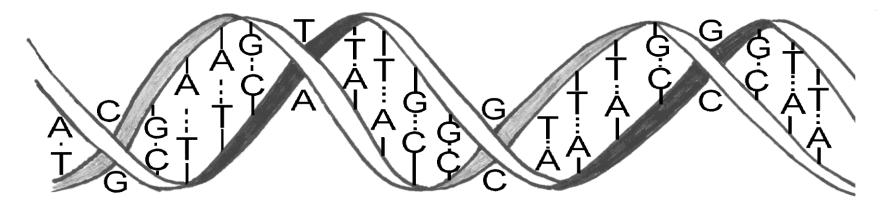
The Coalescent Evolution backward in time

Joachim Hermisson

Mathematics and Biosciences Group Mathematics & MFPL, University of Vienna

Introduction to the Coalescent data, data, data, ...



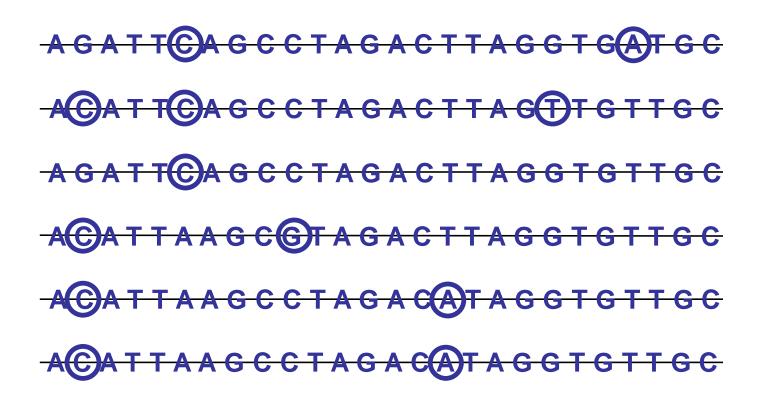
Massive accumulation of DNA sequence data

- 1980's: 3-4 years PhD projects to sequence a single gene (some 1000 base pairs)
- 1990 2003: Human Genome Project (~ 3 10⁹ (3 billion) bases) expected: 3 billion \$, final: ~ 300 Mio \$
- since 2010: 1000 Genome Project 4000 \$ - 10000 \$ per genome, soon < 1000 \$
- today: extended to 2500 (25 x 100), completed May 2013
 1000 genomes also for *Drosophila, Arabidopsis* ...

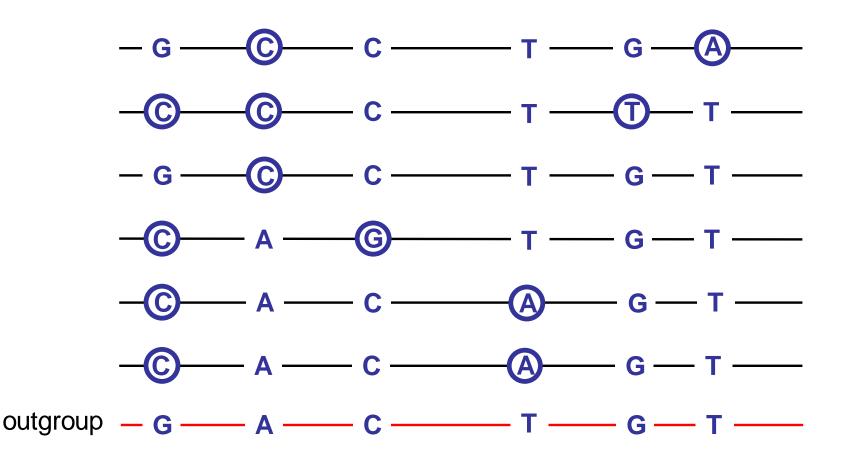
Sequence alignment (length m = 26)

