite sites model, we have

Pr[S = k] =

∫ ∞

0

Pr[S = k|ℓ] · fL(n)(ℓ)dℓ =
∫ ∞

0

e−2Nℓu (2Nℓu)k

k!
· fL(n)(ℓ)dℓ .

For the expectation that means

E[S] =
∞∑
k=0

k Pr[S = k] =

∫ ∞

0

ℓθ

2
e−ℓθ/2

( ∞∑
k=1

(ℓθ/2)k−1

(k − 1)!

)
· fL(n)(ℓ)dℓ

=
θ

2

∫ ∞

0

ℓ fL(n)(ℓ)dℓ =
θ

2
E[L(n)] = θ

n−1∑
i=1

1

i
= anθ

(5.19)

with

an =
n−1∑
i=1

1

i
, (5.20)

and where
θ = 4Nu

is the standard population mutation parameter. Note that the distribution of S does not
depend on the coalescent topologies, but only on the distribution of the coalescence times.
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The mismatch distribution

For a Poisson distributed random variable, the time interval between consecutive events is
exponentially distributed. There is therefore an alternative way to derive the equilibrium
heterozygosity H (or the number of polymorphic sites in a sample of size 2) using the
coalescent. If we follow the genealogy of two copies of a homologous site back in time,
two things can happen first: (1) either one of the two mutates or (2) they coalesce. If
they coalesce first they are identical by descent, if one of the two mutates, they are not
identical. For both processes, the time back to the first event is exponentially distributed.
Since mutation (in either lineage) occurs at rate 2u and coalescence occurs at rate 1/2N ,
we directly obtain using Eq. (??),

H(u,N) =
2u

2u+ (1/2N)
=

θ

θ + 1
. (5.21)

We can easily extend this result and ask for the probability that we find precisely k dif-
ferences among the two sequences. Under the assumptions of the infinite-sites model, and
using that we can re-start the Poisson process after every event,

Pr[π = k] =
( θ

θ + 1

)k 1

θ + 1
, (5.22)

which is a modified geometrical distribution. Note that this is not the distribution of
pairwise mismatches in a larger sample, which will be correlated due to a shared history.
However, under the standard neutral model, we should see this distribution if we sequence
from independent loci along the genome (e.g. counting mismatches among the two copies
carried by a diploid individual).

The site frequency spectrum

The total number S of polymorphic sites is the simplest so-called summary statistic of
polymorphism data. There are many more. As a next step, we can ask for the number Si

of mutations of a given size i (mutations that are observed in i out of n sequences in the
sample). To derive the expected value E[Si], we proceed in two steps. First, we ask for the
probability that a branch at state k of the coalescent process is of size i,

P [i|k] := Pr[Probability for branch at state k to be of size i] .

From Theorem 1 we directly obtain P [i|k] as

P [i|k] =
(
n−i−1
k−2

)(
n−1
k−1

) (5.23)

Here, the numerator counts all different possibilities to distribute n − i descendants over
k− 1 branches – i.e. all remaining descendants after we have assigned i descendants to the
focal branch. Note that P [i|k] does not depend at all on the coalescent times, but only
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on aspects of the topology. In the second step, we ask for the expected number E[S(k)] of
mutations on a branch at state k. Noting that the length of such a branch is Tk, this is
easily derived (analogous to Eq. 5.19),

E[S(k)] =
θ

2
E[Tk] =

θ

k(k − 1)
. (5.24)

In contrast to P [i|k], this expression does not depend on the topologies, but only on the
coalescent times. Using the independence of coalescent times and topologies, we now obtain
the expected number of mutations of size i as

E[Si] =
n∑

k=2

kP [i|k] · E[S(k)]

=
n∑

k=2

θ

k − 1

(n− i− 1)!(k − 1)!(n− k)!

(k − 2)!(n− i− k + 1)!(n− 1)!

=
θ

i
(
n−1
i

) n∑
k=2

(
n− k

i− 1

)
=

θ

i
(
n−1
i

) n∑
k=2

((
n− k + 1

i

)
−
(
n− k

i

))
=

θ

i
(
n−1
i

) · (n− 1

i

)
=

θ

i
, (5.25)

where we have used Eq. (??). The expected number of mutations of size i is thus θ/i.
Together, these numbers define the (expected) site frequency spectrum of sample taken
from a standard neutral population.

� The frequencies of the expected normalized site frequency spectrum are pi = 1/(ani).
They are independent of θ. The characteristic (1/i)-shape is a prime indicator of
“neutrality”.

