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abstract: We consider the effects of epistasis in a polygenic trait
in the balance of mutation and stabilizing selection. The main issues
are the genetic variation maintained in equilibrium and the evolution
of the mutational effect distribution. The model assumes symmetric
mutation and a continuum of alleles at all loci. Epistasis is modeled
proportional to pairwise products of the single-locus effects. A gen-
eral analytical formalism is developed. Assuming linkage equilibrium,
we derive results for the equilibrium mutation load and the genetic
and mutational variance in the house of cards and the Gaussian
approximation. The additive genetic variation maintained in
mutation-selection balance is reduced by any pattern of the epistatic
interactions. The mutational variance, in contrast, is often increased.
Large differences in mutational effects among loci emerge, and a
negative correlation among (standard mean) locus mutation effects
and mutation rates is predicted. Contrary to the common view since
Waddington, we find that stabilizing selection in general does not
lead to canalization of the trait. We propose that canalization as a
target of selection instead occurs at the genic level. Here, primarily
genes with a high mutation rate are buffered, often at the cost of
decanalization of other genes. An intuitive interpretation of this view
is given in the discussion.
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Most life-history, morphological, or behavioral characters
are so-called complex quantitative traits; that is, they vary
along a quantitative scale and are influenced by more than
one or two genes (they are polygenic). A major challenge
of current quantitative genetics is to elucidate the genetic
architecture of these traits (for a recent review, see Mackay
2001) and to understand the evolutionary forces that
shaped this architecture. Although epistasis appears to be
a nearly universal component of the architecture of most
quantitative traits (Templeton 2000) and has important
evolutionary consequences (Fenster et al. 1997), it is often
disregarded in population genetic studies (but see Wolf et
al. 2000). In this article, we discuss a model of a quan-
titative character with multilinear epistasis among the un-
derlying genes and analyze the effects of epistasis in
mutation-selection balance. Two primary questions mo-
tivate our work: How does epistasis affect the maintenance
of genetic variation in equilibrium? and How does sta-
bilizing selection shape the genetic architecture of an ep-
istatic trait?

For a purely additive trait, a highly developed mathe-
matical theory exists that has succeeded in providing ac-
curate estimates for the genetic variance in mutation-
stabilizing-selection balance (see Bürger 2000 for a detailed
account). Depending on the mutational parameters, two
approximations apply. If mutation rates are low and/or
mutational effects are sufficiently large, the genetic vari-
ance is mainly due to a few mutations of large effects that
segregate in the population at equilibrium. This situation
is described by Turelli’s (1984) house of cards (HC) ap-
proximation. The Gaussian approximation of Lande
(1976b), on the other hand, assumes a normal distribution
of the allelic effects and requires high mutation rates and/
or low mutational effects. The results show that reasonably
high levels of genetic variance can be explained this way,
although the estimates, in particular for traits under strong
selection in the HC regime, are still lower than typically
measured values. The additive model has been extended
in various directions in order to include drift, the effect
of different mating systems, or inbreeding (cf. Bürger
2000). The effect of epistasis, however, has so far only been
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studied in some special models of balancing selection (Gi-
melfarb 1989; Gavrilets and de Jong 1993) but not for a
polygenic trait in mutation-stabilizing-selection balance.

The term “genetic architecture” refers to the number,
identities, and variational properties of the genes (or, more
generally, the variationally independent loci) that partic-
ipate in the development of a character. The variational
properties include the locus mutation rates as well as the
distribution of single and multiple mutational effects,
which are determined by the nature of the genetic inter-
actions, that is, epistasis and dominance (Lynch and Walsh
1998, p. 321). In contrast to the population genetic quan-
tities that depend on the allele frequencies, the variational
properties are properties of genotypes in a given environ-
ment. In this article, we will concentrate on the evolution
of the mutational-effect distribution. For each given ge-
notype, this distribution describes how mutational vari-
ation maps to phenotypic variation. For purely additive
gene effects, it is independent of the genotype in which it
is measured. In the presence of dominance or epistasis, it
depends on the genetic background and may evolve.

The most frequently investigated ideas about the evo-
lution of mutational effects are the evolution of dominance
(reviewed in Mayo and Bürger 1997) and canalization (re-
viewed in Gibson and Wagner 2000; Hermisson and Wag-
ner 2003). Canalization is a concept that goes back to
Waddington (1953) and Schmalhausen (1949), who hy-
pothesized that stabilizing selection should lead to the evo-
lution of genotypes that are less sensitive to recurrent del-
eterious mutations. There is some preliminary empirical
evidence for the existence of robust genotypes (reviewed
in Scharloo 1991), and there are some theoretical argu-
ments supporting the basic idea of stabilizing selection
causing canalization (Wagner 1996; Wagner et al. 1997;
van Nimwegen et al. 1999; and many more), although the
results are far from convincing (Hermisson and Wagner
2003).

In this article, we present a detailed mathematical anal-
ysis of a rather general model (a polygenic trait with a
continuum of alleles and epistasis proportional to products
of the single-locus effects in the balance of symmetric mu-
tations and stabilizing selection). Assuming linkage equi-
librium, we show that the additive genetic variance that
is maintained in equilibrium is reduced by any pattern of
epistasis in the model, under Gaussian as well as under
house of cards conditions; we also show that canalization
on the level of the trait is not a necessary outcome of
stabilizing selection and epistasis. In many cases, the av-
erage effects of loci diverge, leading to genes with large
effects (major loci) and others with small effects (minor
loci), rather than a uniform decrease of effects. Buffering
effects are found primarily for genes with high mutation
rates.

The first two sections of this article introduce the mul-
tilinear model (Hansen and Wagner 2001b) and set up the
formalism. Central results in this part are the equilibrium
condition (23) and the discussion of the selection forces.
In the third section, the formalism is applied to the two-
locus case as a concrete example where everything can be
calculated explicitly. Subsequently, the multilocus results
are presented. Two sections are devoted to the evolution
of the genetic architecture and the effects of epistasis on
the genetic variances. The “Discussion” summarizes the
most important results and expounds their consequences.
Additional and technical material is collected in the
appendices.

Model

We consider the evolution of a quantitative trait and the
underlying genetic architecture in a randomly mating dip-
loid population with equivalent sexes. Population size is
assumed to be sufficiently large to ignore random genetic
drift. The phenotypic value is , where the en-z p x � e
vironmental component e is given by a random variable
with zero mean and variance . The environmental effectsVE

are assumed independent of the genotypic value x of an
individual, which is given by the following map:

x p x � y � � y y . (1)� �r i ij i j
1i i, j i

Here, the single-locus variables are deter-∗y p a � ai i i

mined additively by the maternal and paternal effects. We
thus neglect, for simplicity, dominance in the model. In
the following, it will be convenient to directly calculate
with whole-locus (diploid) quantities. Due to equivalence
of the sexes, and assuming Hardy-Weinberg proportions
throughout, the whole-locus cumulants are just twice the
corresponding haploid ones. In particular, we have ȳ pi

and for the locus means and variances.¯2a V p 2 Var (a )i i i

The functional form of the trait values (eq. [1]) is a
special case of the multilinear model of gene interactions
(Hansen and Wagner 2001b) with pairwise interactions
only. The multilinear model was derived from the as-
sumption that the genetic background influences the allelic
effects at any given locus by a common factor. It is mo-
tivated by the interest of an operational definition of all
model parameters on the level of the phenotype itself. The
central concept to achieve this is the introduction of a
reference genotype relative to which all allelic effects are
measured. In this view, the are the reference effects ofyi

the single-locus substitutions. They can assume any real
value and span the genotype space. If there are n loci, a
genotype (respectively, the class of genotypes with the same
set of reference effects) is described by a vector ny � �
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with components . The reference genotype, in particular,yi

is at the origin of the space. It is represented by the zero
vector and has the genotypic value . Deviations of thex r

effects of multilocus substitutions from the sum of the
single-locus effects give rise to the epistasis terms. For most
of our study, only pairwise interactions with arbitrary epis-
tasis parameters are included. An extension to� � �ij

higher-order interactions is discussed in appendix D.
An important role in the following will be played by

the partial derivatives of x with respect to the reference
effects:

�
f p f (y) :p x p 1 � � y . (2)�i i ij jF�y j(iyi

Here, measures the sensitivity of the phenotype withf (y)i

respect to changes in the ith locus for individuals with
genotype relative to the reference; if the reference effecty
of a substitution is , its phenotypic effect in the back-di

ground is . The thus are epistasis factors (Hanseny f (y)d fi i i

and Wagner 2001a, 2001b), capturing the epistatic effect
of changes in the genetic background on the locus ref-
erence effects. As the genotypes, the epistasis factors also
are conveniently represented in vector form. Defining

to be the gradient of b with respect to a set of variables∇ba

(i.e., the vector with ith component ), we cana �b/�ai i

write

f p ∇ x p 1 � Ey, (3)y

where is the vector with all values as 1,t1 p (1, 1, 1, …)
and is the epistasis matrix (Rice 1998), with elementsE

2� x
E p � p . (4)ij ij

�y �yi j

Note that the diagonal elements of are all 0.E
Mutations at the ith locus occur at a diploid (twice the

haploid) rate and add a random increment to theu di i

locus reference effect . The distribution of mutationalyi

reference effects is assumed to be symmetric with variance
and mean 0. Note that, in an epistatic model, the ref-2gi

erence effect of any given mutation must be distinguished
from its population mean effect. Since phenotypic effects
in a reference background define the genotypes in this
model, the mutational reference effects really describe mu-
tations on a genotypic level and are fixed. The population
mean phenotypic effect of a mutation , on the other hand,di

depends on the distribution of genetic backgrounds in the
population. It is given by and can evolve. Similarly,f̄ di i

the variance of phenotypic effects of mutations at the ith
locus becomes in the population average. Here and2 2A f Sgi i

in the following, we denote population means by angled
brackets, but we use the overbar as a shorthand for single
letters; that is, . In order to clearly distinguish mean¯AxS p x
from reference effects, we will use the terms “mutational
effect” and “mutational variance” exclusively in the mean-
ing of these quantities in the population average. If, in
contrast, reference effects or variances are referred to, this
will be stated explicitly.

We assume weak quadratic viability selection of strength
s toward an optimum . Malthusian (logarithmic) fitnessxopt

is given by , which leads to a2m(z) p m � s(z � z )opt opt

genotypic fitness of

2m(x) p m � sV � s(x � z ) . (5)opt E opt

On a direct multiplicative scale, this corresponds to a
Gaussian fitness function. By an appropriate change of the
reference (e.g., the choice of and ,y p z � x y p 01 opt r i

as coordinates of the reference genotype), we cani 1 1
always choose the genotypic value of the reference ge-x r

notype to coincide with the optimum trait value. In the
following, we will therefore assume withoutx p z p 0r opt

loss of generality. Note, however, that a change of the
reference also changes the epistasis coefficients and the
mutational effects of the model according to

�ij′ ′d p f d , � p . (6)i i i ij f fi j

If the phenotypic effects of allele substitutions in the new
reference are small (small ), this can lead to large valuesfi

of the epistasis coefficients.
An intuitive way to represent epistatic models is the

picture of the phenotype landscape (Rice 1998), which
expresses the phenotype as a function of underlying genetic
factors, .1 A landscape illustration of thex p x(y , … , y )1 n

multilinear model (for two loci) is shown in figure 1. We
do not suggest that the phenotype landscape of real traits
are of this multilinear type. In the vicinity of an equilib-
rium, however, it may serve as good local approximation
by capturing the first two terms of a Taylor expansion. On
global scales, the important point that distinguishes the
epistatic landscape from a purely additive model is that
the variational properties (i.e., the effects of single and
multiple mutants on phenotype) are able to change as the
population evolves on the landscape. The multilinear
model captures this and offers the population at any lo-
cation in the landscape a broad variety of neighborhoods
with different variational properties for natural selection
to choose from. In particular, if the population evolves

1 For simplicity, we will frequently refer to the genotypic value as the

phenotype.
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Figure 1: Phenotype landscape (left) and fitness landscape (right) of the multilinear model with two loci. On a phenotype landscape, genotypic
values correspond to height and single-locus variational effects to slope. Epistatic effects manifest as curvature and are measured by the higher-
order derivatives. On the fitness landscape, contours of equal fitness form a hyperbola-shaped ridge with the contour of the optimum phenotype,

, at the top. The ridge is relatively flat in the vicinity of the reference genotype but becomes steep as we follow the contour inx p 0 y p y p 01 2

either direction.

along subspaces of genotypes that lead to the same phe-
notype (called isophenotype contours in the following), it
may change the variational properties without changing
the genotypic value.

