The Neutral Model Evolution without selection

Joachim Hermisson

Mathematics and Biosciences Group Mathematics & MFPL, University of Vienna

Evolutionary processes

Evolutionary processes

What is random genetic drift?

What is random genetic drift?

How do we define drift?

What is random genetic drift?

How do we define drift?

Change in allele counts due to variation in offspring number that is

- independent of external factors independent of genotypes (heritable factors)

Effects of drift in a finite population:

- allele frequencies in finite populations are not fixed, but undergo random changes from one generation to the next
- allele frequencies in sub-population diverge after population split
- alleles may get lost from a population or reach fixation

How to quantify this? – need a model

The Wright-Fisher model: Drift as binomial sampling

- Discrete time, non-overlapping generations
- Single haploid locus with two alleles
- Constant haploid population size 2N
- Alleles in the next generation are sampled from an *infinite gamete pool* of the current generation
- "Offspring randomly choose a parent" and inherit his/her genotype
- > Sampling with replacement \implies ?

The Wright-Fisher model: Drift as binomial sampling

Binomial distribution

single parent: probability for k offspring (# trials n = 2N; success prob. p = 1/2N)

$$\Pr[k] = \binom{2N}{k} \left(\frac{1}{2N}\right)^k \left(1 - \frac{1}{2N}\right)^{2N-k}$$

mean: $E[k] = n \cdot p = 1$

variance

nce:
$$\sigma_k^2 = n \cdot p(1-p)$$

= $1 - (1/2N) \approx 1$

The Wright-Fisher model: Drift as binomial sampling

population (size 2N)

Binomial distribution

population: allele frequency $p_t = \frac{i}{2N}$ probability for $p_{t+1} = \frac{j}{2N}$ in next generation:

$$P_{ij} = \binom{2N}{j} \left(\frac{i}{2N}\right)^j \left(1 - \frac{1}{2N}\right)^{2N-j}$$

mean: $E[p_{t+1}] = p_t$

variance:
$$Var[p_{t+1}] = \frac{p_t(1-p_t)}{2N}$$

drift stronger in small populations

The Wright-Fisher model: Fixation of neutral alleles

population (size 2N)

The Wright-Fisher model: Fixation of neutral alleles

time in generations

The Wright-Fisher model: Fixation of neutral alleles

population (size 2N)

Can drift (plus mutation) explain observed patterns of diversity ?

Motoo Kimura 1960's: Neutral theory of molecular evolution

The observed natural diversity at the molecular level is largely the result of neutral evolution: patterns of genetic variation and diversity are explained by drift and mutation

What neutral theory does not say:

"Selection is not important for evolution"

- Purifying selection responsible for conserved DNA (eg in genes)
- Adaptive evolution due to positive selection
- But: adaptive diversity tiny relative to neutral diversity

Which patterns do we expect? - need a model

Description of neutral genetic variationsingle locus, multiple alleles

Drift:

generation

2.

- random sampling of parents
- *k* types: multinomial offspring distribution

$$\Pr[p'_1, \dots, p'_k] = \frac{N!}{\prod_i (p'_i N)!} \prod_i p_i^{p'_i N}$$

population (size 2N)

Description of neutral genetic variationsingle locus, multiple alleles

Mutation:

• probability *u* for each offspring

Three different mutation schemes:

- finite alleles model: like deterministic, include extra step in *infinite gamete pool*
- infinite alleles model: every mutation leads to a new allele ("new color")
- infinite sites model: every mutation occurs at a different site and thus *remains visible*

1. 2. generation

1. Neutral variation: expected heterozygosity H / nucleotide diversity E[π]

- What is the probability that two randomly sampled alleles from a Wright-Fisher population have a different type?
 - change in heterozygosity from generation $t \rightarrow t+1$

$$H_{t+1} = 2u + (1 - 2u) \left(1 - \frac{1}{2N} \right) H_t$$

• in equilibrium $(H = H_{t+1} = H_t)$: $H \approx \frac{\theta}{\theta + 1}$, $\theta = 4Nu$

• nucleotide level ($\theta << 1$): $E[\pi] = H_{\text{nucleotide}} = \frac{\theta}{\theta + 1} \approx \theta$

1. Neutral variation: expected heterozygosity H / nucleotide diversity $E[\pi]$

 $H \approx \theta = 4Nu$ should increase with mutation rate *u* and with pop. size *N*

Although an increase is observed, there are strong deviations from the prediction of neutral theory:

E Coli	$H \approx 0.16$	$u\approx 10^{-10}$	$\rightarrow N \approx 10^8$?	$> 10^{10}$ in each human !
Drosophila	$H\approx 0.01$	$u\approx 3\cdot 10^{-9}$	$\rightarrow N \approx 10^6$?	$> 10^{15}$ (?)
Homo	$H\approx 0.001$	$u \approx 3 \cdot 10^{-8}$	$\rightarrow N \approx 10^4$?	$\sim 10^{9}$

Reasons?

