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Introduction to the Coalescent
data, data, data, ...

Massive accumulation of DNA sequence data

« 1980s: 3-4 years PhD projects to sequence
a single gene (some 1000 base pairs)

« 1990 —2003: Human Genome Project (~ 3 10° (3 billion) bases)
expected: 3 billion $, final: ~ 300 Mio $

e since 2010: 1000 Genome Project
4000 $ — 10000 $ per genome, soon < 1000 $

« today: extended to 2500 (25 x 100), completed May 2013
1000 genomes also for Drosophila, Arabidopsis ...



Sample size (n = 6)

Patterns of Evolution
"Summary Statistics”

Sequence alignment (length m = 26)

A GATHFEAGECECTFAGACTHFTFAGGTIGATGE

A CATTHFAAGEECTAGACATAGGTGTTGEC

4(6x26) = g3 x10°3



Patterns of Evolution
"Summary Statistics”

only polymorphic sites ...
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compare with outgroup ...

Patterns of Evolution
"Summary Statistics”
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Patterns of Evolution
"Summary Statistics”

forget about molecular state ...

(assumes infinite sites mutation model)



Patterns of Evolution
Summary statistics based on segregating sites

* number of segregating sites and allele frequencies
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Patterns of Evolution
Summary statistics based on segregating sites

* number of segregating sites and allele frequencies

- associations not important (“molecular bean bag")

mutation
“size*
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Patterns of Evolution
Summary statistics based on segregating sites

* number of segregating sites and allele frequencies

- associations not important (“molecular bean bag")

- genome position
does not matter

mutation
“size*
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Patterns of Evolution
Summary statistics based on segregating sites

Site Frequency Spectrum
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Patterns of Evolution
Reconstruction of evolutionary history
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Patterns of Evolution
Reconstruction of evolutionary history

Process » Pattern
4 N\ 7
standard o
neutral model Distributions ?
\ y L

How does pure randomness look like ?

» Null-model of the evolutionary theory



population (size 2N)
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Patterns of Evolution
Wright-Fisher model

Neutral genetic variation
* single locus, multiple alleles

Drift:

« random sampling of parents
* k types: multinomial offspring distribution

Mutation:

 probability u for each offspring

* infinite alleles model: every mutation leads
to a new allele (“new color”)

1. 2. generation

L




Patterns of Evolution
Wright-Fisher model
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Patterns of Evolution
Wright-Fisher model
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Patterns of Evolution
Wright-Fisher model
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Patterns of Evolution
coalescence Process

All information about the
genetic variation pattern
IS contained In the sample
genealogy.



continuous time

Patterns of Evolution
coalescence Process

All information about the
genetic variation pattern
IS contained In the sample
genealogy.

Construct a process
to generate genealogies:

,coalescence-process”



Coalescent Theory
The standard neutral model

Haploid Wright-Fisher population of size 2N :
« Genetic differences have )

_ Exchangable offspring distribution,
no consequences on fitness

> Independent of any state label

« No population subdivision (genotype, location, age, ...)
’ Vs
« Constant population size » Wright-Fisher: multinomial sampling

Individuals are equivalent with respect to descent
“State” and Descent” are decoupled

|:> 2 steps: 1. Construct genealogy independently of the state
2. Decide on the state only afterwards



2N

Coalescent Theory

Construction of the Genealogy: Sample Size 2
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o » Coalescence probability
O O ... In a single generation:
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Coalescent Theory

Construction of the Genealogy: Sample Size 2

o o o Coalescence probability

O O O ... In a single generation:
1

® ® ® pc,l — m

O

... for exactly t generations:

t-1
()L
’ 2N 2N



2N

Coalescent Theory
Construction of the Genealogy: Sample Size n

Multiple (e.g. triple) mergers:

ptriple = 4|1-| 2 = O[N _2]




2N

Coalescent Theory
Construction of the Genealogy: Sample Size n

Multiple (e.g. triple) mergers:

1

of]

ptriple =
Multiple coalescences:

Pr oc pf’t = O[N _2]



2N

Coalescent Theory
Construction of the Genealogy: Sample Size n

Multiple (e. ' mergers:

Prriple = 4—|]\-|2 = O[N _2]

MW
Proc p?, = O[N ‘2]

can be ignored if N>>n:
only binary mergers for N — oo

‘Kingman coalescent”



Coalescent Theory

Construction of the Genealogy: Sample Size n

2N

O o K Coalescence probability
-7 (single binary merger)
7’
® ¢ ... In a single generation:
O O O p(n): 1 (N :n(n_]_)
o - “2N\2) 4N
O O ® ... for exactly t generations:

® o--o - (1— n(n_l)jl n(n—1)
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coalescence time

Coalescent Theory

Distribution of Coalescence Times

Define coalescence time scale:

__t
2N

Coalescence time T, for sample size 2:

1 2Nt
T Pr[T, > 7]= (1—Nj

N— o

T

> exp|-7]
Exponential distribution with parameter 1.

E[T2 ] =1 (2N generations)



coalescence time
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Coalescent Theory
Distribution of Coalescence Times

iterate until most recent
common ancestor (MRCA):

T3

Ty

with sample size n:

Exponential distribution with

parameter : [nj: n(n-1)
2 2

2
n(n-1)

E[T, |=



coalescence time

Coalescent Theory
Tree Topologies

“random bifurcating tree” . pick two random individuals
from the sample and merge

 sample size n — n-1 and
iterate until n =1 (MRCA)

- all individuals exchangable
» topology invariant under
permutation of “leaves”



coalescence time

Coalescent Theory
Tree Topologies

“random bifurcating tree” . pick two random individuals
from the sample and merge

 sample size n — n-1 and
iterate until n =1 (MRCA)

- all individuals exchangable
» topology invariant under
permutation of “leaves”

same topology




coalescence time

Coalescent Theory
Tree Topologies

“random bifurcating tree” . pick two random individuals
from the sample and merge

 sample size n — n-1 and
iterate until n =1 (MRCA)

- all individuals exchangable
» topology invariant under
permutation of “leaves”

different topology



coalescence time

Coalescent Theory
Tree Topologies

“random bifurcating tree”

pick two random individuals
from the sample and merge

sample size n — n-1 and
iterate until n =1 (MRCA)

all individuals exchangable

» topology invariant under

permutation of “leaves”

r

\_

Distribution of tree topologies

Independent of coalescence times
depends only on the separation of
state and descent and on the
“no multiple merger® condition

~N

J




state

Coalescent Theory
Mutation “Dropping”

Infinite sites mutation model: mutation rate u, all mutations
on the genealogy are visible as polymorphisms on different sites

only number of mutations
on each branch matters

Poisson distributed with

parameter 2Nu-L = % ,
k

L=>T, branch length
i= |

of branch from state J through k

(also other mutation
schemes possible)



Coalescent Theory
Basic Properties

Three independent stochastic factors
determine the polymorphism pattern:

1. coalescent times
2. tree topology
3. mutation

(very easy to
implementin
simulations)




Coalescent Theory
Basic Properties

Time to the most recent common ancestor:
L 2
= k(k-1)

E[TMRCA] — Zn: E[Tk] —

Compare:  E[T,]=1

More than half for the last two branches!




Coalescent Theory
Basic Properties

Total length of the tree and expected number
of polymorphic sites:

n—1 1
ElLiee] = ZkEFk] 2
k=1
n-1 1
= E[S]=60) —=6-a,
1 K
| n-1 1
with: @, =)> — —logn+0.577
a1 K

(logarithmic dependence on sample size)



Coalescent Theory
Basic Properties

Expected site frequency spectrum:

é‘k Number of mutations that appear k times in the sample (= of size k)

Elc1/6
P

n-1 1 n-1
E = E[é:k]
k=1 k=1

E[S]=6

indeed: - [gk ] — g

In particular: E[fl] =0