Expressions for Genetic Load and Variances

For the following, it will be convenient to express the
phenotypic means and variances in terms of the mean
epistasis factors acting on the loci. In linkage equilibrium,f̄i

the population mean can be written as tx̄ p A1 y �
, where t denotes transposition. Ift t t¯ ¯ ¯y Ey/2S p 1 y � y Ey/2

is invertible, we can use to rewrite this�1 ¯¯E y p E ( f � 1)
relation as

1 t
�1 t �1¯ ¯x̄ p f E f � 1 E 1 . (7)( )

2

The genetic variance may be decomposed into its ad-VG

ditive and epistatic part. Since we only consider pairwise
interactions and we neglect dominance, the epistatic var-
iance is entirely due to its component.additive # additive
We thus have . In linkage equilibrium,V p V � V VG A AA A

and may be expressed asVAA

t 2¯ ¯ ¯V p f Vf p f V , (8)�A i i
i

1 1
2 2V p tr[(EV) ] p Var (f )V p � V V . (9)� �AA i i ij i j2 2 !i i, j i

Here, V is the variance matrix, which holds the locus
variances in the diagonal, and tr[A] denotes the traceVi

of . Along with other quantitative parameters of the mul-A
tilinear model, these expressions were first derived in Han-

sen and Wagner (2001b, p. 68). Similar relations exist for
higher moments of the phenotype distribution. For a sym-
metric distribution of all locus reference effects (e.g., atyi

the equilibria; see below), the third cumulant, for example,
reads

t
3¯ ¯C (x) p 3f VEVf � tr[(EV) ]. (10)3

Since fitness is quadratic in the trait values, the mutation
load is simply

2
2 2 2¯¯ ¯L p s(x � V ) p s x � f V � � V V . (11)( � � )G i i ij i j

!i i, j i

The mutational variance, finally, takes the form

2 2V p V p j A f S� �m m, i m, i i
i i

2
2 2¯p j f � � V , (12)( )� �m, i i ij j

i j(i

where is the mutational variance at the ith2 2j p u gm, i i i

locus in the reference background.

Mutation-Selection Dynamics

Let us now consider the change in the distribution of
genotypes under mutation and selection. The per-
generation change of the means and variances of the
single-locus reference effects, and , is twice the changeȳ Vi i

of the corresponding haploid quantities, which is given by
the Price equations (Price 1970; Frank and Slatkin 1990).
In linkage equilibrium and for weak mutation and selec-
tion, the whole-locus changes read
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¯ ¯Dy p 2Da p 2 Cov (a , w),i i i

2 2¯DV p 2D Var (a ) p 2 Cov [(a � a ) , w] � j . (13)i i i i m, i

From equation (13), the following relations for the change
of the means and the variances of the locus reference effects
may be derived (Turelli and Barton 1990):

� �
¯ ¯ ¯Dy p V w � C wi i 3, i¯�y �Vi i

2
2¯ ¯ ¯¯p � 2sV x f � � V f � sC f � � V , (14)� �i i ij j j 3, i i ij j( ) ( )

j(i j(i

� �
2 2¯ ¯DV p (V � C ) w � C w � ji i 4, i 3, i m, i¯�V �yi i

2
2 2¯p �s(V � C ) f � � V (15)�i 4, i i ij j( )

j(i

2¯ ¯¯� 2sC x f � � V f � j .�3, i i ij j j m, i( )
j(i

This set of equations cannot in general be solved because
of its dependence on the third and fourth cumulant,

and , of the distribution of locus reference effectsC C3, i 4, i

. An important simplification occurs, however, if we con-yi

centrate on mutation-selection balance. Due to the mul-
tilinearity of the model, the marginal fitness at each locus
is always quadratic around an optimum that depends on
the mean genetic background experienced by this locus.
Since the mutation distribution is also symmetric by as-
sumption, all equilibrium distributions with finite densi-
ties at all loci are symmetric. (This follows, under reason-
able assumptions on the mutation distribution, from the
uniqueness of the solution of the haploid mutation-
selection model [cf. Bürger 2000, p. 127]. This does not
imply uniqueness of the solution in the multilocus case,
however.) Due to epistasis, a symmetric distribution at all
loci does not imply a symmetric distribution at the level
of the phenotype (eq. [10]). Since all odd cumulants be-
yond the first one of a symmetric distribution vanish, we
may set in mutation-selection equilibrium.C p 03, i

In order to close the equations for the variances, we
must find approximate expressions for the fourth-order
cumulant. There are two standard ways to do this. In the
Gaussian allelic approximation (Lande 1976a), the allelic
distribution at each locus is assumed to be normal, such
that vanishes. This results in the equilibrium conditionC4, i

2
2 jm, i2 2 2 2¯V A f S p V f � � V p . (16)( � )i i i i ij j sj(i

In the house of cards (HC) approximation (Turelli 1984;
Barton and Turelli 1987; Bürger and Hofbauer 1994), on
the other hand, the allelic distribution is assumed to be
highly leptokurtic, and the fourth-order cumulant is ap-
proximated . The equilibrium condition2 2C ≈ Vg k V4, i i i i

under HC conditions assumes the following form:

2 ui2 2¯VA f S p V f � � V p . (17)( � )i i i i ij j sj(i

The Gaussian and HC approximations are valid in differ-
ent regions of parameter space. The HC conditions apply
if the phenotypic variance of the new mutations at a locus
is (much) larger than the equilibrium genetic variance. In
particular, it can be shown that the HC approximation is
exact to leading order in in the limit (Bürgeru /s u r 0i i

2000, chap. 6). The Gaussian allelic approximation, on the
other hand, requires mutational effects to be small (or
mutation rates to be high). In an epistatic model, the
phenotypic effect of a given mutation depends on the ge-
netic background. The variance of these effects, , is2 2A f Sgi i

free to evolve. The appropriate approximation therefore
depends on the position of the population on the phe-
notype landscape. From equations (16) and (17) we see
that both approximations coincide if . Nu-2 2A f Sg p u /si i i

merical studies for a normal mutation distribution show
that the HC approximation is better than the Gaussian
allelic approximation if , and vice versa (Bür-2 2A f Sg 1 u /si i i

ger 2000, pp. 239 ff.). We will therefore apply either ap-
proximation, depending on the evolvable value of

, and refer to the respective regions on the phe-2 2A f Sgi i

notype landscape as the Gaussian and the house of cards
mutation-selection regime.

Interpretation of Dynamical Equations

In equations (14) and (15), the changes of the locus means
and variances due to selection on the trait are expressed
in terms of selection gradients (Barton and Turelli 1987)
proportional to derivatives of the mean fitness. Following
Rice (1998, 2000), we may now analyze the selective forces
that drive this evolutionary dynamics. To this end, we
expand the mean fitness as and consider2¯ ¯w p �s(x � V )G

the resulting terms in equations (14) and (15) separately.
This results in three forces, given by the gradients

�
a 2 ¯ ¯¯ ¯ ¯F :p �s∇ x p w(x)f p � 2sx f, (18)ȳ ¯�x

� ¯F :p �s∇ V p �s∇ V p � 2sEVf, (19)¯ ¯y G y A

2
V ¯F :p �s∇ V p �s[f � Var (f )]. (20)V G i i
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Here, is the epistasis matrix, defined in equation (4),E
and is the covariance matrix of reference effectsV V pii

. The forces enter the mutation-selection response asVi

a � V¯Dy p V(F � F ) � C F , (21)i i i i 3, i i

2 V a � 2DV p (V � C )F � C (F � F ) � j . (22)i i 4, i i 3, i i i m, i

The symbol , which we will call the adaptive force,aF

describes the part of the dynamics that corresponds to the
classical result for an additive trait; that is, selection acts
as a force proportional to the change in fitness. The locus
means evolve at a rate proportional to the locus genetic
variance and the slope of the fitness function in that
direction.

The directional epistatic force , on the other hand,�F

vanishes in the additive model where changes in the locus
means have no effect on the genetic variance. It is this
new force which primarily drives the evolution of the ge-
netic architecture on an epistatic phenotype landscape.
Force points in the direction of the gradient of the�F

genetic variance (or the additive genetic variance). It thus
drags the locus means into the direction of a reduced
landscape slope in order to minimize the phenotypic effect
of the genetic variation that is present in the population.

We have argued above that the distribution at all loci
must be symmetric in mutation-selection balance. As may
be seen from equation (21), the forces and area �F F

therefore the only ones that act on the locus means in the
vicinity of equilibria, and the equilibrium condition is just
that the two forces balance. We can express this as an
eigenvalue equation of the operator ,EV

¯ ¯¯EVf p �x f. (23)

The simple structure of this equation will greatly promote
our analysis in the following.

Finally, the only selective force on the variances that
contributes in the vicinity of an equilibrium is . In theVF

absence of mutation, this force simply drives the variances
to 0. With mutation, it is balanced by the new mutational
input. In the different mutation-selection regimes (Gaus-
sian, HC), different approximations apply for the factor

that weights selection relative to mutation (see2(V � C )i 4, i

eqq. [16] and [17]).

Two Loci

Let us begin the analysis of the equilibrium properties with
a detailed discussion of the two-locus case, x p y �1

. For this simple model system, the equilibriumy � �y y2 1 2

condition is readily evaluated, and explicit expressions for
all population level quantities can be derived. The model

is nevertheless also informative of the general case. We
will see below that many characteristic properties extend
to models with multiple loci.

As may be seen from figure 1, the phenotype and fitness
landscapes of the model are point symmetric. The center
of symmetry is the point , ory p y p �1/� f p f p1 2 1 2

. Since the mutational part also is symmetric, equilibrium0
solutions will come in symmetry pairs (related by f̄ r1, 2

), which allows us to restrict the analysis to the half-¯�f1, 2

plane, .f̄ ≥ 01

Where does a population on this landscape evolve under
the action of mutation and selection? From an analysis of
the dynamical equations, two different types of equilibria
are found, which we will now discuss in turn.

Balancing-Forces Equilibrium

As we have seen in the last section, two forces, the adaptive
force and the epistatic force act on the locus meansa �F F

in the vicinity of an equilibrium. Suppose now that epis-
tasis is weak. In this case, is much stronger thana �F F

almost everywhere on the phenotype landscape, and the
population mean is driven toward the optimal trait value.
We therefore expect to find the equilibria located near the
contour of the optimal phenotype. However, since the
epistatic force does not vanish at , the equilibriumx̄ p 0
mean phenotype will slightly deviate from the optimum.
Since seeks to reduce the genetic variance, it pulls the�F

population toward the side where the phenotype landscape
is flatter (i.e., if ) until the two forces andax̄ ! 0 � 1 0 F

balance. According to equation (23), this is just the�F

case if is an eigenvalue of . In order to determine¯�x EV
the exact position of equilibria on the slope of the ridge,
the two different approximations for the variances (Gaus-
sian and HC) must be treated separately. Calculations are
given in appendix A.

Gaussian. For given mutational variances and2jm, 1

in the reference genotype, the following equilibrium2jm, 2

values for trait means and variances are derived in the
Gaussian approximation:

�x̄ p �� j j /s,m, 1 m, 2

�L p 2 sj j ,m, 1 m, 2

j j j jm, 1 m, 2 m, 1 m, 22�V p 2 � 2� , (24)A s s

j jm, 1 m, 22V p � ,AA s

V p 2j j .m m, 1 m, 2
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The equilibrium exists whenever is nonnegative, whichVA

restricts the epistasis coefficient to .2 1/2� ≤ (s/j j )m, 1 m, 2

The use of the Gaussian approximation at the equi-
librium is consistent (i.e., ; see above) if2 2A f Sg ! u /si i i

.1/2(j j /s) ! u /sm, 1 m, 2 1, 2

We see that the deviation of the trait mean from the
contour of the optimal phenotype becomes very small for
small �. On the contour defined by , the equilibrium isx̄
located at the point where the mutational variances at both
loci take the same value, . If theV p V p j jm, 1 m, 2 m, 1 m, 2

locus mutation rates differ, the locus with the smaller rate
compensates for this by evolving the larger variance of
mutational effects, . The position of the equilibrium2 2A f Sgi i

relative to the origin (on the scale of the ) depends onyi

the strength of epistasis: for weak epistasis, equal values
of the locus mutational variances are only reached at a
larger distance from the origin.