 $4^{(6\times26)} = 8.3 \times 10^{93}$

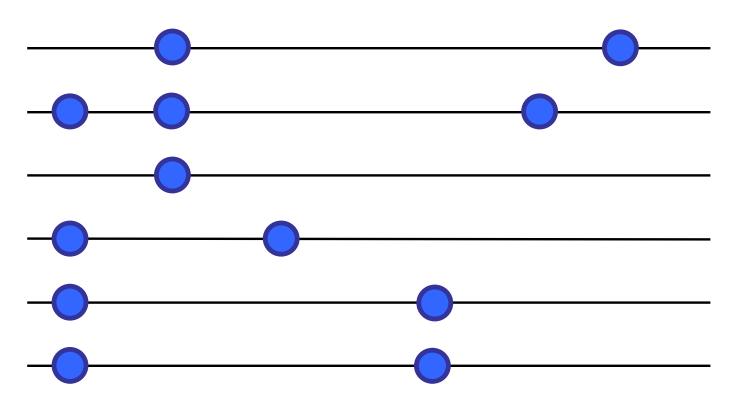
only polymorphic sites ...



compare with outgroup ...

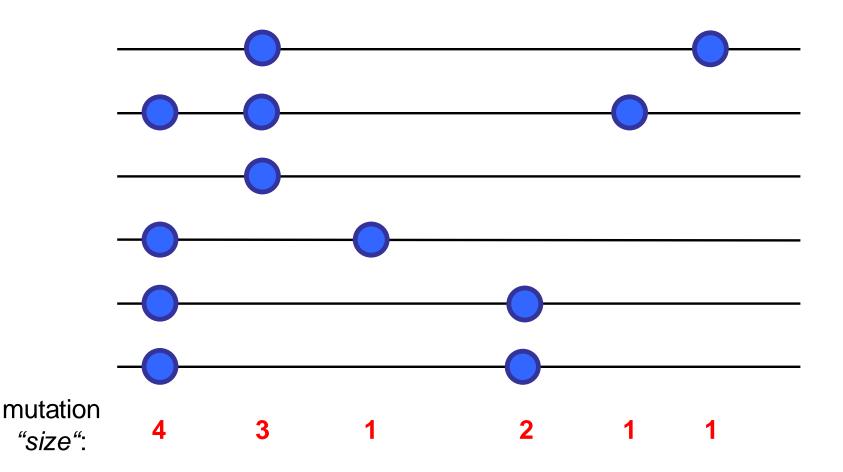


forget about molecular state ...

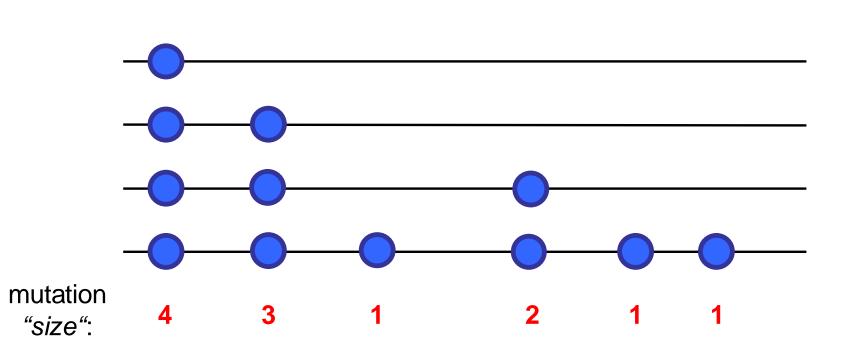


(assumes infinite sites mutation model)

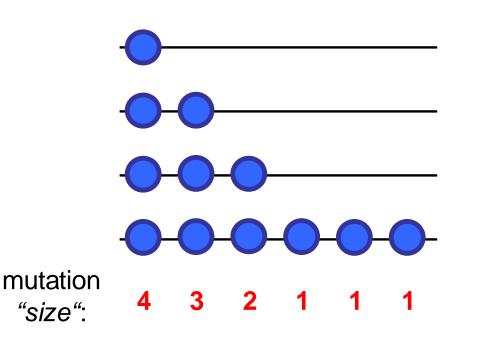
• number of segregating sites and allele frequencies