� We can easily obtain an empirical site frequency spectrum from any polymorphism
data. This empirical spectrum can then be compared to the spectrum predicted under
neutrality. Note that we need data from many independent (unlinked) loci to observe
the expected spectrum. For any single locus, the spectrum can differ considerably,
because we only have a single coalescent history.

� To determine the size of a given polymorphism in the sample, we need to know the
ancestral state at the locus. In practice, this is inferred from a so-called outgroup
(usually a single consensus sequence from a closely related sister species). If the
ancestral state cannot be determined, we can work with the so-called folded site
frequency spectrum, with mutation classes S̃i = Si +Sn−i for i < n/2 and S̃i = Si for
i = n/2.
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Infinite alleles and haplotype statistics

So far, we have considered polymorphism patterns under the assumption of the infinite sites
model, where all mutations that occur during the genealogy of a sample remain visible as a
polymorphic site. Depending on the type of the mutation, however, this may not always be
true. For example, the infinite sites model does not easily generalize to insertion/deletion
mutations. Alternatively, we may focus on the entire haplotype in a chromosomal window
and just ask for the distribution of different types (ignoring any information about the
mutational distances between these types). Questions like these can be addressed within
the framework of the infinite alleles model.

Just like in the case of the infinite sites model, we can construct the genealogical tree
first and add mutations later on. However, for the infinite alleles model, only the latest
mutations (the ones closest to the leaves of the tree) will be observed. As a consequence,
major parts of the genealogy do not influence the pattern. We can account for this by
adding mutations already as we build the genealogy. Once we encounter the first mutation
in the ancestry of an individual, we know the state of this this ancestor and of all its
descendants. So, before we construct the genealogy further back in time, we can stop (or
kill) this branch. This leads to the so-called coalescent with killings, where we have two
kinds of events:

1. As before, coalescence events occur at rate k(k − 1)/2 on the coalescence time scale
for a tree in state k (i.e. with k ancestral lines).

2. In addition, we directly account for mutation events, which occur at rate kθ/2 in
state k. Each mutation “kills” the corresponding branch.

Let Kn be the number of different haplotypes that we observe in a sample of size n. We are
interested in the probability that Kn takes a certain value k. By following the coalescent
with killings back in time to the first event (either coalescence or mutation), we can relate
the values for the distribution of Kn to the corresponding values for Kn−1,

P [Kn = k] =
θ

θ + n− 1
· P [Kn−1 = k − 1] +

n− 1

θ + n− 1
· P [Kn−1 = k] . (5.26)

As initial condition, we have P [K1 = 1] = 1. To solve this recursion, observe that the
denominator in both terms in (5.26) is the same. Note also, that for Kn = k, we need to
choose “mutation” k − 1 times before we reach a sample of size 1. Each time, we pick up
a factor of θ, like in the first term of (5.26). We thus can write

P [Kn = k] =
θk−1

(θ + 1)(θ + 2) · · · (θ + n− 1)
· S(n, k) = θk

θ(n)
· S(n, k) (5.27)

where

θ(n) = θ(θ + 1) · · · (θ + n− 1)



5.3 Polymorphism patterns 53

and the S(n, k) are the so-called Stirling numbers of the first kind, which follow the recur-
sion relation

S(n, k) = S(n− 1, k − 1) + (n− 1) · S(n− 1, k) . (5.28)

In analogy to the allele frequency spectrum, we can also ask for the frequency distribution
of haplotypes. Let Aj be the number of haploytpes that appear j times in a sample of size
n. For Kn = k, we thus have

n∑
j=1

Aj = k and
n∑

j=1

jAj = n ,

and let a = (a1, . . . , an) be a realization of (A1, . . . , An). We can prove the following

Theorem 2 The combined distribution of the number and frequencies of haplotypes under
the standard neutral model is given by the so-called Ewens’ sampling formula,

Pn[a] =
n!

θ(n)

n∏
j=1

(θ/j)aj

aj!
. (5.29)

� One interpretation of this result is to view theAj as independently Poisson distributed
random variables with parameter (= expected value) θ/j, and then consider the
marginal distribution under the condition

∑n
j=1 jAj = n. Note that the distribution

is strongly influenced by θ. For large θ > 1, the distribution is dominated by singleton
haplotypes ∼ θa1 , for small θ, a large number of singletons (large a1) is unlikely.