The equilibrium mutational variance and the mutation
load are independent of the epistasis coefficient. Never-
theless, both these quantities are reduced relative to a
model without epistasis if (geometric vs. ar-j ( jm, 1 m, 2

ithmetic means). In general, we thus do not recover an
equilibrium solution of the additive model in the limit

. The mathematical cause for this discontinuous be-� r 0
havior is the translation invariance of the additive model
with random walk mutation. This leads to a high degen-
eracy of the equilibrium solution, with solutions on an

-dimensional manifold. As noted by Kimura(n � 1)
(1981), this provides the possibility for extensive neutral
evolution at individual loci in this model. The same prop-
erty, however, makes the additive model structurally un-
stable with respect to the introduction of gene interactions.
The old equilibria vanish and new equilibria emerge from
infinity for arbitrarily small epistasis.

House of cards. A very different pattern of equilibrium
solutions results if both loci are under HC conditions. Let
us first consider equal locus mutation rates, . Inu { u1 2

this case, we obtain a one-dimensional contour of degen-
erate equilibrium solutions, defined by . Forx̄ p ��u /s1

the load and the genetic variances, we derive

L p 2u ,1

2 2 2V p 2u /s � 2� u /s , (25)A 1 1

2 2 2V p � u /s .AA 1

As in the Gaussian case, the solution exists whenever VA

is positive, that is, for . Whereas the equilibrium2s ≥ u �1

values of the load and the genetic variances are invariant
over the contour of degenerate equilibrium solutions, the
mutational variance is highly variable. We find

2 2 2 2V p A f Sj � j /A f S. (26)m 1 m, 1 m, 2 1

The mean squared epistasis factor param-2 2 �1A f S p A f S1 2

eterizes the equilibrium contour. For consistency of the
HC assumption, it must fall into the interval 2g /(u /s) 12 1

.2 2A f S 1 (u /s)/g1 1 1

Assume now that the mutation rate at the second locus
is higher, . If mutation rates at both loci are un-u 1 u2 1

equal, an equilibrium solution under HC conditions no
longer exists (app. A). Instead, a population on the flatter
slope of the fitness ridge evolves ever-increasing differences
in the variances of locus mutational effects as increasesf̄1

and decreases. This may best be seen from the relationf̄2

2 2¯ ¯ ¯ ¯ ¯ ¯¯f D f � f D f p 2s�x V f � V f , (27)( )2 1 1 2 1 1 2 2

which follows directly from equation (14) under the as-
sumption of no skewness in the distribution of reference
effects. Since is negative and the equilibrium condition¯�x
for the variances under HC conditions reads

2¯V f �1 1

, the right-hand side of equation (27)
2¯V f p (u � u )/s2 2 1 2

is strictly positive if and are close to mutation-V V1 2

selection balance. While no equilibrium solution exists for
unequal locus mutation rates as long as both loci are in
the HC regime, this changes if we take into account that
the mutation-selection regime may change itself as the
genetic architecture evolves. Below, we consider the case
of a mixed-regimes equilibrium with one locus under HC
conditions and the other in the Gaussian regime.

Mixed regimes. If only the first locus is under HC con-
ditions and not necessarily the second, we still obtain

for any possible equilibrium. Also, the loadx̄ p ��u /s1

and the genetic variances are constrained to the values
given in equations (25). If we now assume that the second
locus is under Gaussian conditions, we obtain an equilib-
rium solution if . This results in a mu-2 2A f S p sg u /u1 2 2 1

tational variance of

2u u2 12 2V p s g g � . (28)m 1 2 2( )u s1

The first locus is consistently in the HC regime if
. The Gaussian condition for the second2 2 3g g (u /s) 1 (u /s)1 2 2 1

locus, , translates into the condition2 �1 2A f S g ! u /s u 11 2 2 2

for the locus mutation rates. As in the Gaussian case,u1

the equilibrium genetic variance and the mutation load in
the epistatic model are reduced relative to an additive
model. The total mutational variance, on the other hand,
will usually be much higher at a mixed-regimes equilib-
rium. This occurs because the variance of mutational ef-
fects at the locus with the lower mutation rate becomes
very large.
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For a population that is initially in the HC regime with
both loci, and , we obtain the following picture:u 1 u2 1

after an initial movement along the ridge described above,
the variance of mutational effects at the second locus be-
comes small enough for the Gaussian approximation to
apply (at the point where both approximations produce
equal values). Since in the Gaussian approximation, the
expressed genetic variance at the locus, , depends2V A f S2 2

on the variance of mutational effects (other than in the
HC regime), it will start to lag behind the HC value if

is reduced further. Eventually, this difference be-2 2A f Sg2 2

comes large enough for the right-hand side of equation
(27) to become 0, and the equilibrium is reached.

EquilibriumV p 0A

Suppose that epistasis is very strong. In this case, the di-
rectional epistatic force will dominate the adaptive force�F

in large parts of the genotype space. Ignoring fora aF F

a moment, we see that drags the locus means to the�F

point , where the landscape slope in the¯ ¯y p y p �1/�1 2

direction of both loci vanishes, . Since muta-¯ ¯f p f p 01 2

tions no longer have a marginal effect at this point, the
additive part of the genetic variance vanishes, .V p 0A

From equation (18), we also see that the adaptive force is
0 at this point, which therefore fulfills the equilibrium
condition (23) of the means. Technically, is¯ ¯f p f p 01 2

the only solution to equation (23) where is not an¯�x
eigenvalue of the operator . The latter has been theEV
characteristic of the balancing-forces equilibrium above.
Although the equilibrium exists for arbitrary pa-V p 0A

rameter values of the model, it is only stable for sufficiently
large epistasis, as further discussed below.

The distance of the mean phenotype from the optimum
in the equilibrium follows from equation (7) andV p 0A

is given by , which is large for weak epistasis.x̄ p �1/�
Equation (10) shows that, nevertheless, the skewness of
the distribution of the phenotype values always vanishes,
in contrast to the balancing-forces equilibrium. In order
to obtain the variances, the two approximation regimes
must again be considered separately.

Gaussian. Solving equation (16) for and at ¯V V f p1 2 i

and using the relations (8)–(12), we obtain the following0
results for the mutation load and the trait variances:

s 1/32 2 2L p � s� j j ,( )m, 1 m, 22�
2/3

V p �j j /s ,( )G m, 1 m, 2

1/34 4 4V p 2 � j j /s . (29)( )m m, 1 m, 2

The system is consistently under Gaussian conditions if

, which is usually fulfilled if the epistasis coef-V ! u /sG 1, 2

ficient � is not very large. For very large �, one or both
loci at the equilibrium cross over to the house ofV p 0A

cards regime.
House of cards and mixed. As in the balancing-forces

case, an equilibrium with both loci under HC conditions
exists only for . This, again, leads to a degenerateu p u1 2

set of equilibrium solutions that may be parameterized by
. For consistency of the HC assump-2 2 2A f S p (� u /s)/A f S1 1 2

tion, must fulfill . The load and2 2 2 2 2A f S (u /s)/g ! A f S ! � g1 1 1 1 2

the variances on the level of the phenotype are

s
L p � u ,12�

u1V p , (30)G s

2� u /s12 2 2V p A f Sj � j .m 1 m, 1 m, 22A f S1

For unequal mutation rates , we again obtain au 1 u2 1

mixed-regimes equilibrium with the second locus in the
Gaussian regime. Expressions for means and variances are
as above with the parameter . The first2 2 2A f S p � g u /u1 2 2 1

locus remains under HC conditions as long as u /s !1

.2/3(�j j /s)m, 1 m, 2

Equilibrium Structure

In the analysis above, we have described two types of equi-
libria in mutation-selection balance for weak and strong
epistasis, respectively. In fact, the balancing-forces equi-
libria exist only for sufficiently weak epistasis (see above).
An approximate stability analysis in appendix B indicates
that they are locally stable whenever they exist. The same
analysis shows that the equilibrium is only stableV p 0A

if a balancing-forces equilibrium does not exist. Since these
two types of equilibria exhaust all possible solutions of the
equilibrium conditions for the means and the variances,
no other equilibria can exist (assuming linkage equilibrium
and either the HC or the Gaussian approximation). This
indicates that there is exactly one stable equilibrium for
any choice of the model parameters.

Numerical results for a normal mutation distribution
show that both the HC and the Gaussian approximations
overestimate the true locus genetic variance (cf. Bürger
2000, p. 240). The deviation is largest for . We2Ag S ≈ u /si i

do not expect that the corrections lead to qualitative
changes in the equilibrium structure, but they will lead to
shifts in the positions of the equilibria. These shifts should
be largest for the HC and mixed equilibria. For identical
loci (equal mutation rates and reference variances), we
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Figure 2: Stable equilibria of the two-locus model, with mutation rates
and optimal phenotype at . The boundaries between theu ≥ u z p 02 1 opt

balancing-forces (bal.) and equilibria are (in the Gaussian2V p 0 Y p XA

regime [Gauss]) and (in the house of cards [HC] or mixed regime).Y p X
The equilibrium is unstable whenever the balancing-forces equi-V p 0A

librium exists. The dashed lines and indicate the bound-Y p 1 Y p 1/X
aries between the mutation-selection regimes. For a general optimal phe-
notype at , the axes of the diagram must be rescaled likez ( 0 X ropt

and , using the transformation rules (eqq.X/(1 � �z ) Y r Y(1 � �z )opt opt

[6]).

expect that higher-order correction terms to the HC ap-
proximation introduce very weak selection toward the
symmetric point . This turns the degenerate con-2A f S p 11

tour of equilibrium solutions into an “almost degenerate”
one. For , the “true” genetic variance at the secondu 1 u2 1

locus will be well below the HC value even before the
variance of mutational effects is so small that the Gaussian
approximation applies. The equilibrium therefore will be
reached for somewhat smaller values of the parameter

(i.e., closer to ). The shift of the equilibrium2 2A f S A f S p 11 1

point will be very small if , but it may be sub-u k u2 1

stantial if . Nevertheless, even small differences inu ! 2u2 1

the locus mutation rates will still lead to large differences
in the equilibrium variances of mutational effects at both
loci.

The equilibrium structure for the two-locus system with
a general position of the optimal phenotype is summarized
in figure 2. Note that the balancing-forces equilibrium
always come in mirror pairs (according to ). The¯ ¯f r �fi i

equilibrium is only stable for very strong epistasisV p 0A

or weak selection or if the phenotype at the equi-V p 0A

librium is very close to the optimal value, .z ≈ �1/�opt

Multiple Loci

Let us now consider how the two-locus results derived
above generalize to a multilocus model. Explicit solutions
for multilocus systems depend on the solvability of the
eigenvalue equation (23), which quickly becomes intrac-
table in higher dimensions for most epistasis patterns.
Some general results are possible, however. Solutions for
a number of special cases are given below and in appendix
C.

General Properties of Equilibria

We have distinguished two types of equilibria in the anal-
ysis of the two-locus model, and it is easy to see that the
same distinction also applies to the general case.

equilibrium. An equilibrium with al-¯V p 0 f { 0, GiA i

ways exists if the epistasis matrix is invertible. If isE E
singular, we show in appendix C that there is a V p 0A

equilibrium if and only if the vector 1 is in the image of
. Otherwise, we obtain the mean phenotype at theE

equilibrium from equation (7) as , where¯V p 0 x p xA V p0A

1 1
t �1¯x :p y p � 1 E 1, (31)�V p0 iA 2 2i

which is independent of the mutation parameters andui

. (If is singular, but 1 is in the image of , eq. [31]2g E Ei

is evaluated in the vector space restricted to the image of
.) In the special case when all epistasis coefficients areE

equal, equation (31) gives . In thex p �n/[2(n � 1)�]V p0A

HC approximation, we obtain the following simple ex-
pression for the genetic variance at a equilibrium:V p 0A

1 uiV p V p . (32)�G AA 2 si

In the Gaussian and mixed regimes, this expression holds
as an upper limit (cf. the balancing-forces case below).