- number of segregating sites and allele frequencies
 - associations not important ("molecular bean bag")

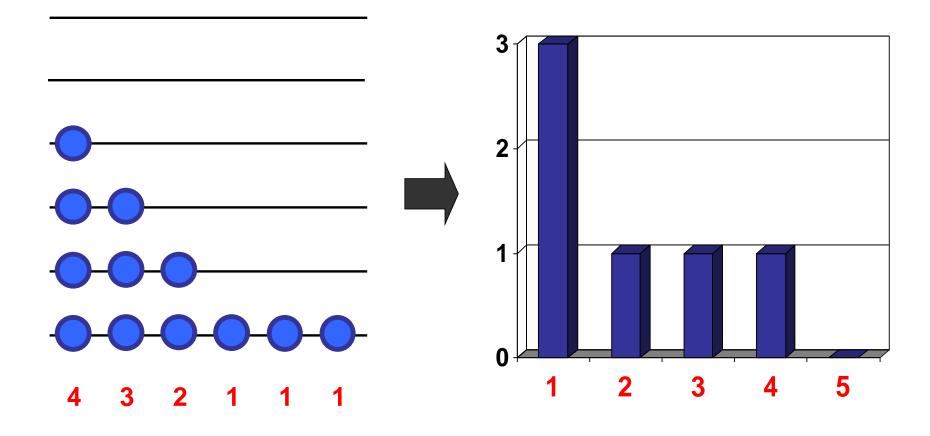


- number of segregating sites and allele frequencies
 - associations not important ("molecular bean bag")

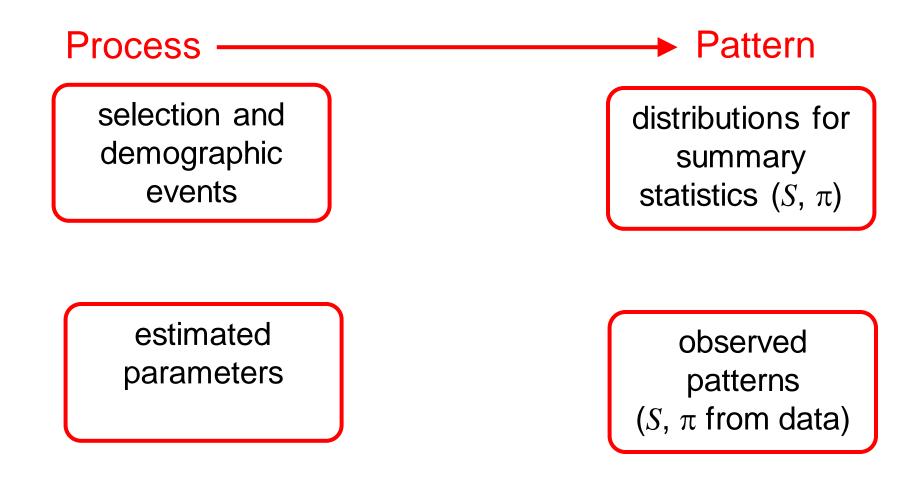


- genome position does not matter

Site Frequency Spectrum



Patterns of Evolution Reconstruction of evolutionary history



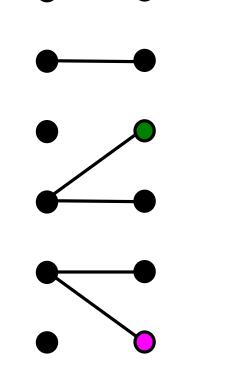
Statistical Reconstruction

Patterns of Evolution Reconstruction of evolutionary history

How does pure randomness look like ?