Proof To prove the theorem, we extend the recursion method that we have used in our
proof of the distribution of Kn. Note first that for n = 1, we have a1 = 1 with probability
1, in accordance with (5.29). Define ei = (0, . . . , 1, 0, . . .) as the ith unit vector (with entry
1 in the ith position). Now, start with a sample of size n and go back to the first event.
With probability θ/(θ + n − 1), this is a mutation, which creates a new haplotype. This
relates the partition a of the n haplotypes in the sample to the partition a − e1 of the
remaining n − 1 types. If the first event is coalescence (which it will be with probability
(n − 1)/(θ + n − 1)), this decreases the frequency of one of the haplotypes (with at least
two copies) by one. In terms of the allelic partitions, this turns a into a + ej − ej+1 for
some j ∈ {1, . . . , n − 1}. Conditioned on this latter partition for the tree at state n − 1,
the probability that (forward in time) the next split event will be in one of the haplotype
classes with j copies is thus (aj + 1)j/(n− 1). This results in the recursion

Pn[a] =
θ

θ + n− 1
Pn−1[a − e1] +

n− 1

θ + n− 1

n−1∑
j=1

(aj + 1)j

n− 1
Pn−1[a + ej − ej+1]. (5.30)
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It remains to be shown that (5.29) fulfills this recursion. For this, note that (5.29) implies
that

Pn−1[a− e1] =
(θ + n− 1)a1

nθ
Pn[a] (5.31)

Pn−1[a+ ej − ej+1] =
(θ + n− 1)aj+1(j + 1)

(aj + 1)nj
Pn[a] (5.32)

Inserting this into (5.30) yields

1 =
a1
n

+
n−1∑
j=2

aj+1(j + 1)

n
=

1

n

n∑
j=1

aj ,

which holds true, since
∑

j aj = n.

� The underlying combinatorial problem is also known as the Hoppe urn scheme in
the mathematical literature. This scheme starts with k colored balls like the Polya
urn, but adds a special back ball with weight θ. Each time a colored ball is drawn,
the ball is returned with another ball of the same color. Each time the black ball is
drawn, it is put back with another ball of a new color.

� Note that the marginal distribution for the allelic partition given the number of
haplotypes can be written as

Pn[a|Kn = k] =
Pn[a]

P [Kn = k]
=

n!

S(n, k)

n∏
j=1

1

aj!jaj
, (5.33)

which is, in particular, independent of θ. In statistical terms this means that all
information about θ is already contained in the number of haplotypes found in a
sample: Kn is a sufficient statistic. Knowledge about their distribution does not add
any further information.

5.4 Coalescent and statistics

Coalescent trees show the genealogical relationships between two or more sequences that
are drawn from a population. This should not be confounded with a phylogenetic tree that
shows the relation of two or more species. Indeed, both “trees” have entirely different roles
for the theory of evolution. In phylogenetics, one is usually interested in the one “true
tree” and the parameters of this tree (such as split times) are estimated from data. In
contrast, there is no single “true tree” for a set of individuals from a population. Indeed,
the genealogy will usually be different for different loci. For example, at a mitochondrial
locus your ancestor is certainly your mother and her mother. However, if you are a male,
the ancestor for the loci on your Y-chromosome is your father and his father. So the
genealogical tree will look different for a mitochondrial locus than for a Y-chromosomal
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locus. But even for a single locus, we are usually not able to reconstruct a single “true
coalescence tree” and this is not the goal in coalescent studies. Instead, coalescent histories
are used as a statistical tool for inferences about an underlying model.

The general idea is as follow. We define an evolutionary model that depends on a
number of biological parameters (such as mutation rates, population sizes, selection co-
efficients). Under this model, we obtain a distribution of coalescent histories and (con-
sequently) a distribution of polymorphism patterns that is predicted under this model.
We can then compare measured data with the predicted distribution to make statistical
inferences. Usually, there is a twofold goal:

1. to reject (or not) the underlying model. This is true, in particular, for the neutral
model as the standard null model of population genetics.

2. to estimate model parameters. Note that the parameters of the coalescent tree (co-
alescent times, topology) are generally not model parameters. They are “integrated
out” in the statistical treatment.

In some easy cases (notably the neutral model), key aspects of the distribution of poly-
morphism patterns can be obtained analytically using coalescent theory. In many other
cases, this is no longer possible. However, even in these cases, the coalescent offers a highly
efficient simulation framework that is routinely used in statistical simulation packages.