Balancing-forces equilibria. For this type, the vector of
mean epistasis factors is an eigenvector of and thef̄ EV
corresponding eigenvalue is the negative mean phenotype

. A solution with the mean trait value at the optimum,¯�x
, is only possible if is singular, that is, if the in-x̄ p 0 E

teraction patterns of a group of genes are linearly depen-
dent. This means that there is redundancy among these
genes, the simplest example being a pair of “duplicated”
genes with identical epistasis patterns. If is not singular,E
the directional epistatic force drags the mean phenotype�F

away from its optimum into flatter regions of the land-
scape. In equilibrium, is balanced by the force� aF F ∝

, which tries to push the means back to the optimum.¯�x
Using in a balancing-forces equilibrium,

t
�1¯ ¯¯V p �xf E fA

we derive from equation (7)

xV p0 2A �x̄ p 1 � 1 � 2V /x , (33)( )A V p0A2
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where is the trait mean in the equilibriumx V p 0V p0 AA

(31). The equation (33) depends on the valuessign � in
of the epistasis coefficients . The sign of always co-¯� xij

incides with the sign of , and . When-¯x FxF ≤ Fx FV p0 V p0A A

ever the model parameters are changed such that x̄ r
, equation (33) shows that necessarily . We thusx V r 0V p0 AA

obtain a continuous transition from a balancing-forces to
the equilibrium. The deviation from the contourV p 0A

of the optimal phenotype is small for weak epistasis (where
the minus sign applies in eq. [33]). Under HC conditions,
one expects a scaling behavior like for small �x̄ ∼ �u/s
(assuming and ). From equations (8) andu ∝ u � ∝ �i ij

(17), we see that the genetic variance in an epistatic system
is always smaller than the one for an additive trait, since

ui 2V p � 2 � V V p V � V , (34)� �G ij i j 0 AAs !i i, j i

where is the genetic variance in the absenceV p � u /s0 ii

of epistasis (remember that is the diploid mutation rate).ui

Similarly, . In appendix D, we extend thisV p V � 2VA 0 AA

result to higher-order interactions. We can combine equa-
tions (33) and (34) and obtain a simple relation for the
equilibrium load

1
¯L p u � sxx . (35)� i V p0A2 i

In the Gaussian regime, equation (34) holds as an upper
limit since equations (8) and (16) give

2g ui i 2V p � 2 � V V (36)� �G ij i jV s !i i, j ii

and under Gaussian conditions. The same limit2V ≥ gi i

holds, of course, in mixed regimes. This bound does not
necessarily imply a reduction of relative to the additiveVG

trait under Gaussian conditions (see below for a
counterexample).

Equilibrium structure. It is instructive to discuss how the
constraints of the model affect its equilibrium structure.
Since , and the variance of phenotypic effectsf p 1 � Ey
of mutations at locus i is , any combination of these2 2g fi i

variances can evolve (if is invertible). On a given iso-E
phenotype contour, however, only a subset of these com-
binations is possible. The central consequence of this con-
straint is that it keeps the equilibrium and theV p 0A

optimal phenotype contour apart (except for a very special
choice of the optimum). It thus introduces a trade-off
between the evolutionary trend to optimize the phenotype
(following the force ) and the directional epistatic forceaF

that drives the population toward the point�F p �s∇ Vȳ A

where the marginal effects of all mutations vanish.V p 0A

Except for the case that s (and thus the fitness con-
straint) is very small, the equilibrium will only beV p 0A

stable if epistasis is very strong. For decreasing epistasis,
we show in appendix B that the equilibrium be-V p 0A

comes unstable precisely when a balancing-forces equilib-
rium (with smaller ; cf. eq. [7]) appears. For given¯FxF
locus variances , we further argue (but do not prove)Vi

that only the balancing-forces equilibrium with the small-
est can be stable. This suggests that the deviation of¯FxF
the mean phenotype from the optimum is usually small
at stable equilibria. However, it does not imply that mul-
tiple stable equilibria cannot coexist since also dependsx̄
on the locus variances . The modular model discussedVi

below provides an example where stable equilibria with
different coexist.x̄

Equivalent Loci

In this section, we derive explicit solutions for a special
model with equivalent loci. This will allow us to take a
closer look on the dependence of the equilibrium quan-
tities on the number of loci, n, and on the relative strength
of different components of epistasis. In order to charac-
terize epistasis, we define a vector of directional epistasis
with average epistasis coefficients as entries, as well as�i

a coefficient for nondirectional epistasis as2V

1 2¯� :p � Vf ,�i ij j jV j(iA

1 2 2
2 2 ¯ ¯V :p � Vf Vf . (37)� ij i i j j2V i, j(iA

These measures are averages of the bare epistasis coeffi-
cients, weighted by the contributions of individual loci to
the additive genetic variance (cf. Hansen and Wagner
2001b). Let us now consider a model with equivalent loci,
in the sense that , , and for all loci i:u { u g { gi i

1
� { �,� ijn j(i

1
2 2� { v . (38)� ijn j(i

The phenotypic means and variances can be derived for
the symmetric equilibrium (i.e., and ).¯ ¯V { V f { f, Gii i

Note that and at this point. Using2 2 ¯� { � V { v x pi

, we obtain from equation (7) and
2

2¯�n�V f p 1 � 2n� V
derive V from either equation (17) or equation (16). Under
HC conditions, this results in
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1
2 2�V p 1 � 4n(V � 2� )u/s � 1[ ]2 22n(V � 2� )

2u u
2 2 3p � n(V � 2� ) � O[(u/s) ], (39)

2s s

where the last term is the error term with respect to epis-
tasis as . We obtain (with the characteru/s r 0 U p nu
mutation rate)

x̄ p �n�V (40)

2U U
2 2 3p �� � (V � 2� ) � O (U/s) ,[ ]2{ }s s

1
2 2 2 2V p nV � V � 2� n V (41)G ( )2

2U 1 U
2 3p � V � O (U/s) ,[ ]2s 2 s

2U U
2 2 2 2 3V p nV � 2n � V p � V � O (U/s) , (42)[ ]A 2s s

2 2 2V p [1 � (V � 2� )nV ]Ug (43)m

2 2 2 2p Ug 1 � (V � 2� )U/s � O (U/s) .{ [ ]}

We see that the relative contribution of epistasis to all
these quantities increases with the number of loci (i.e., it
is proportional to where U is the trait mutation rate).U/s
The main effect of directional epistasis is to drag the mean
trait value away from the optimum. If there is strong di-
rectionality in epistasis (all epistasis coefficients have�ij

the same sign), this shift may be quite large. In genetic
architectures with a mix of positive and negative inter-
actions, however, the contributions will in part compen-
sate. This is different with the effect of nondirectional
epistasis, which is mainly responsible for the effect of epis-
tasis on . Here, no compensation among positive andVG

negative epistasis coefficients occurs. Comparing with the
full solution of the two-locus case, we see that the low
value of in equation (43) is not representative but re-Vm

sults from our restriction to the symmetric equilibrium.
Similar relations may also be derived under Gaussian

conditions. Here, V is the solution of the cubic equation
, and2 2 3 2 2n(V � 2� )V � V � j /s p 0m

1 1 12 3 42 4 2 2 4V p v � v � � v V � V � � � � O(v ), (44)G ( )8 2 2

12 32 2V p v � v V � 2� � O(v ), (45)( )A 2

where is the genetic variation in the absence�v p nj / sm

of epistasis.
Some differences in the effect of directional and non-

directional epistasis relative to the HC case may be noted.
We see that nondirectional epistasis may even lead to a
slight increase of while directional epistasis reduces thisVG

value. The additive genetic variance, on the other hand,
is reduced by any kind of epistasis.

Modular Trait Structure

One plausible pattern of epistasis is a modular structure
of gene interactions. It is natural to expect that interactions
in groups of genes that regulate a shared pathway or de-
pend upon each other in development are stronger than
interactions between different subunits. Each subunit may
describe, for example, the contribution of a particular gene
product to the trait. We may also think of subunits as
mutually pleiotropically independent characters underly-
ing our focal trait. A modular trait structure may either
be the result of evolution under natural selection or simply
be fixed by developmental constraints.

Assuming modularity as given, we want to analyze its
consequences for equilibria. To this end, we partition the
loci in different groups. Effects of genes within a group
or module may depend on each other through pairwise
interactions, but there are no interactions (on the level of
the trait) among groups. Note that this does not mean
that the evolutionary dynamics of modules is independent,
since of course there is epistasis for fitness between the
groups.

Consider first a limiting case of such a modular structure
where one “module” really consists only of a single in-
teraction-free locus. Here, we immediately obtain a so-
lution with , , , if the first locus is inter-¯ ¯f p 1 f p 0 i 1 11 i

action free and for arbitrary epistasis patterns among the
other loci (such that the epistasis matrix restricted to the
subspace of the other loci is invertible). These equilibrium
values of the means appear to be stable independently of
the values of the variances (cf. app. B). Obviously, what
happens is the following: the interacting part of the system
moves to the equilibrium in its subspace, whileV p 0A

the single free locus takes care of the trait optimization,
compensating the phenotypic effects of all other loci. In
equilibrium, , , andx̄ p 0 V p V L p s(V �A 1 1

, with values of the variances depending on2� � V V)ij i j1 1i 1, j i

the mutation-selection regime. More generally, we obtain
essentially this same behavior if the epistasis matrix has a
zero eigenvalue in the subspace of any module. Since a
single additive locus is sufficient to keep the trait mean at
the optimum, this seems to be a generic situation. Note,
however, that this result rests on the continuum-of-alleles
assumption. If additivity is only maintained on an interval
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of locus effects, or if the reach a limit that cannot bey1

crossed without deleterious side effects, a single locus is
no longer able to compensate the effects of all other loci.

For a general modular trait, we can dissect the eigen-
value equation for the means (eq. [23]) into equations on
the subspaces corresponding to the modules. In all sub-
spaces, we may separately decide to meet either the
balancing-forces conditions (where is an eigenvalue) orx̄
the conditions (with all epistasis factors 0). TheV p 0A

eigenvalues in all balancing-forces subspaces must coin-
cide. For k modules, this procedure results in classes ofk2
equilibria that may exist and/or be stable depending on
the model parameters. Note that only if the marginal effect
for all loci in all subunits vanishes do we obtain a real

equilibrium as defined above. In appendix C, weV p 0A

explicitly solve the equilibrium structure for a system with
two modules consisting of two loci each. We find that, at
stable equilibria, one module takes care of the trait optimi-
zation and is at the balancing-forces equilibrium while the
other evolves to in its subspace.V p 0A

Intuitively, we can interpret this behavior as follows. As
explained above, an optimal trait value and maximal buf-
fering of all mutational effects (at the equilibrium)V p 0A

is in general not possible on the phenotype landscape of
the multilinear model. Here we see what happens if this
constraint is relaxed. In a modularly structured trait, op-
timization of the trait is still possible even at a point where
the marginal effects at some modules vanish. We can think
of this as a division of labor among modules; if one module
takes on trait optimization, the other modules are “free
for other tasks.” In the simple additive model, no other
tasks exist. In the present model, they use their freedom
to evolve to the equilibrium and minimize theV p 0A

genetic variance in their subspace. As a consequence, the
evolvable part of the genetic architecture (modules with

) may be much smaller than the entire genetic basisV ( 0A

of the trait.

Genetic Effects Measured with Reference
to the Population Mean

Whenever genes interact with each other, genetic effects
will depend on the genetic background in which they are
measured. In the multilinear model, this dependency is
incorporated by having model variables and parameters
explicitly defined in relation to a particular reference ge-
notype. Several choices of reference genotype are possible.
In this article, we have so far used a fixed optimal genotype
as our reference. This means that all reference-independent
population level observables (such as , , ) are ex-x̄ V VG m

pressed in terms of reference-dependent variables ( , )� Vij i

that are measured in this genotype. This is adequate if we
want to describe evolution on the phenotype landscape in

a fixed coordinate system. However, if we were to relate
these results to data on locus variances and epistatic in-
teractions, it must be remembered that these effects are
not necessarily estimated in an optimal background. In
order to make this connection, it is helpful to express the
results with reference to the mean values themselves.

We will also see that some of the reference-dependent
quantities, namely the effective epistasis coefficients from
equations (37), attain a meaning on the population level
if measured in this special reference.

General equations for translating from one reference to
another are given in Hansen and Wagner (2001b; see also
eqq. [6] above), but here we will only provide some select
observations. One important thing to note is that, under
linkage equilibrium, the average epistasis factors, , are allf̄i

equal to 1 in the equilibrium reference. This is because
they are linear functions of the reference effects, , whichyj

necessarily have mean 0 when measured relative to their
own mean. Using this and the transformation rules

, , and , where the var-
2

� �¯ ¯ ¯ ¯ˆˆ�̂ p � /(f f ) V p f V F p F /fij ij i j i i i i i i

iables in the mean reference are denoted by a “hat,” the
effective epistasis coefficients from equations (37) in this
reference read

�1 1 2 1ij �¯ ˆˆˆ ˆ� p � V p V f p � F , (46)� �i ij j j j i¯ ¯V V f f 2sVj(i j(iA A i j A

1 1 2
2 2 2ˆ ˆ ˆˆV p � V V p � VV p V . (47)� �ij i j ij i j AA2 2 2V V Vi, j(i i, j(iA A A

This shows how the effective epistasis coefficients provide
a link between the functional (Hansen and Wagner 2001b)
or physiological (Cheverud and Routman 1995; Phillips et
al. 2000) level of epistasis and the population level. Both

and are variance-weighted averages of the functional2� Vi

epistasis coefficients and depend on the reference. If�ij

measured in the mean reference, however, turns out to�i

be proportional to the directional epistatic selection
force . We see that this force is indeed caused by direc-�F̂

tional epistasis (hence its name). The nondirectional
epistasis coefficient , on the other hand, is the2V

epistatic variance normalized by .additive # additive VA

Both coefficients have direct consequences on the
population-level quantities in equilibrium: The reduction
of the genetic variance under house of cards conditions is
due to nondirectional epistasis in the mean reference (eq.
[34]). The deviation of the mean phenotype from the op-
timum is caused by directional epistasis as measured in
this reference.