> Null-model of the evolutionary theory

population (size 2N)



Neutral genetic variation

• single locus, multiple alleles

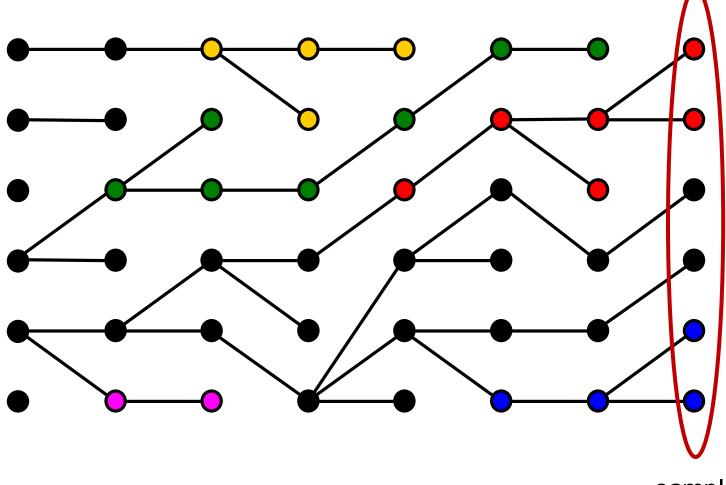
Drift:

- random sampling of parents
- *k* types: multinomial offspring distribution

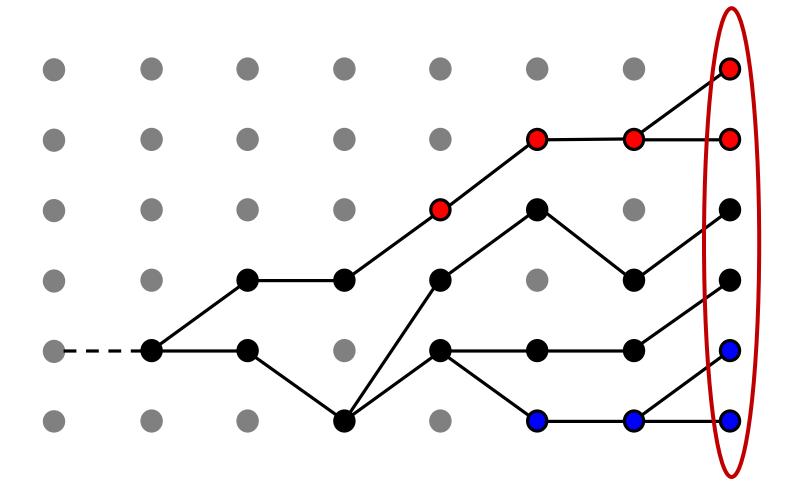
Mutation:

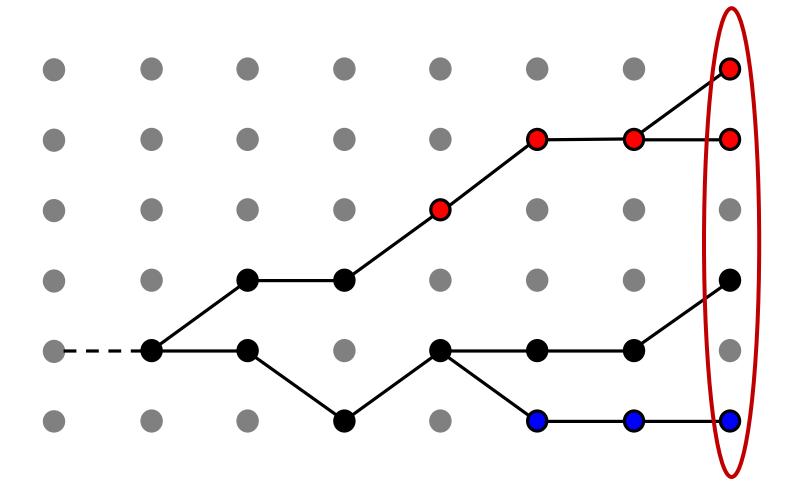
- probability *u* for each offspring
- infinite alleles model: every mutation leads to a new allele ("new color")