Estimators for the mutation parameter θ

All population genetic models, whether forward or backward in time, depend on a set of
biological parameters that must be estimated from data. In the standard neutral model,
there are two such parameters: the mutation rate u and the population size N . However,
since both parameters only occur in the combination θ = 4Nu, the population mutation
parameter is effectively the only parameter of the model. From our derivation of the
expected site frequency spectrum, we easily obtain several estimators for θ. In principle,
we can use the total number of mutations of any size class to define an unbiased estimator
θ̂i,

E[Si] =
θ

i
−→ θ̂i := i · Si . (5.34)

In practice, widely used estimators are linear combinations across mutations of different
size classes. They can be distinguished according to the relative weight that is put on a
certain class. The most important ones are the following:

1. Watterson’s estimator,

θ̂W :=
S

an
=

1

an

n−1∑
i=1

Si =
1

an

∑
1≤i≤n/2

S̃i , (5.35)

uses the total number of segregating sites and puts an equal weight on each mutation
class. The last equation expresses θ̂W in terms of frequencies of the folded spectrum.
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Remember that the distribution of S – and thus of θ̂W – is independent of the
coalescent topologies, but only depends on the coalescent times.

2. Let πij be the number of differences among two sequences i and j from our sample.
We have E[πij] = E[S(n = 2)] = θ. If the sample size is just two, this corresponds to
Watterson’s estimator. In a larger sample, we can still take the pairwise difference
as our basis and average over all n(n − 1)/2 pairs. This leads to the diversity-based
estimator (sometimes also called Tajima’s estimator),

θ̂π :=
2

n(n− 1)

∑
i<j

πij . (5.36)

We can also express θ̂π in terms of the (folded) frequency spectrum as follows,

θ̂π =

(
n

2

)−1 n−1∑
i=1

i(n− i)Si =

(
n

2

)−1 ∑
1≤i≤n/2

i(n− i)S̃i . (5.37)

Whereas Watterson’s estimator weights all frequency classes equally, θ̂π puts the
highest weight on classes with an intermediate frequency. In contrast to θ̂W, it also
depends on the distribution of tree topologies. The estimator is often also just written
as π̂.

3. Fay and Wu’s estimator,

θ̂H :=

(
n

2

)−1 n−1∑
i=1

i2Si , (5.38)

puts a hight weight on mutation classes of the unfolded spectrum with a high fre-
quency of the derived allele. In contrast to the other estimators, it is not a summary
statistic of the folded spectrum and thus requires knowledge of the ancestral state.

4. Finally, the singleton estimator θ̂s uses the singletons of the folded spectrum,

θ̂s :=
n− 1

n

(
S1 + Sn−1

)
=

n− 1

n
S̃1 . (5.39)

It has all its weight at both ends of the unfolded spectrum.

Test statistics for neutrality tests

Estimators of any model parameter, such as θ, will only produce meaningful results if
the assumptions of the underlying model hold. In our case, we have assumed standard
neutral evolution. In addition to the absence of selection, this includes the assumptions
of a constant population size and no population structure. But how can we know whether
these assumptions do hold (at least approximately) for a given data set? This question asks
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for a test of the model assumptions. As it turns out, the availability of various different
estimators of the same quantity θ is helpful for the construction of such a test.

The key idea is to consider the difference among two different estimators, such as
θ̂π−θ̂W. Under standard neutrality, this quantity should be close to zero, whereas significant
deviations indicate that the model should be rejected. The most widely used test statistic
that is constructed in such a way is Tajima’s D,

DT :=
θ̂π − θ̂W√

Var[θ̂π − θ̂W]
. (5.40)

The denominator of DT is used for normalization and makes the distribution of the statistic
(almost) independent of θ and of the sample size. Tajima has shown that DT is approxi-
mately β-distributed. Today, however, the exact distribution under the standard neutral
null model is usually obtained (resp. approximated to arbitrary precision) by computer
simulations. For a given significance level α, one can then specify the critical upper and
lower bounds for DT, beyond which the null model should be rejected. Test statistics that
are constructed in a similar way are Fu and Li’s D,

DFL :=
θ̂W − θ̂s√

Var[θ̂W − θ̂s]
(5.41)

and Fay and Wu’s H,

HFW :=
θ̂π − θ̂H√

Var[θ̂π − θ̂H]
. (5.42)

To understand, which kind of deviations from the standard neutral model are picked up
by the three summary statistics, it is instructive to consider the contribution of the site
frequency classes Si to the numerator of each statistic. For example, DT will be negative
if we have an excess of very low or very high frequency alleles, whereas it will be positive
if many sites segregate at intermediate frequencies.