The Evolution of the Genetic Architecture

In this section, we discuss how mutation and selection
shape the genetic architecture of the trait as the population
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evolves on the epistatic phenotype landscape. Clearly, any
evolution of locus effects is only possible with epistasis.
We therefore start out with an analysis of the strength of
directional epistasis.

The Strength of Epistatic Selection

Directional epistatic selection measured by is important�F

for many results derived in this article. In order to estimate
its strength, we now determine the selection coefficients
for single mutations due to the epistatic force alone. Con-
sider a mutation of size ( ), as measured in the�d d 1 0i i

reference genotype at the ith locus. If is not too large,di

the selection coefficient is given by the product of and�di

the corresponding entry of the epistatic force vector

� ˆˆs :p s V d p 2sV � d . (48)�, i A i A i i¯�yi

Here, is the effective directional epistasis coefficient mea-�̂i

sured relative to the mean genotype given in equation (46),
and is the mean phenotypic effect of the mutation.¯d̂ p f di i

The dimensionless quantity then measures the averageˆ�̂ di i

directional epistatic effect of the mutation on the allelesdi

that segregate in the population ( , meaningˆˆF� dF p 0.1i i

that the average allelic effect relative to the population
mean is changed by 10%).

The selection coefficient should be compared withs�, i

the coefficient for directional selection due toˆ¯s :p 2sxda, i i

the force , which is proportional to the distance fromaF

the optimum. The size of depends on the strength ofs�, i

directional epistasis and on . In the HC regime, the�̂ Vi A

additive genetic variance is, to leading order, proportional
to the trait mutation rate, , and we obtainV ≈ U/s s ≈A �, i

. This parallels the result of Wagner et al. (1997) forˆˆ2U� di i

selection coefficients in a model for the evolution of can-
alization; that is, under HC conditions, selection coeffi-
cients for mutations that alter the genetic architecture of
a trait are proportional to the character mutation rate and,
in particular, independent of the strength of selection s.
For standard values of character mutation rates (U of the
order to and higher for life-history traits [Lynch�2 �110 10
et al. 1999]) and not too strong epistasis ( ),ˆˆF� dF ! 0.1i i

we obtain selection coefficients up to but probably�2s 10�, i

more likely of the order or . Selection in this�3 �410 10
range is moderate to weak. In contrast to the evolution
of dominance, where the entire selective advantage is due
to reduction of mutational effects at a single locus (cf.
Mayo and Bürger 1997), directional epistatic selection re-
sults from the joint action of a larger number of genes.
This leads to selection coefficients on an intermediate level,
lower than the character mutation rates but most likely
significantly larger than mutation rates of single loci. We

predict in this article that directional epistasis will be small
at equilibria (see “The Evolution of Epistatic Interactions”
below). This, however, should not be taken as evidence
that epistatic selection is weak in general. On the contrary,
using equilibrium values for in equation (48) may se-�̂i

verely underestimate the role of epistatic selection for the
evolution to the equilibrium.

In the above estimate, we have assumed that genetic
variance at the various loci is maintained solely by
mutation-selection balance in the HC regime. If other
mechanisms contribute to this variation, larger selection
coefficients are possible. Note, in particular, that the force

acts, of course, also away from equilibrium. Fluctuating�F

selection strength (hard winters) could be a potent mech-
anism to increase selection coefficients. A 10-fold increase
of the selection strength leads to a 10-fold increase of the
selection coefficient for a few generations because the
amount of genetic variance is not immediately in
mutation-selection equilibrium. Higher selection coeffi-
cients are expected as long as the variances have not yet
approached their new smaller equilibrium value. Note that
this situation is different from a fluctuating selection op-
timum, which can also favor the evolution of reduced
mutational effects in certain situations (Kawecki 2000)
with selection coefficients in a similar range as estimated
above. A scenario where much larger selection coefficients
can be found is when part of the genetic variation is due
to gene flow in a spatially structured population (J. Her-
misson and G. P. Wagner, unpublished manuscript).

The Evolution of Mutational Effects

A conspicuous phenomenon that we have observed for
the two-locus model is that, in equilibrium, loci with dif-
ferent mutation rates exhibit large differences in their var-
iances of mutational effects, with the locus with the higher
mutation rate evolving the smaller variance. We will now
argue that this is in fact a general phenomenon of the
equilibrium genetic architecture of a polygenic trait.

As indicated above, it is the directional epistatic force
(eq. 19) that drives the evolution of the genetic ar-�F

chitecture. Since points into the direction of steepest�F

descent of the additive genetic variance, it drags the pop-
ulation into flatter regions of the phenotype landscape.
For a more detailed discussion of the consequences of
directional epistasis, it is advantageous to partition this
force into components that correspond to the various loci;
that is, . If and

2
� �, i ¯F p � F V p f V V pA, i i i AA, ii

are the contributions of the ith locus to the2(1/2) � � V Vij i jj

additive and variance, respectively, weadditive # additive
obtain
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∇ Vȳ m, i�, iF p �s∇ V p �s V � 2V . (49)( )ȳ A, i A, i AA, i Vm, i

Force points into the direction of steepest descent of�, iF

the mean locus mutational variance . Two2 2V p u A f Sgm, i i i i

observations are of importance. First, a larger locus con-
tribution to the additive and the ge-additive # additive
netic variance leads to a stronger reduction of the mu-
tational variance on this locus. In (or near)
mutation-selection balance, is positively cor-V � 2VA, i AA, i

related with the locus mutation rate. In particular under
HC conditions, (cf. eq. [17]). SelectionV � 2V p u /sA, i AA, i i

for reduced mutational variance will be stronger at loci
with high . Second, selection for reduced mutationalui

variance does not necessarily subside if is already small.Vm, i

The reason is that it is the relative, and not the absolute,
change that enters the equation.

From this analysis, we predict that our observations in
the two-locus model hold true also in the general multi-
locus case. Selection due to directional epistasis will, on
average, create a negative correlation between the locus
mutation rates, , and the mean variance of the muta-ui

tional effects, , at the same locus.2 2A f Sgi i

The Evolution of the Mutational Variance

In the previous subsection, we discussed the consequences
of epistatic selection on the mutation effects of single loci.
Let us now consider its impact at the level of the trait.
Since directional epistasis works to reduce the mutational
variance for each locus, it would be natural to also expect
that the mutational variance of the trait is reduced,Vm

meaning that epistasis leads to the evolution of genetic
canalization (Waddington 1957). Indeed, the equi-V p 0A

librium, where the marginal effect of all mutations van-
ishes (complete canalization), would be the unique and
globally stable equilibrium if the evolutionary dynamics
were driven by alone. Surprisingly, however, a reduc-�F

tion of is generally not found under the full dynamics,Vm

contra previous predictions (Wagner et al. 1997; Rice
1998). On the contrary, our results frequently show a
marked increase of . Let us illustrate this first with aVm

simple example.
At the mixed-regimes equilibrium of the two-locus

model with and , the2s p g p 0.05 u p u /2 p 0.00011, 2 1 2

mutational variance according to equation (28) is V pm

and is almost entirely due to the locus with�42.502 # 10
the smaller mutation rate . This value is much higheru1

than the very low at the unstable�7V ≈ 6 # 10 V p 0m A

equilibrium (for moderate epistasis ). It is also more� ≈ 1
than 17-fold the minimal on the contour of all ge-Vm

notypes that lead to the same phenotype as at the equi-

librium point or the minimum on the contour of the
optimal phenotype (which are both ). We�5V ≈ 1.4 # 10m

see that the high equilibrium is not simply a conse-Vm

quence of the fitness constraint that keeps the mean phe-
notype close to the optimum.

The reason for this unexpected result is that, in contrast
to the locus level (see eq. [49]), the gradients of the (ad-
ditive) genetic variance and of the mutational variance∇VA

are usually not collinear on the level of the trait. Since∇Vm

the selection force is parallel to (and to ;�F �∇V �∇VA G

see eq. [19]) but in general not to , the reduction�∇Vm

of , but not of , is the target of epistatic selection onV VA m

the trait level.
Here, reduction of being a target of selection meansVA

that is reduced as far as possible, given the adaptiveVA

constraint that keeps the population mean close to the
optimum. This can be seen as follows. At a balancing-
forces equilibrium, , hence is collinear to� aF p �F ∇VA

the gradient of the phenotype landscape, ,¯ ¯∇V p � 2x∇xA

or perpendicular to the isophenotype contours. As pointed
out by Rice (1998), this implies that the genetic variance
at a stable equilibrium is at a local minimum with respect
to variations of the locus means on the contour.

On the other hand, although always points into a�F

direction of reduced , it is, in general, not parallel toVm

its gradient. Equilibria therefore do not have to be (and
generally are not) minima of on the isophenotype con-Vm

tour. As a by-product of the reduction of , evolution ofVA

the population along the contour often leads to an increase
of . In figure 3, we show how the evolution of the locusVm

variances even reinforces the divergence of the gradients
of and .V VA m

Neither an increase nor a decrease of is a necessaryVm

consequence of epistasis and stabilizing selection. For two
loci under Gaussian conditions, the mutational variance
in equilibrium is indeed at a minimum on the isophe-
notype contour: since , the gradients of2 2g u /g u p V /V1 1 2 2 1 2

and of are collinear at this point. This, however,V VA m

seems to be a coincidental property of the two-locus model
rather then a consequence of the Gaussian regime. A sim-
ilar relation does not hold generally for three or2g u ∝ Vi i i

more loci. We therefore do not expect that, in equilibrium,
is at a minimum in these cases.Vm

We thus find that evolution on an epistatic landscape
typically leads to a reduction of the additive genetic var-
iance but also in many cases to a marked increase of the
mutational variance. High values of and low values ofVm

are consistent with the experimental data for manyV /VA m

traits (Houle et al. 1996). From the classical view that
stabilizing selection entails canalization (i.e., reduces ),Vm

this result is, however, quite unexpected.



722 The American Naturalist

Fig. 3: Evolution along an isophenotype contour in the two-locus model
with , but under house of cards conditions. We com-2 2j p j u 1 um,1 m,2 2 1

pare and . Suppose the�¯ ¯ ¯ ¯�∇V ∝ �(f , f ) F p �s∇V ∝ �(V f , V f )m 1 2 A 1 1 2 2

population is initially at the minimum of on the contour whereVm

. Since , is at an angle to , and the means will¯ ¯f p f u 1 u �∇V �∇V1 2 2 1 A m

start to move along the contour, increasing . In the new genetic back-Vm

ground, the selection pressure at both loci is changed, leading to a de-
crease of and to an increase of . This change in the locus variancesV V1 2

changes the direction of relative to , increasing the angle be-∇V ∇VA m

tween the two vectors. The gradients of and are driven fartherV VA m

and farther apart.

The Evolution of Epistatic Interactions

As the final aspect of the genetic architecture considered
in this article, let us now discuss the evolution of epistatic
interactions as measured by the effective directional epis-
tasis coefficient in the mean reference (see eq. [46]). By�̂i

considering how this quantity is shaped under natural se-
lection, we get a better sense of what to expect when we
observe directional epistasis in a real population.

In equation (46) we have seen that is proportional�̂i

to the ith component of the epistatic selection force .�F

Using this in the eigenvalue equation (23) leads to

¯�̂ p �x/V Gi, (50)i A

where is the deviance of the trait mean from the opti-x̄
mum. Thus, it is generally true that directional epistasis
should be equally strong for all loci when measured in the
equilibrium and that the effective epistasis coefficients
should equal (minus) the deviation of the trait mean from
the optimum divided by the additive genetic variance. One
important consequence of this result is that directional
epistasis can only arise in equilibrium when the mean is

shifted from the optimum. Thus, we may expect epistasis
to be largely nondirectional when measured on a well-
adapted trait in a balance between symmetric mutation
and stabilizing selection.