1. 2. generation

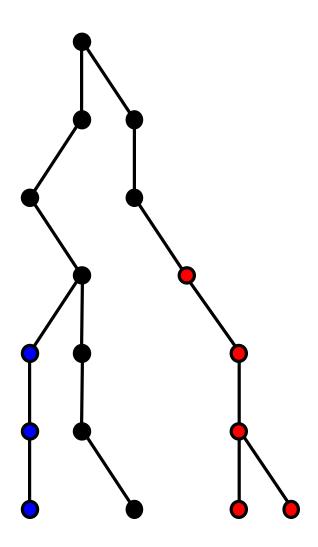


sample generation



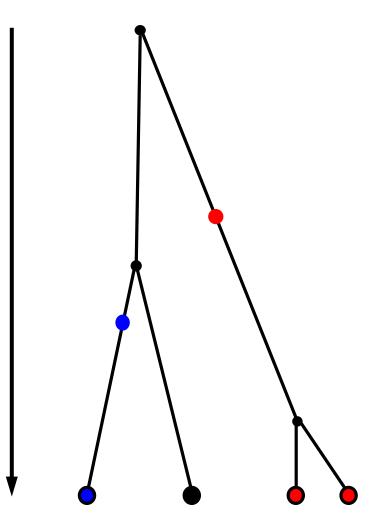


Patterns of Evolution coalescence process



All information about the genetic variation pattern is contained in the sample genealogy.

Patterns of Evolution coalescence process



All information about the genetic variation pattern is contained in the sample genealogy.

Construct a process to generate genealogies:

"coalescence-process"

Coalescent Theory The standard neutral model

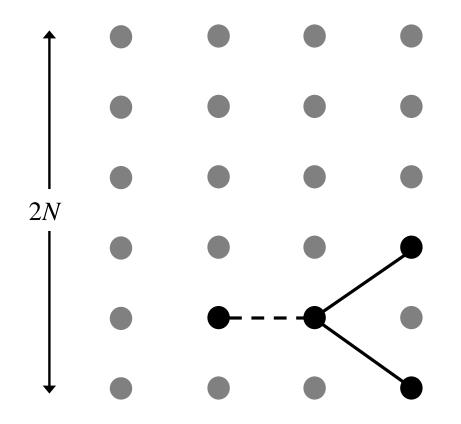
Haploid Wright-Fisher population of size 2N:

- Genetic differences have no consequences on fitness
- No population subdivision

- Exchangable offspring distribution, independent of any *state label* (genotype, location, age, ...)
- Constant population size > Wright-Fisher: multinomial sampling

Individuals are equivalent with respect to descent *State and Descent are decoupled*

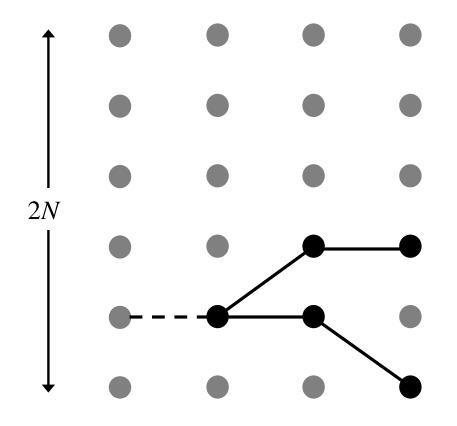
2 steps: 1. Construct genealogy independently of the state
2. Decide on the state only afterwards



Coalescence probability

... in a single generation:

$$p_{c,1} = \frac{1}{2N}$$



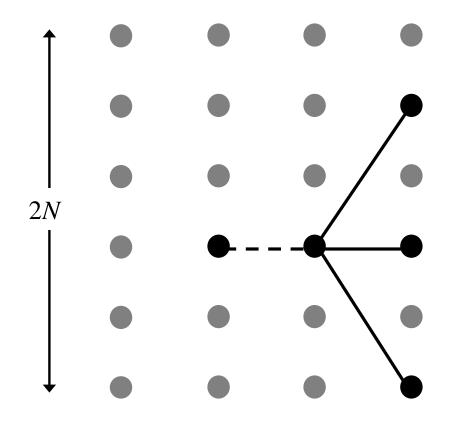
Coalescence probability

... in a single generation:

$$p_{c,1} = \frac{1}{2N}$$

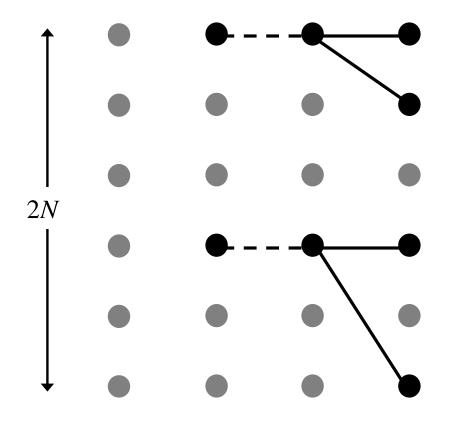
... for exactly *t* generations:

$$p_{c,t} = \left(1 - \frac{1}{2N}\right)^{t-1} \frac{1}{2N}$$



Multiple (e.g. triple) mergers:

$$p_{triple} = \frac{1}{4N^2} = \mathcal{O}\left[N^{-2}\right]$$

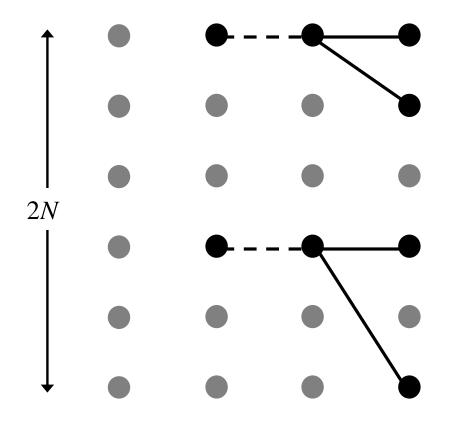


Multiple (e.g. triple) mergers:

$$p_{triple} = \frac{1}{4N^2} = \mathcal{O}\left[N^{-2}\right]$$

Multiple coalescences:

$$\Pr \propto p_{c,t}^2 = O\left[N^{-2}\right]$$



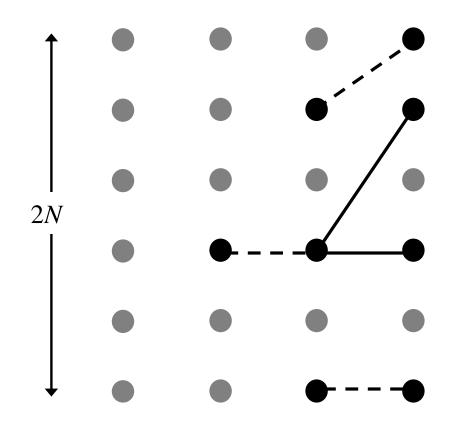
Multiple (e.g. triple) mergers: $p_{triple} = \frac{1}{4N^2} = O[N^{-2}]$

Multiple coalescences:

$$\Pr \propto p_{c,t}^2 = \mathcal{O}[N^{-2}]$$

can be ignored if N >> n: only binary mergers for $N \to \infty$

"Kingman coalescent"



Coalescence probability (single binary merger)

... in a single generation:

$$p_{c,1}^{(n)} = \frac{1}{2N} \binom{n}{2} = \frac{n(n-1)}{4N}$$

... for exactly *t* generations:

$$p_{c,t}^{(n)} = \left(1 - \frac{n(n-1)}{4N}\right)^{t-1} \frac{n(n-1)}{4N}$$

Coalescent Theory Distribution of Coalescence Times

Define coalescence time scale:

$$\tau = \frac{t}{2N}$$

 T_2

Coalescence time T_2 for sample size 2:

$$\Pr[T_2 > \tau] = \left(1 - \frac{1}{2N}\right)^{2N\tau}$$
$$\xrightarrow{N \to \infty} \exp[-\tau]$$

