Joachim Hermisson

Mathematics & Max Perutz Labs, University of Vienna

The fate of aristocratic family names A problem of inheritance inspires new mathematics

"The decay of the families of men who occupied conspicuous positions in the past times has been a subject of frequent remark and has given rise to various conjectures ..." [Galton and Watson 1874]

Conjecture:

- Aristocrats (and "other men of genius") have reduced fertility → trade-off?
- Population only maintained by proletarians

Degradation risk!

Galton:

• It may also be just chance: Need a model!

Sir Francis Galton (1822-1911)

Henry William Watson (1827 - 1903)

Galton's branching model

- Z_0 founders of noble families in generation n = 0
- Each founder *j* can have $k_j = 0, 1, 2, 3, ...$ sons \rightarrow independently and with identical probability p_k

Sir Francis Galton (1822-1911)

Henry William Watson (1827 - 1903)

$$k_1 = ?$$

 $k_2 = ?$
 $k_2 = ?$

 $Z_0 \rightarrow Z_1$

Galton's branching model

- Z_0 founders of noble families in generation n = 0
- Each founder *j* can have $k_j = 0, 1, 2, 3, ...$ sons \rightarrow independently and with identical probability p_k
- Iterate with offspring generation

Sir Francis Galton (1822-1911)

Henry William Watson (1827 - 1903)

Galton's branching model

A Galton-Watson process $\{Z_n\}_{n\geq 0}$ with offspring distribution $\{p_k\}_{k\geq 0}$ is a Markov chain with values in \mathbb{Z}_+ and transition probabilities

$$P[Z_{i+1} = k | Z_i = m] = p_k^{*m}$$

where $\{p_k^{*m}\}$ is the m-fold convolution of $\{p_k\}$ (i.e., the distribution of the sum of *m* i.i.d. random variables, each with distribution $\{p_k\}$)

Due to independence, we can use $Z_0 = 1$ as default initial state ("fate of one family")

Sir Francis Galton (1822-1911)

Henry William Watson (1827 - 1903)

Ref. Watson's insights

 π_n : probability for extinction by generation *n* use generating function of offspring distribution

$$\varphi(t) = \sum_{k=0}^{\infty} p_k t^k$$

Recursion: π_{n+1}

$$\pi_{n+1} = \varphi(\pi_n)$$

 $\pi_n
ightarrow \pi_\infty$ (monotonic and bounded)

Thus:

$$\pi_{\infty} = \varphi(\pi_{\infty})$$
 fixed point of $\varphi(t)$
(φ continuous)

Sir Francis Galton (1822-1911)

Henry William Watson (1827 - 1903)

Extinction probability

Thus: $\pi_{\infty} = \varphi(\pi_{\infty})$ smallest fixed point of $\varphi(t)$ For $\mu = \sum_{k} k \cdot p_{k}$ average offspring number: 1. $\mu < 1$ subcritical 2. $\mu = 1$ critical 3. $\mu > 1$ supercritical $\pi_{\infty} < 1$

- Galton and Watson overlooked the smaller fixed point and concluded that all family names must die out because of chance alone
- Lotka (1931): $\pi_{\infty} \approx 0.82$ for US white males (1920 data)

Ronald A. Fisher

Fixation probability

The spread of a rare beneficial mutant through a population can be described as a supercritical branching process [Fisher 1922, Haldane 1927]

J. B. S. Haldane

The fate of a beneficial mutant is decided while it is rare

- When frequent: loss very unlikely \rightarrow eventual fixation (frequency 1)
- While rare: independent reproduction!
- \succ Mutant population can be described by a branching process
- \succ Fixation probability follow as:

$$p_{fix} = 1 - \pi_{\infty}$$

Fixation probability

Average offspring number

Wildtype: $\mu_{wt} = 1$ (constant population size)

Mutant: $\mu_m = 1 + s$ (typical $s : 10^{-4} - 10^{-2} \rightarrow$ "slightly supercitical")

Taylor expansion of the fixed point equation:

$$\pi_{\infty} = 1 - p_{fix} = \varphi \left(1 - p_{fix} \right) \approx \varphi(1) - p_{fix} \varphi'(1) - \frac{1}{2} p_{fix}^2 \varphi''(1)$$

where:

$$\begin{split} \varphi(1) &= 1 \quad ; \quad \varphi'(1) = \mu_m \\ \varphi''(1) &= \sum_{k=2}^{\infty} k(k-1)p_k = \sigma_m^2 + \mu_m(\mu_m - 1) \\ & (\sigma_m^2 \text{ variance of the offspring distribution}) \end{split}$$

Fixation probability

Solve for p_{fix} :

$$p_{fix} \approx \frac{2(\mu_m - 1)}{\sigma_m^2 + \mu_m(\mu_m - 1)} = \frac{2s}{\sigma_m^2} + O(s^2)$$

In particular, Wright-Fisher model (~ Poisson offspring distribution):

$$\sigma_m^2 = \mu_m = 1 + hs \quad \Rightarrow$$

$$p_{fix} \approx 2hs$$
 (Haldane 1927)

(all mutants in heterozygotes)

Typical
$$s: 10^{-4} - 10^{-2} \implies$$

almost all beneficial mutations in a population are lost because of random fluctuations (genetic drift)