This result can give us insights into the evolution of
genetic architecture. Imagine that there are two indepen-
dent sets of internally interacting loci as in the modular
model above. Assume further that all the loci in one mod-
ule have only positive effects on each other, while those
in the other module have only negative effects on each
other. This means that the effective epistasis coefficients
will be positive for all loci in the first module but negative
for all loci in the second module. This contradicts equation
(50), and this situation is thus impossible. What does this
mean? It means that this is an example of a genetic ar-
chitecture that cannot evolve in mutation-selection bal-
ance. Imagine we start with this type of genetic architecture
defined with reference to any specific genotype, for ex-
ample, an optimum genotype, and let the system evolve
into mutation-selection balance. Then the epistasis factors
will evolve to be such that, if we choose to measure the
parameters in the equilibrium, they will reveal a totally
different pattern of interactions.

Thus, the patterns of gene interactions that we can ex-
pect to observe in an equilibrium situation are quite con-
strained. We have argued above and in appendix B that
the deviation of the mean trait from the optimum may
be very small in many cases. In this case, the predicted
absence of directional epistasis in equilibrium may help
explain why quantitative genetic models based on constant
additive genetic variation (e.g., Lande 1976b, 1979) seem
to provide a good prediction for the response to selection
over one or a few generations. Only directional epistasis
(as measured with reference to the mean) will change the
response to selection in the trait (Hansen and Wagner
2001b).

These results underscore the fact that the observed ge-
netic architecture is a highly evolvable entity that may look
utterly different depending on the vantage point from
where it is gauged. We note that the predicted absence of
directional epistasis in equilibrium is compatible with di-
rectional epistasis with reference to any other genotype
such as the optimal genotype.

Effects of Epistasis on Genetic Load and Variances

In order to see what changes epistasis brings to the genetic
variance and to the mutation load, let us now compare
the properties of equilibria in the epistatic model with the
well-known properties of an additive trait.
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Effects of Epistasis on the Genetic Variance

Epistasis in a phenotypic landscape model plays a dual role
that can be called local and global. Both ways, the pop-
ulation genetic quantities are affected. Locally, keeping the
locus means fixed at any point of the landscape, epistasis
influences the amount of genetic variation that is main-
tained at the loci in mutation-selection balance. Globally,
epistasis gives rise to the epistatic force , which drags�F

the population across the landscape toward equilibria with
characteristic properties. Both effects can be studied sep-
arately, and both effects are important for the interpre-
tation of data.

Local effects of epistasis. Assume first that we have em-
pirical estimates for all locus mutation rates and theui

mean mutational effects . We want to compare the equi-f̄ di i

librium values of and in the epistatic model withV VG A

their estimates in an additive model that uses the same
data. In doing so, we keep the locus means fixed at theirȳi

equilibrium values of the epistatic model and analyze the
local effects of epistasis (i.e., the local curvature of the
landscape) on the variances by replacing the phenotype
landscape with a linearized one.

In the HC regime, any amount and pattern of epistasis
lead to a reduction of and relative to an additiveV VG A

trait. As shown in equation (34) and in appendix D, the
reduction terms are proportional to the components of
the epistatic variance corresponding to the mth orderV mA

interactions ( ). Since , andV p V V ∝ V V … V2 mA AA A i i i1 2 m

in the limit , these epistatic terms are ofV ∼ u /s u /s r 0i i i

second and higher order in this limit. Nevertheless, since
the genetic variance of the additive model increases linearly
with the number of loci, , butU/s p � u /s ∝ n V ∝mi Ai

, the epistatic contributions can be substantial if themn
number of loci is high and . This conclusion as-U/s ≈ 1
sumes, however, that the average size of the epistasis co-
efficients is kept roughly constant on increasing n.
Whether this holds true depends on the structure of the
genetic architecture that underlies the trait. If this structure
is highly modular, for example, the number of nonzero
epistasis coefficients only increases linearly with n.

The Gaussian case is easiest dealt with in the equilibrium
reference where all mean epistasis factors are equal tof̄i

1, and . Using this in equations (16)
2ˆ ˆA f S p 1 � Var ( f )i i

and (8), which are valid in any reference, we obtain

1 ˆ ˆV p 1 � Var ( f ) V�G i i[ ]2i

ˆ1 � Var ( f )/2 3i 2ˆp v ≈ 1 � [Var ( f )] v , (51)� � ii i{ }ˆ 8i i�1 � Var ( f )i

1ˆV p V p v , (52)� �A i iˆi i �1 � Var (f )i

where is the locus genetic variance of the ad-�v p j / sm, ii

ditive model. We see that is slightly increased by theVG

local action of epistasis but is decreased. As shown inVA

appendix D, higher-order interactions reduce and .V VG A

These results can be understood by distinguishing two
effects of local epistasis. On the one hand, epistasis in-
creases the pressure of stabilizing selection on mutations.
Let be the selection coefficient of a mutation withs(f d )i i

phenotypic effect . Then, the mean selection coefficientf di i

in the epistatic model will be larger than the selection
coefficient of a mutation with the same mean effect in the
additive model; that is, because ofFAs(f d )SF 1 Fs(A f d S)Fi i i i

concavity of the fitness function. This explains the reduc-
tion of in the HC approximation. On the otherV ∝ u/sG

hand, epistasis also increases the mutational variance, since
. Since in the Gaussian

2
2 2 2¯ �V p A f Sj 1 f j V ∝ V /sm, i i m, i i m, i G m

approximation, this explains the different result in this
case.

The results comparing additive and epistatic models al-
ways depend on which quantities are treated as measured
and are therefore kept fixed in both models. If, instead of
the mean mutational effects, the mutational variances

are kept constant, we find a decrease of due toV Vm, i G

epistasis also in the Gaussian case. So far, we have also
assumed that the mutation parameters are known for the
loci separately. Usually, however, this detailed information
is not available, and estimates for mutation rates and ef-
fects only exist on the level of the trait. In this situation,
equal mutational effects at the loci are often assumed sim-
ply due to lack of better knowledge.

If we compare the equilibrium genetic variance in the
epistatic model with the equilibrium variance of an ad-
ditive model with the same mutational parameters on the
level of the trait, but with identical loci, the effect of epis-
tasis is twofold. The first effect is the local one described
above. The second effect is what we call “global”: as we
have seen above, large differences in the locus mutational
effects are typical of the equilibria of the epistatic model.

Global effects of epistasis. The evolution of different locus
effects leads to a further reduction of and of theV VG A

epistatic trait relative to estimates in a uniform additive
model for a simple mathematical reason. Numerical and
analytical results show that the genetic variance of a single
haploid locus under stabilizing selection is in general a
concave function of the mutation rate and of the variance
of the mutation distribution (Bürger 2000; Waxman and
Welch 2003). This is obvious in the Gaussian approxi-
mation; in the HC regime, it is a small second-order effect
(Bürger 2000, p. 238). For an additive trait in linkage
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equilibrium, any variance in or across loci therefore2u gi i

leads to a reduction of relative to a uniform modelVG

with average locus effects and mutation rates (Waxman
and Welch 2003).

As an example, consider the two-locus model at the
mixed-regimes fixed point with . According tou 1 u2 1

equations (25) and (28), the additive genetic variance is
. The genetic variance of an additive2 2 2V p 2(u /s � � u /s )A 1 1

model with the same single-locus mutation rates and var-
iances (first locus under HC, second under Gaussian con-
ditions) is . This is less than the equilibriumV p 2u /sA 1

variance of an additive model with theV p (u � u )/sA 1 2

same mutational parameters on the trait level but with
identical loci. Note that both loci are under HC conditions
in this case.

The reduction due to unequal mutational variances is
independent of the strength of epistasis, and, in contrast
to the local effect described above, it is a first-order effect.
Depending on the interaction pattern, substantial reduc-
tions of can occur this way. A striking example is theVA

model of a modular trait where the marginal effect (and
thus the contribution to ) at certain loci may vanishVA

altogether.

Mean Phenotype and Genetic Load at Epistatic Equilibria

For many patterns of epistatic interactions, epistasis exerts
a directional selection effect on the population and drags
the mean phenotype away from the optimum. This always
occurs if there is no redundancy in the interaction patterns
among genes, mathematically, if the epistasis matrix isE
nonsingular. An upper limit for this deviation is the mean
phenotype at the equilibrium, (cf. eq. [31]).V p 0 xA V p0A

At the balancing-forces equilibrium, the deviation is given
by an eigenvalue of the matrix . It is particularly large�EV
and proportional to the number of loci if all pairwise
interactions are uniformly positive (or all negative); see
equations (38) and (40). In this case, mutations consis-
tently act synergistically in a given direction of the trait
and antagonistically (or, diminishing) in the other direc-
tion. The trait is then shifted to the antagonistic side. In
general, however, stability seems to require that is in factx̄
the smallest eigenvalue of with the same sign as�EV

(cf. app. B). This indicates that the deviation fromxV p0A

the optimum will be rather small in many cases.
If we add epistatic interactions to an initially additive

trait, the mutation load L is influenced by two opposite
factors. Reduction of the genetic variance reduces the load,
but deviation of the phenotypic mean from the optimum
increases it. Depending on the model and the equilibrium,
these factors may cancel (e.g., HC regime for two-locus
model with equal mutation rates) or lead to a net reduction
of the load. The reduction can be substantial and may

drop to half the value without epistasis in extreme cases
(trait optimum at a equilibrium under HC con-V p 0A

ditions). In some rare cases where increases with epis-VG

tasis (vanishing directional selection in the Gaussian re-
gime; see eq. [44]), we obtain an increase of the load.

Discussion

Modeling the Genetic Architecture of Quantitative Traits

The relation of most quantitative traits to their genetic
basis is highly complex and, despite some encouraging
progress through quantitative trait loci (QTL) or muta-
genesis experiments, still poorly understood (Barton and
Turelli 1989; Barton and Keightley 2002). A central ques-
tion of our study has been how the mutational effect dis-
tribution is shaped by natural selection. Answers to this
question can be found only if epistatic interactions are
accounted for. Incorporating epistasis into a mathemati-
cally tractable model, however, is a major problem. Treat-
ment of a multilinear trait with pairwise interactions
among loci has revealed pleasant analytical properties.
Many central aspects of the theory can be formulated in
terms of linear algebra. The equilibrium structure basically
follows from the properties of a linear operator given by
the product of the matrix of pairwise interactions and the
covariance matrix of the locus effects, . EigenvaluesEV
correspond to the mean phenotype, and eigenvectors de-
termine the average size of mutational effects at the dif-
ferent loci.

Throughout this article, linkage equilibrium has been
assumed. While this is a good approximation for an ad-
ditive trait as long as linkage is not very tight (Bürger
2000, chap. 6), this is less clear if there are epistatic in-
teractions in the model. At least in the Gaussian regime,
however, the effects of linkage disequilibria seem to be
minor also for multilinear epistasis. As we will show in a
separate publication, the framework presented here can be
extended to include linkage disequilibria in this case. De-
viations from the linkage equilibrium results are found to
be second-order corrections in the quasi-linkage equilib-
rium approximation (J. Hermisson et al., unpublished
manuscript).

Epistasis is a complex phenomenon, and a model cannot
cover more than a single facet. On the way toward a non-
additive population genetic theory, other and comple-
mentary models will be needed for a full picture. There
are three special properties of the present approach that
restrict its generality. First, the equilibrium distributions
in our model are symmetric at all loci. This is changed if
mutations or the fitness function are asymmetric or if the
trait is no longer multilinear. As may be seen from equa-
tion (21), further selection forces may become important
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for skewed distributions. Second, another consequence of
the multilinearity assumption is that synergistic epistasis
among mutations that increase the genotypic value x im-
plies antagonistic interactions among mutations at the
same loci that decrease x. This is not necessarily true on
a general genotype-phenotype map. Finally, we have as-
sumed that there is ample room for the mutational effect
distribution to evolve independently of the genotypic
value. The fitness landscape consists of ridges rather than
sharp peaks (fig. 1). For rugged landscapes with sharp
optima, the population would be constrained to a peak
without much potential for the evolution of mutational
effects.