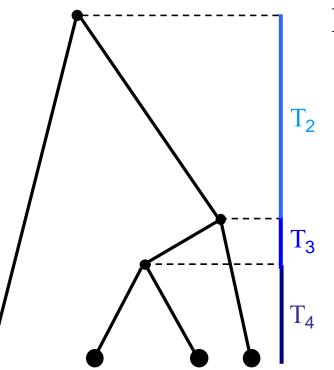
Exponential distribution with parameter 1:

 $E[T_2] = 1$ (2*N* generations)

Coalescent Theory Distribution of Coalescence Times

iterate until *most recent* common ancestor (MRCA):

with sample size n:

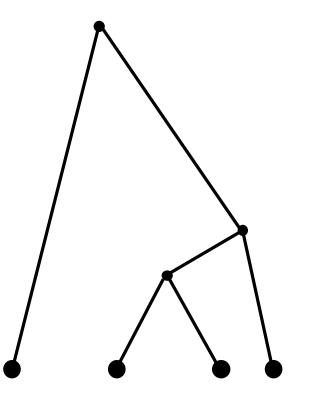


$$\Pr[T_n > \tau] = \left(1 - \frac{1}{2N} \binom{n}{2}\right)^{2N\tau}$$
$$\xrightarrow{N \to \infty} \exp\left[-\binom{n}{2}\tau\right]$$

Exponential distribution with parameter : $\binom{n}{2} = \frac{n(n-1)}{2}$

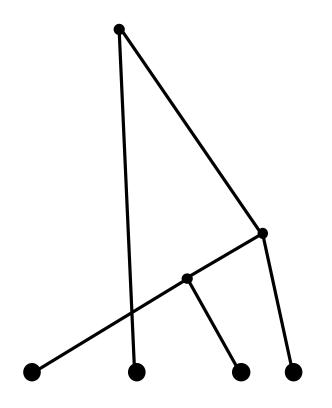
$$\mathrm{E}[T_n] = \frac{2}{n(n-1)}$$

"random bifurcating tree"



- pick two random individuals from the sample and merge
- sample size $n \rightarrow n-1$ and iterate until n = 1 (MRCA)
- all individuals exchangable
- topology invariant under permutation of "leaves"

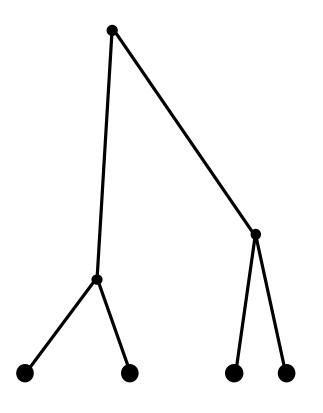
"random bifurcating tree"



- pick two random individuals from the sample and merge
- sample size $n \rightarrow n-1$ and iterate until n = 1 (MRCA)
- all individuals exchangable
- topology invariant under permutation of "leaves"

same topology

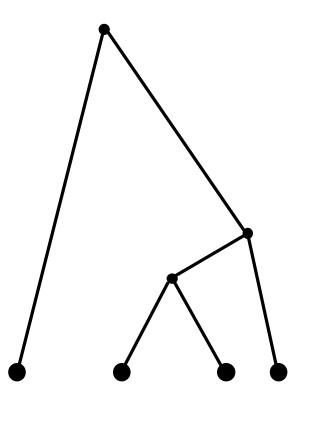
"random bifurcating tree"



- pick two random individuals from the sample and merge
- sample size $n \rightarrow n-1$ and iterate until n = 1 (MRCA)
- all individuals exchangable
- topology invariant under permutation of "leaves"

different topology

"random bifurcating tree"