- population bottlenecks
- selection

- 1. Neutral divergence: substitution rates
- At which rate are neutral alleles substituted in a population?
 - new mutational input per generation: 2Nu
 - fixation probability for each new mutant:

$$p_{fix} = \frac{1}{2N}$$

> neutral substitution rate:
$$2Nu \cdot \frac{1}{2N} = u$$

- independent of population size !
- basis for "molecular clock" estimates

Can drift (plus mutation) explain observed patterns of diversity ?

- Sparked the fierce adaptionist / neutralist debate
- Today: selection seems to be very important even at the molecular level:
 - New mutations: many non-coding parts of the genome under selection (regulatory elements, etc)
 - Substitutions: large fractions seem to be driven by positive selection (> 50% in *Drosophila*)
- But: neutral theory generally accepted null model of molecular evolution
- Foundation of statistical genetics as research field

Introduction to the Coalescent data, data, data, ...

Massive accumulation of DNA sequence data

- 1980's: 3-4 years PhD projects to sequence a single gene (some 1000 base pairs)
- 1990 2003: Human Genome Project (~ 3 10⁹ (3 billion) bases) expected: 3 billion \$, final: ~ 300 Mio \$
- since 2010: 1000 Genome Projects also for Drosophila, Arabidopsis ...
- today: GWAS sample sizes > 500 000 (UK-Biobank), long reads …

Sequence alignment (length m = 26)

 $4^{(6\times26)} = 8.3 \times 10^{93}$

only polymorphic sites ...

compare with outgroup ...

forget about molecular state ...

(assumes *infinite sites mutation* model)

Patterns of Evolution Summary statistics based on haplotypes or LD

- number or frequency distribution of haplotypes
- or any other measure of linkage disequilibrium (r², D, ...)

• number of segregating sites and allele frequencies

- number of segregating sites and allele frequencies
 - associations not important ("molecular bean bag")

- number of segregating sites and allele frequencies
 - associations not important ("molecular bean bag")

- genome position does not matter

Site Frequency Spectrum

Site Frequency Spectrum

total number of segregating sites in an sample of size *n*

$$\pi = \frac{1}{\binom{n}{2}} \sum_{i=1}^{n-1} i(n-i)\xi_i:$$
average number of

pairwise differences

Patterns of Evolution Reconstruction of evolutionary history

Statistical Reconstruction

Patterns of Evolution Reconstruction of evolutionary history

How does pure randomness look like ?

> Null-model of the evolutionary theory

Patterns of Evolution Wright-Fisher model

Patterns of Evolution Wright-Fisher model

Patterns of Evolution Wright-Fisher model

Patterns of Evolution coalescence process

All Information about the genetic variation pattern is contained in the sample genealogy.

Patterns of Evolution coalescence process

All Information about the genetic variation pattern is contained in the sample genealogy.

Construct a process to generate genealogies:

"coalescence-process"

Coalescent Theory The standard neutral model

Haploid Wright-Fisher population of size 2N:

- Genetic differences have no consequences on fitness
- No population subdivision
- Constant population size

Exchangable offspring distribution, independent of any *state label* (genotype, location, age, ...)

Wright-Fisher: multinomial sampling

Individuals are equivalent with respect to descent *`State' and `Descent' are decoupled*

- 2 steps: 1. Construct genealogy independently of the state
 - 2. Decide on the state only afterwards

Coalescent Theory Construction of the Genealogy: Sample Size 2

Coalescence probability

... in a single generation:

$$p_{c,1} = \frac{1}{2N}$$

... for exactly 2 generations:

$$p_{c,2} = \left(1 - \frac{1}{2N}\right) \frac{1}{2N}$$

Coalescent Theory Construction of the Genealogy: Sample Size 2

Coalescence probability

... in a single generation:

$$p_{c,1} = \frac{1}{2N}$$

... for more than *t* generations:

$$p_{c,>t} = \left(1 - \frac{1}{2N}\right)^t$$

Coalescent Theory Construction of the Genealogy: Sample Size *n*

Multiple (e.g. triple) mergers: $p_{triple} = \frac{1}{4N^2} = 0[N^{-2}]$

$$\Pr \propto p_{c,t}^2 = \mathcal{O}[N^{-2}]$$

can be ignored if N >> n: only binary mergers for $N \to \infty$

"Kingman coalescent"

Coalescent Theory Construction of the Genealogy: Sample Size *n*

Coalescence probability (single binary merger)