Let us finally take a look at the implications of our
results for the robustness of conclusions based on the ad-
ditive, small-effects polygenic models that have dominated
the population genetic literature in the past. Here, two
assumptions of these models must be distinguished. We
have seen that additivity per se may serve as a reasonable
first-order approximation in mutation-selection balance as
long as (U is the character mutation rate) if epis-U/s K 1
tasis is not very strong. For larger , any epistasis (i.e.,U/s
not just epistasis with a net positive or negative effect)
may become important. The assumption of almost equal
and small effects, on the other hand, may lead to sub-
stantial deviations even for small . This is the case, inU/s
particular, if the differences in the locus effects are large
enough that some loci are in the Gaussian and some are
in the HC regime. From the point of view of the epistatic
model considered in this study, and consonant with ex-
perimental data, additive approximations should include
these potentially large differences and also take the pos-
sibility of a negative correlation among locus mutation
rates and effects into account.

The Maintenance of Genetic Variation

We have consistently found that epistasis leads to a re-
duction of the additive genetic variance that can be main-
tained in mutation-selection balance. In particular, the
house of cards approximation for an additive model pro-
vides an upper bound for both and . In the GaussianV VG A

approximation, there are cases where the total genetic var-
iance may be slightly elevated due to the influence of epis-
tasis. The additive genetic variance predicted from the ep-
istatic model, however, will always be less than the
prediction from the additive model with the same single-
locus mutational effects. This demonstrates that epistasis
cannot be evoked to save the mutation-selection-balance
hypothesis when estimated mutation parameters seem in-
sufficient to explain observed levels of additive genetic
variation. On the contrary, the ratio of the trait mutation
rate and the selection strength must be at least as high as

the genetic variance plus the epistatic varianceV V pG I

; that is, (cf. eq. [34] andV � V � … U/s ≥ V � VAA AAA G I

app. D).
In natural populations, most quantitative characters

show a large amount of additive genetic variation. Whether
this variation can be explained by a balance between mu-
tation and selection has been the subject of a long con-
troversy (Lande 1976a; Turelli 1984; Barton and Turelli
1989; Houle et al. 1996; Bürger 2000). A central element
to this debate is whether the house of cards or the Gaussian
approximation for the allelic distributions is more appro-
priate. For high per-locus mutation rates and weak selec-
tion, where the Gaussian approximation is valid, larger
values of are predicted. When we find that the reductionVA

in variance due to epistasis is in fact most pronounced in
the house of cards case, it thus accentuates the difference
between the two models and makes the mutation hy-
pothesis for maintenance of variation even more depen-
dent on the validity of the Gaussian approximation.

On the other hand, our findings on the evolution of
the genetic architecture may have some more subtle im-
plications that are favorable to the mutation hypothesis.
The tendency for loci with large mutation rates to evolve
smaller mutational effects (see “The Mutational Effect Dis-
tribution”) would lead to a negative correlation between
mutation rate on one side, and mutational effects and
variances on the other. That a negative correlation between
mutation rates and effects exists in nature has been pro-
posed to reconcile a well-known conflict between genic
and trait mutation rates (Lynch and Walsh 1998, chap.
12). In a nutshell, the problem is that current estimates
of per-locus mutation rate as well as of average effects
predict lower additive genetic variance under mutation-
selection balance than observed in nature. If, however, as
our model suggests, the major loci tend to have on average
a lower mutation rate than minor loci, there is a possibility
that current mutation rate measurements tend to under-
estimate the rate of mutation and overestimate the average
effect of the mutation. Such an estimation bias would
consistently underestimate the amount of genetic variation
maintained for a quantitative character under stabilizing
selection.

Our general finding of reduced genetic variance in ep-
istatic models stands in marked contrast (but not neces-
sarily in conflict) to the result of Gimelfarb (1989), who
found that large amounts of genetic variance can be main-
tained as balancing polymorphisms for a biallelic epistatic
trait under stabilizing selection alone. A similar conclusion
has been reached for a biallelic trait under apparent sta-
bilizing selection if there is pleiotropic epistasis for fitness
(Gavrilets and de Jong 1993). No study seems to exist for
mutation-selection balance in an epistatic biallelic model
beyond two loci, but the results for balancing selection
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indicate that the behavior may differ from the one ob-
served here for a continuum-of-alleles model, at least for
some of the biallelic equilibria. Since the epistasis term
used in Gimelfarb (1989) is included as a special case in
our model, we can rule out different epistasis patterns as
a cause for this discrepancy. The reason seems rather to
be the much higher flexibility of a continuum-of-alleles
model where more fine tuning of the locus effects is pos-
sible and no variation is maintained in the absence of
mutation. In order to further clarify this issue, a more
detailed study of the equilibrium structure of the biallelic
epistatic trait would be needed than is given in Gimelfarb
(1989), where only completely polymorphic equilibria up
to four loci are studied. For an additive biallelic trait under
stabilizing selection, an exhaustive analysis shows that the
genetic variation maintained in a typical equilibrium by
balancing selection alone sharply declines with the number
of loci increasing (Bürger and Gimelfarb 1999).

The Mutational Effect Distribution

An unexpected phenomenon that we observe in this model
is that in many cases large differences in the average mu-
tational effects between loci evolve in mutation-selection
balance. We also find that loci with higher mutation rates
have a bias to evolve smaller mutational effects, and those
with smaller mutation rates evolve larger effects. As we
have seen above (eq. [49]), this bias results from a higher
contribution to the genetic variance of loci with larger
mutation rates, which in turn leads to stronger epistatic
selection for the reduction of the locus mutational effect.

Genes with large average effect are called major loci,
while those with small average effect are called minor loci.
The existence of major and minor alleles is a commonly
perceived phenomenon in genetics, and it is tempting to
speculate that this may be (at least in part) a generic con-
sequence of selection on characters with interacting loci.

While the effects of mutations vary widely, little is
known about systematic differences in mutation rates and
effects between loci. Mutation-accumulation experiments
and single P-element insertions show that mutations with
small effects are much more frequent than mutations with
large effects, leading to leptokurtic (L-shaped) distribu-
tions with high kurtosis (e.g., Mackay et al. 1992; Garcia-
Dorado et al. 1999). These experiments, though, conflate
the effects of mutations at different loci as well as different
mutations at the same locus.

On the one hand, the effect of different alleles of the
same locus can be very different. It is known that loci that
can have mutations with major effects, like Ubx has on
halter morphology, also have alleles with minor effects on
the same character (Gibson and Hogness 1996). The QTL
often map to the same chromosomal regions as loci with

major effects (Lynch and Walsh 1998, chap. 15), and in-
sertions of P-elements in the achete-scute complex lead
to small effects on bristle number (Mackay and Langley
1990). Whether this leads to leptokurtic per-locus muta-
tion distributions is still unclear, however. On the other
hand, it has been argued that the high kurtosis on the
level of the trait is an emergent effect due to unequal locus
mutational variances (Welch and Waxman 2002). System-
atic loss-of-function mutation of individual loci in yeast
indeed shows that there is a wide range of effects among
different loci on various traits (Smith et al. 1996). Hence,
there seems to be considerable heterogeneity of the effect
of mutations among genes as well as among alleles at the
same locus. To our knowledge, there is no data relating
per-locus mutation rates to the average effect of mutations
at the loci. Estimating both the mutation rate and the effect
distribution independently is particularly difficult, since
the physical mutational target of most genes is not known.
Mutations in noncoding, regulatory regions might be re-
sponsible for a substantial number of mutations affecting
quantitative variation, but the cis-regulatory regions of
most genes are not well understood.

The Role of Constraints

The primary selective force that is responsible for the evo-
lution of the genetic architecture in our model, the epi-
static force ( eq. [19]), works to reduce the phenotypic�F

effect of genetic variation contained in the population. In
the picture of the phenotype landscape, where differences
in height correspond to differences in phenotype (fig. 1),
this appears as a trend toward flatter regions of the land-
scape. In these regions, the phenotypic expression of a
given genotypic change is reduced and the phenotype buf-
fered. The epistatic force only subsides if the marginal
effect of all alleles, and hence the additive genetic variance,
altogether vanishes.

Given that this selective trend toward shouldV p 0A

also exist in nature, this raises the question why there is
usually ample additive variation found in quantitative
traits. There are two possible answers to this question. The
first possibility is that populations are simply not close to
mutation-selection balance.

The second possibility is that physiological and selective
constraints prevent the population from eliminating .VA

This scenario is the one suggested by our model where
the additive genetic variance at stable equilibria is usually
much larger than 0. Two cases can be distinguished. For
some patterns of gene interactions (i.e., on some phe-
notype landscapes), points with simply do not existV p 0A

(the landscape is nowhere completely flat). This describes
the case where cannot evolve to 0 due to pure “phys-VA

iological” constraints. An extreme example for this is the
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usual additive model: if all epistatic coefficients are 0, the
genetic architecture is maximally constrained and un-
evolvable. Usually, a point with does exist in theV p 0A

multilinear model. However, only if this point coincides
with an optimal phenotype can trait optimization and
complete buffering of the locus effects occur at the same
time. In the vast majority of cases, this is not possible (the
phenotype landscape is nowhere completely flat on the
contour of the optimal phenotype). In these cases, the
combination of selective and physiological constraints pre-
vents the population from evolving . Only if epis-V p 0A

tasis is very strong or selection (and thus the selective
constraint) is very weak will a stable equilibriumV p 0A

exist.
Since evolution by natural selection needs additive ge-

netic variance as its fuel, equilibria with are evo-V p 0A

lutionary dead ends, at least until any remaining epistatic
variance is turned into additive variance either by drift or
an environmental change that itself alters the genetic ar-
chitecture. As we have seen above, at least some physio-
logical and selective constraints may in fact be necessary
for the maintenance of nonzero levels of in mutation-VA

selection balance. In our model, these are constraints be-
tween the genotypic value of the trait itself and the mu-
tational variances that can be realized for the contributing
loci. This suggests that, while usually thought of as im-
peding the evolutionary process, certain constraints might
actually be needed to maintain evolvability.

These considerations show that constraints are a nec-
essary ingredient for population genetic modeling in any
model that allows for the evolution of the mutational effect
distribution. The constraint that usually keeps the “opti-
mal” genotypes apart from the maximally buffered ones
is an important difference between the class of models
studied in this article and the approach in Wagner et al.
(1997). Both the universal mapping function (UMF) and
modifier models assume that complete buffering of all loci
and trait optimization can occur at the same time. The
mathematical reason is that genetic changes on the trait
and its genetic architecture are represented by different
model variables. Biologically, this assumption is not very
realistic. But even within the modeling framework itself,
this property is nongeneric, as already mentioned in Wag-
ner et al. (1997) and analyzed in detail in Wagner and
Mezey (2000). It turns out that the independence of trait
values and architecture exists only for the particular ge-
notypic value that is chosen to be the optimal one. It seems
impossible to extend these models such that this property
is maintained over a wider range of genotypic values (for
details, see Wagner and Mezey 2000). These shortcomings
were a major motivation for the development of the mul-
tilinear model (Hansen and Wagner 2001b).

Whereas stable equilibria seem to occur onlyV p 0A

under very special circumstances in our model, stable equi-
libria where the marginal allelic effects at some but not
all loci vanish are obtained for various patterns of the
epistatic interactions. As discussed above for a modular
trait, this occurs if the epistatic coupling of loci is partially
relaxed, so that there exist groups of quasi-independent
loci.

One may ask whether alleles with a vanishing marginal
effect in equilibrium but a nonzero effect in a changed
genetic background exist in nature. Currently, this ques-
tion seems difficult to answer. As argued by Templeton
(2000), there is a strong bias against detecting alleles or
loci of this kind in QTL measurements since usually only
chromosomal regions with significant marginal effects are
tested for epistasis in the first place. Whereas knowledge
at this point is therefore still very limited, some prelimi-
nary evidence has been reported in Templeton (2000).
Strong epistasis among loci that show no significant mar-
ginal effects has been found for viability in Drosophila
mercatorum (Templeton et al. 1976). Another example is
the phenotype coronary artery calcification in humans.
Here, no significant marginal effects of the coronary artery
disease risk factor Apolipoprotein E have been found in
the wild type, although Apolipoprotein E strongly interacts
with other heritable coronary artery disease risk factors
(Kardia et al. 1999).

Canalization and Genic Buffering

The emergence of some sort of robustness or buffering of
the phenotype with respect to environmental or muta-
tional perturbations has long been perceived as one of the
main trends in the evolution of the genetic architecture.
Triggered by striking experimental observations (reviewed
in Scharloo 1991), this idea was first conceptualized as
canalization by Waddington (1953, 1957) many years ago.
Later, genetic and environmental canalization were distin-
guished depending on whether the buffered variation is
heritable or not (Stearns and Kawecki 1994; Wagner et al.
1997). Genetic canalization can be characterized as re-
duced mutational variability of phenotype, indicated by a
reduction of the mutational variance (Wagner and Alten-
berg 1996; Wagner et al. 1997; see also Hermisson and
Wagner 2003). Already Waddington (1957) proposed the
action of stabilizing selection as the ultimate cause of can-
alization. The idea is quite simple: for a trait under sta-
bilizing selection, any deviation from the optimum reduces
fitness. Any mechanism that buffers the trait by decreasing
the phenotypic effects of the variations should therefore
be favored by natural selection.