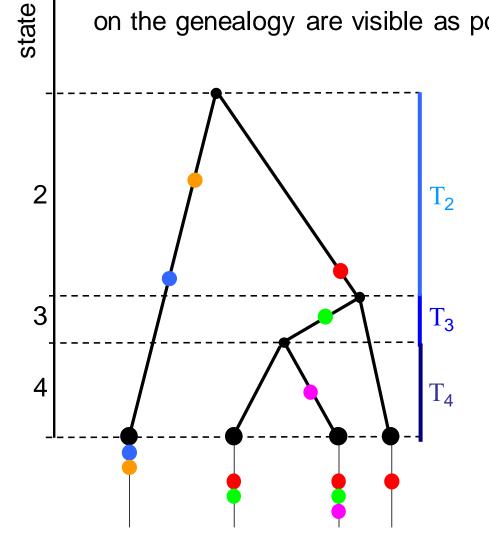
- pick two random individuals from the sample and merge
- sample size $n \rightarrow n-1$ and iterate until n = 1 (MRCA)
- all individuals exchangable
- topology invariant under permutation of "leaves"

Distribution of tree topologies

- independent of coalescence times
- depends only on the separation of state and descent and on the "no multiple merger" condition

Coalescent Theory Mutation "Dropping"

Infinite sites mutation model: mutation rate u, all mutations on the genealogy are visible as polymorphisms on different sites



- only number of mutations on each branch matters
- Poisson distributed with parameter $2Nu \cdot L = \frac{\theta \cdot L}{2}$, $L = \sum_{i=j}^{k} T_i$ branch length of branch from state *j* through *k*

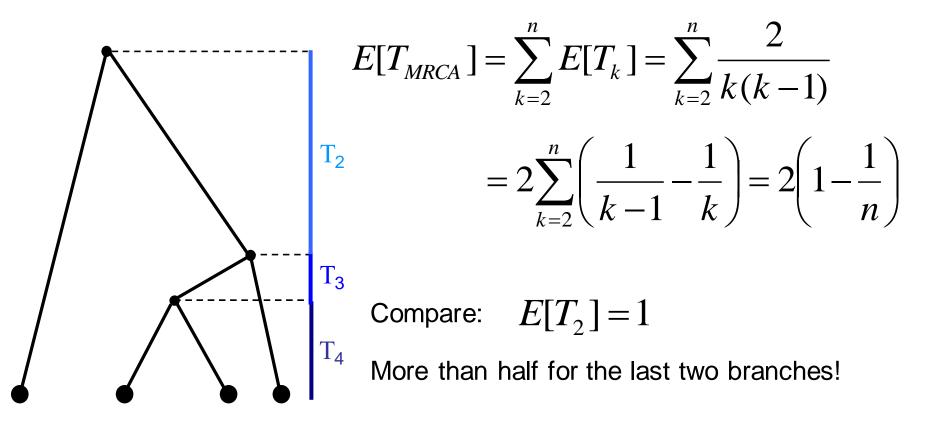
(also other mutation schemes possible)

Three independent stochastic factors determine the polymorphism pattern:

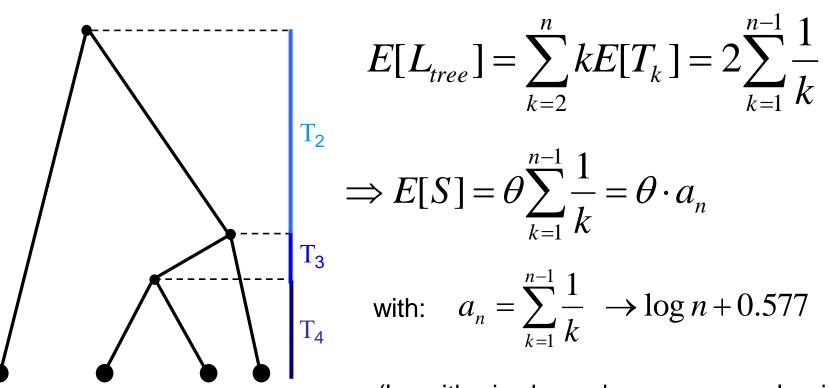
- 1. coalescent times
- 2. tree topology
- 3. mutation

(very easy to implement in simulations)

Time to the most recent common ancestor:



Total length of the tree and expected number of polymorphic sites:



(logarithmic dependence on sample size)

Expected site frequency spectrum:

 ξ_k Number of mutations that appear k times in the sample (= of size k)