... in a single generation:

$$p_{c,1}^{(n)} = \frac{1}{2N} \binom{n}{2} = \frac{n(n-1)}{4N}$$

... for more than *t* generations:

$$p_{c,>t}^{(n)} = \left(1 - \frac{n(n-1)}{4N}\right)^t$$

Coalescent Theory Distribution of Coalescence Times

Define coalescence time scale:

$$\tau = \frac{t}{2N}$$

 T_2

Coalescence time T_2 for sample size 2:

$$\Pr[T_2 > \tau] = \left(1 - \frac{1}{2N}\right)^{2N\tau}$$
$$\xrightarrow{N \to \infty} \operatorname{Exp}[-\tau]$$

Exponential distribution with parameter 1:

 $E[T_2] = 1$ (2*N* generations)

Coalescent Theory Distribution of Coalescence Times

iterate until most recent common ancestor (MRCA):

with sample size n:

$$\Pr[T_n > \tau] = \left(1 - \frac{1}{2N} \binom{n}{2}\right)^{2N\tau}$$
$$\xrightarrow{N \to \infty} \operatorname{Exp}\left[-\binom{n}{2}\tau\right]$$
Exponential distribution with barameter $\binom{n}{2} = \frac{n(n-1)}{2}$
$$\operatorname{E}[T_n] = \frac{2}{n(n-1)}$$

 $\sqrt{2N\tau}$

τ

"random bifurcating tree"

- pick two random individuals from the sample and merge
- sample size $n \rightarrow n-1$ and iterate until n = 1 (MRCA)
- all individuals exchangable
- topology invariant under permutation of "leaves"

"random bifurcating tree"

- pick two random individuals from the sample and merge
- sample size $n \rightarrow n-1$ and iterate until n = 1 (MRCA)
- all individuals exchangable
- topology invariant under permutation of "leaves"

same topology

"random bifurcating tree"

- pick two random individuals from the sample and merge
- sample size $n \rightarrow n-1$ and iterate until n = 1 (MRCA)
- all individuals exchangable
- topology invariant under permutation of "leaves"

different topology

"random bifurcating tree"

- pick two random individuals from the sample and merge
- sample size $n \rightarrow n-1$ and iterate until n = 1 (MRCA)
- all individuals exchangable
- topology invariant under permutation of "leaves"

Distribution of tree topologies

- *independent of coalescence times*
- depends only on the separation of state and descent and on the "no multiple merger" condition

Coalescent Theory Mutation "Dropping"

Infinite sites mutation model: mutation rate u, all mutations on the genealogy are visible as polymorphisms on different sites

- only number of mutations on each branch matters
- Poisson distributed with parameter $u \cdot 2NL = \frac{\theta \cdot L}{2}$, $L = \sum_{i=j}^{k} T_i$ branch length of branch from state *j* through *k*

(also other mutation schemes possible)

Three **independent** stochastic factors determine the polymorphism pattern:

- 1. coalescent times
- 2. tree topology
- 3. mutation

(very easy to implement in simulations)

Time to the most recent common ancestor:

Total length of the tree and expected number of polymorphic sites:

(logarithmic dependence on sample size)

Expected site frequency spectrum:

 ξ_k Number of mutations that appear k times in the sample (= of size k)

$$E[S] = \theta \sum_{k=1}^{n-1} \frac{1}{k} = \sum_{k=1}^{n-1} E[\xi_k]$$

indeed: $E[\xi_k] = \frac{\theta}{k}$

in particular: $E[\xi_1] = \theta$

Coalescent Theory Estimators

Expected site frequency spectrum under standard neutrality:

$$E[S] = \theta \sum_{k=1}^{n-1} \frac{1}{k} = \sum_{k=1}^{n-1} E[\xi_k]$$
$$E[\xi_k] = \frac{\theta}{k}$$

- depends on $\theta = 4N_e u$ as only model parameter
- > How can we estimate θ ?

Coalescent Theory Estimators

Unbiased estimators of the mutation parameter $\theta = 4Nu$:

Watterson's estimator:

$$\hat{\theta}_W = \frac{S}{a_n} = \sum_{k=1}^{n-1} \xi_i / \sum_{k=1}^{n-1} \frac{1}{k}$$
 (equal weights)

 π -based estimator:

$$\hat{\theta}_{\pi} = \pi = {\binom{n}{2}}^{-1} \sum_{k=1}^{n-1} k(n-k) \xi_k$$

(intermediate frequencies)

Fay and Wu's estimator:

singleton estimator:

$$\hat{\theta}_H = {\binom{n}{2}}^{-1} \sum_{k=1}^{n-1} k^2 \,\xi_k$$

(high frequencies)

$$\hat{\theta}_s = \frac{n-1}{n} (\xi_1 + \xi_{n-1})$$

(extreme frequencies)

singletons of the folded spectrum