Noble Names, Branching Processes, and Fixation Probabilities

Joachim Hermisson

Mathematics \& Max Perutz Labs,
University of Vienna

Nohle names, branching processes, and fixation probahilities

The fate of aristocratic family names

 A problem of inheritance inspires new mathematics"The decay of the families of men who occupied conspicuous positions in the past times has been a subject of frequent remark and has given rise to various conjectures ..." [Gatton and Watson 1874]

Conjecture:

- Aristocrats (and "other men of genius") have reduced fertility \rightarrow trade-off?
- Population only maintained by proletarians
Degradation risk!

Galton:

- It may also be just chance: Need a model!

Sir Francis Galton (1822-1911)

Henry William Watson
(1827-1903)

Nohle names, branching processes, and fixation probahilities

Galton's branching model

- Z_{0} founders of noble families in generation $n=0$
- Each founder j can have $k_{j}=0,1,2,3, \ldots$ sons \rightarrow independently and with identical probability p_{k}

Sir Francis Galton (1822-1911)

Henry William Watson
(1827-1903)

Noble names, branching processes, and fixation probabilities

Galton's branching model

- Z_{0} founders of noble families in generation $n=0$
- Each founder j can have $k_{j}=0,1,2,3, \ldots$ sons \rightarrow independently and with identical probability p_{k}
- Iterate with offspring generation

$$
Z_{0} \rightarrow Z_{1} \rightarrow Z_{2} \rightarrow \ldots Z_{n}
$$

Sir Francis Galton (1822-1911)

Henry William Watson
(1827-1903)

Nohle names, branching processes, and fixation probahilities

Galton's branching model

A Galton-Watson process $\left\{Z_{n}\right\}_{n \geq 0}$ with offspring distribution $\left\{p_{k}\right\}_{k \geq 0}$ is a Markov chain with values in \mathbb{Z}_{+}and transition probabilities

$$
P\left[Z_{i+1}=k \mid Z_{i}=m\right]=p_{k}^{* m}
$$

where $\left\{p_{k}^{* m}\right\}$ is the m -fold convolution of $\left\{p_{k}\right\}$
(i.e., the distribution of the sum of m i.i.d. random variables, each with distribution $\left\{p_{k}\right\}$)

Due to independence, we can use $Z_{0}=1$ as default initial state ("fate of one family")

Sir Francis Galton (1822-1911)

Henry William Watson
(1827-1903)

Noble names, hranching processes, and fixation probabilities

Ref. Watson's insights

π_{n} : probability for extinction by generation n
use generating function of offspring distribution

$$
\varphi(t)=\sum_{k=0}^{\infty} p_{k} t^{k}
$$

Recursion: $\quad \pi_{n+1}=\varphi\left(\pi_{n}\right)$

$$
\pi_{n} \rightarrow \pi_{\infty} \quad(\text { monotonic and bounded })
$$

Thus: $\quad \pi_{\infty}=\varphi\left(\pi_{\infty}\right) \quad$ fixed point of $\varphi(t)$ (φ continuous)

Sir Francis Galton (1822-1911)

Henry William Watson
(1827-1903)

Noble names, hranching processes, and fixation probabilities

Fixed points of $\varphi(t)=\sum_{k=0}^{\infty} p_{k} t^{k}$

Noble names, hranching processes, and fixation probabilities

Noble names, branching processes, and fixation probabilities

Nohle names, branching processes, and fixation probahilities

Extinction probability

Thus: $\quad \pi_{\infty}=\varphi\left(\pi_{\infty}\right)$ smallest fixed point of $\varphi(t)$
For $\mu=\sum_{k} k \cdot p_{k}$ average offspring number:

1. $\mu<1$ subcritical

$$
\pi_{\infty}=1
$$

3. $\mu>1$ supercritical $\quad \pi_{\infty}<1$

- Galton and Watson overlooked the smaller fixed point and concluded that all family names must die out because of chance alone
- Lotka (1931): $\pi_{\infty} \approx 0.82$ for US white males (1920 data)

Noble names, branching processes, and fixation probabilities

Fixation probability

The spread of a rare beneficial mutant through a population can be described as a supercritical branching process
[Fisher 1922, Haldane 1927]

J. B. S. Haldane

Ronald A. Fisher
The fate of a beneficial mutant is decided while it is rare

- When frequent: loss very unlikely \rightarrow eventual fixation (frequency 1)
- While rare: independent reproduction!

M Mutant population can be described by a branching process
$>$ Fixation probability follow as:

$$
p_{f i x}=1-\pi_{\infty}
$$

Nohle names, hranching processes, and fixation prohabilities

Fixation probability

Average offspring number
Wildtype: $\quad \mu_{w t}=1$ (constant population size)

Mutant: $\quad \mu_{m}=1+s \quad$ (typical $s: 10^{-4}-1$
Taylor expansion of the fixed point equation:

$$
\pi_{\infty}=1-p_{f i x}=\varphi\left(1-p_{f i x}\right) \approx \varphi(1)-p_{f i x} \varphi^{\prime}(1)-\frac{1}{2} p_{f i x}^{2} \varphi^{\prime \prime}(1)
$$

where:

$$
\begin{aligned}
& \varphi(1)=1 ; \quad \varphi^{\prime}(1)=\mu_{m} \\
& \varphi^{\prime \prime}(1)=\sum_{k=2}^{\infty} k(k-1) p_{k}=\sigma_{m}^{2}+\mu_{m}\left(\mu_{m}-1\right) \\
& \quad\left(\sigma_{m}^{2}\right. \text { variance of the offspring distribution) }
\end{aligned}
$$

Nohle names, hranching processes, and fixation probahilities

Fixation probability

Solve for $p_{f i x}$:

$$
p_{f i x} \approx \frac{2\left(\mu_{m}-1\right)}{\sigma_{m}^{2}+\mu_{m}\left(\mu_{m}-1\right)}=\frac{2 s}{\sigma_{m}^{2}}+\mathrm{O}\left(s^{2}\right)
$$

In particular, Wright-Fisher model (~ Poisson offspring distribution):

$$
\sigma_{m}^{2}=\mu_{m}=1+h s \quad \Rightarrow \quad p_{f i x} \approx 2 h s \quad \text { (Haldane 1927) }
$$

(all mutants in heterozygotes)

Typical $s: 10^{-4}-10^{-2} \quad \Rightarrow$
almost all beneficial mutations in a population are lost because of random fluctuations (genetic drift)