As pointed out by Rice (1998), canalization may evolve
whenever a phenotype is regulated by two or more gene
products that interact in a nonlinear way. A polygenic trait
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under stabilizing selection with a continuum of alleles and
epistasis among loci is therefore the generic model where
evolution of canalization should be expected. Considering
this picture, the finding of high levels of mutational var-
iance at many equilibria of the epistatic model is perhaps
the biggest surprise of this study. What, now, are the con-
sequences of these results for the concept of canalization?

It should be stressed that the results do not imply that
canalization (in the sense of a reduced variability as mea-
sured by ) cannot evolve at all under stabilizing selec-Vm

tion. Indeed, several studies have shown that this is pos-
sible (Wagner 1996; Wagner et al. 1997). But first, the
conditions under which this occurs may be even more
restrictive than previously thought, and second, the con-
verse effect (i.e., an increase of the mutational variance)
may equally well occur. It seems, therefore, that the tra-
ditional picture of stabilizing selection entailing canali-
zation is no longer tenable from a population genetic point
of view. Two factors contribute to this changed view. The
first factor is due to the constraints that inhibit simulta-
neous buffering at all loci; the second one deals with the
level of canalizing selection.

As discussed in the previous section, complete canali-
zation, or the complete buffering of mutational effects on
the phenotype at all loci, is usually not compatible with
trait optimization in the multilinear model. This seems to
be a generic property of all but very special phenotype
landscapes. Also on the multilinear landscape, however,
each phenotype (and, in particular, the optimal one) is
represented by a continuum of genotypes that differ in
their genetic variability as measured by . In many cases,Vm

there is even a most canalized genotype (a “canalization
point”) with minimal on the contour of the optimalVm

phenotype. The unexpected result now is that is inVm

general not minimized on this more restricted set of ge-
notypes, but it may become rather large. This is in clear
contrast to the evolution toward the canalization points
predicted in Rice (1998). Note, however, that Rice’s pre-
diction was made assuming constant variances at the in-
dividual loci or underlying variables. Our result strongly
depends on the dynamics of the genetic variance. The
reason for this negative result is the incomplete correlation
between the additive genetic variance and the mutational
variance pointed out in “The Evolution of the Mutational
Variance.” The reduction of is not itself a target ofVm

selection, but the reduction of is.VA

Nevertheless, the model predicts characteristic patterns
of mutational buffering. The level of integration where
buffering occurs, however, is different from what Wad-
dington (1957) expected. We do not find canalization of
the unit that is exposed to (and constrained by) selection
(i.e., the trait). We do, however, find a clear tendency for
the evolution of genic canalization, that is, the buffering

of the mutational effects of certain subunits or groups of
genes. Buffering effects on the genic level are frequently
observed in nature (Wilkins 1997; Wagner 2000; Hartman
et al. 2001). On the level of a single gene, mutational
buffering is indeed coupled with the reduction of (re-VA

spectively, the locus contribution) in our model, making
genic canalization a target of selection (eq. [49]). In the
absence of a completely canalized, optimal phenotype,
however, the different targets of selection for the buffering
of all the genes are in conflict. Here, the model predicts
a bias toward buffering of loci with higher mutation rates,
often at the cost of decanalization of loci with lower mu-
tation rates. In the sum, decanalization at the latter loci
easily overcompensates the buffering effect of the former.
Stabilizing selection, therefore, does not necessarily reduce
the net impact of new mutations on the trait but may
equally well have the opposite effect.

We can summarize these findings in an intuitive picture.
Assume a polygenic trait under stabilizing selection in
“quasi”-mutation-selection equilibrium (i.e., a population
on or near the contour of the optimal phenotype but not
yet at the equilibrium point). In this situation, each gene
(or each locus) tries to buffer its effect on the phenotype
with respect to deleterious effects it might suffer from
mutations. In principle, this may be accomplished by re-
structuring the genetic background accordingly. As it oc-
curs, however, it is not the same background that best
serves every gene. Also, buffering efforts are constrained
by the requirement that the mean trait value must stay
near the optimum. In order to resolve this conflict, the
genes cast their ballot in the parliament of genes on every
mutation that changes the mutational effects. There is,dj

however, no “one gene, one vote” principle in force in this
parliament. The votes are weighted according to relative
buffering effects of the mutation and ac-(� V /V )y m, i m, ij

cording to the respective contributions of the loci to the
genetic variance on the trait ( ); see equation∝ V � 2VA, i AA, i

(49). Under house of cards conditions, this contribution
is proportional to the gene mutation rate . Clearly, thisui

makes the genes with the higher mutation rates the “more
equal” members of parliament in this game that will
achieve, on average, higher buffering. The selection co-
efficient for the buffering mutation corresponds to the
margin of the vote. For many mutations this margin will
be much higher than just one vote, leading to selection
coefficients that are considerably higher than in the case
of selection for dominance, which is a single-locus buf-
fering problem. Let us finally consider how the “common
good” is served by this procedure. If buffering on the level
of the trait (low mutational variance) measures the com-
mon good, we have seen that this quantity is in general
not maximized. In contrast, it is quite often driven to low
values. The reason for this phenomenon is, of course, that
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the majority can (and will, for selfish genes) assert even
small advantages at a high cost for the minority.
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APPENDIX A

Calculations for Two Loci

From the eigenvalue equation (23) and the relations (7)
and (8) for the mean and the additive variance, we derive

and . For the1/2 1/2 2x̄ p ��(V V ) V p 2(V V ) � 2� V V1 2 A 1 2 1 2

equilibrium to exist, must hold, and this leads toV ≥ 0A

the condition and also excludes the solution2 1/2� (V V ) ! 11 2

of the eigenvalue equation. The epistasis1/2x̄ p ��(V V )1 2

factors are related to the variances as
2

2 ¯A f S p f �1 1

.2 1/2 2 �1� V p (V /V ) p A f S2 2 1 2

Under Gaussian conditions, we now obtain V p1

and for the variances of3 1/2 3 1/2(j /sj ) V p (j /sj )m, 1 m, 2 2 m, 2 m, 1

reference effects at the two loci. Using these, the popu-
lation means and variances follow from the relations (eqq.
[7]–[12]). In the house of cards regime, inserting the above
expressions for into equation (17) gives2A f S1, 2

, which shows that the locus mu-1/2(V V ) p u /s p u /s1 2 1 2

tation rates must coincide. In this case, we have
for the variation of genetic ref-2 2A f SV p V /A f S p u/s1 1 2 1

erence effects at the loci, where parameterizes the2A f S1

contour of equilibrium solutions. In the mixed regime,
with the first locus under HC conditions, we can still repeat
the above calculations to obtain . Equating1/2(V V ) p u /s1 2 1

the expression for the genetic variance at2V p A f Su /s2 1 1

the second locus with the solution of the Gaussian equi-
librium condition on this contour, ,2 1/2V p (A f S/s) j2 1 m, 2

fixes the parameter to .2 2 2A f S A f S p sg u /u1 1 2 2 1

APPENDIX B

Stability of Equilibria

In this appendix, we determine the stability of the equi-
libria derived above. As for the solutions themselves, this
is only possible approximately. We assume that linkage
equilibrium, the symmetry of the distribution, and the
Gaussian or house of cards conditions are maintained un-
der perturbations. Stability is not checked with respect to
arbitrary perturbations but only with respect to changes

in the means and the variances. This restricts the analysis
to a subset of distributions in a -dimensional vector2n
space. In this vector space, asymptotic (local) stability is
determined by the eigenvalues of the Jacobian matrix.
Equilibria (or contours of equilibria) are classified as stable
if and only if the real parts of all nonzero eigenvalues are
negative and the eigenvectors corresponding to the zero
eigenvalues are tangent vectors of the contour of equilib-
rium solutions. The entries of the Jacobian matrix are
(using )� { 0ii

¯�Dyi ¯¯ ¯p � 2sV f f � � x � � � V ,( � )i i j ij ik jk k¯�y k(i, jj

¯�Dyi ¯p � 2sV� f . (B1)i ij j
�Vj

For house of cards, we further obtain

�DVi 2 ¯p � 2s g V f � ,i i i ij¯�yj

�DV 2i 2 2¯p �s g f � � V , (B2)( � )i i ij j
�V i, j(ii

�DVi 2 2p �s g � V .i ij i
�Vj

The corresponding expressions under Gaussian conditions
are

�DVi 2̄p � 2sV f � ,i i ij¯�yj

�DV 2i 2¯p � 2sV f � � V , (B3)( � )i i ij j
�V i, j(ii

�DVi 2 2p �sV � .i ij
�Vj

The spectrum of the Jacobian matrix has been analyzed
analytically or numerically for all equilibria described in
the article. For the equilibria in the two-locusV p 0A

model, the condition for stability is easily2 1/2� (V V ) 1 11 2

derived. For the balancing-forces equilibrium, we obtain
the following results:

House of cards. There is a 0 eigenvalue with correspond-
ing eigenvector in the direction of the equilibrium contour.
For (which is needed for the existence of the equi-2s ≥ � u
librium), and under house of cards condition ,2(g ≥ V )i i

the real parts of the three other eigenvalues are negative.
This follows from an analytical analysis of the discriminant
of the characteristic polynomial.
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Gaussian. Defining , the four ei-2 1/2G :p � (j j /s)m, 1 m, 2

genvalues are given by 2�(sG/2� )[6 � 3G � (4 � 4G �
and . The2 1/2 2 2 1/29G ) ] �(sG/2� )[2 � 3G � (4 � 4G � 9G ) ]

equilibrium is stable whenever it exists, that is, for 0 ≤
.G ≤ 1

Mixed regimes. The spectrum depends on three inde-
pendent variables, , , and . Numerical evi-2 2 2ˆg g � p � u/s1 2

dence shows that the equilibria are stable whenever they
exist.

For the four-locus model with two submodules (app.
C, eq. [C1]), numerical results indicate that the equilib-
rium with is always unstable. The results for thef̄ ( 0, Gii

other equilibria follow from the two-locus results after
appropriate changes of parameters.

In order to obtain hints for the stability of equilibria
also in the general multilocus case, it is instructive to re-
strict the stability analysis even further to perturbations
in the locus means alone. The entries of the corresponding
n-dimensional Jacobian matrix are given by the first ex-
pression in equations (B1). We can write this matrix as

, where with . The2 ¯¯¯� 2sQ Q p (VE) � VEx � F F p Vf fij i i j

right eigenvectors of are the left eigenvectors of . ItsQ EV
spectrum is , where is taken from2 ¯{l � l x � V d } l¯i i A l �x ii

the eigenvalues of and , if and 0¯EV d p 1 l � x p 0¯l �x ii

else. According to the restricted dynamics, the equilibrium
is therefore stable (all eigenvalues of are positive) if ¯Q x
is smaller or equal in absolute value than the smallest
eigenvalue of with the same sign. For the�EV V p 0A

equilibrium where the dynamics of the means and the
variances decouple (which may be seen by setting f̄ p 0i

in eqq. B1–B3), this translates into a necessary condition
for the stability of the equilibrium in the above framework.
If we decrease the strength of epistatic interactions in a
system with a stable equilibrium, this equilibriumV p 0A

becomes unstable as soon as the smallest eigenvalue of
crosses . This is precisely when the first bal-�EV xV p0A

ancing-forces equilibrium appears. For balancing-forces
equilibria, the argument seems to indicate that the devi-
ation from the optimum is always given by the smallest
eigenvalue of (of the same sign as ).�EV xV p0A

APPENDIX C

Multilocus Solutions

Solutions for Singular Epistasis Matrix

For all equilibria with reference effects at all loci,¯FyF ! �i

the vector of mean epistasis factors must solve¯ ¯f p 1 � Ey
the eigenvalue equation of the operator . Here we showEV
that in the case of an epistasis matrix , with (at least)E
one eigenvalue 0, one of the following cases applies:

If the vector is in the image of , a1 p (1, 1, 1, …) E
solution with exists, but no solution with as¯ ¯f p 0 x p 0
eigenvalue of .EV

Otherwise, if 1 is not in the image of , a solution withE
exists, but no solution with .¯x̄ p 0 f p 0

The part for , which defines the equilib-f̄ p 0 V p 0A

rium, directly follows from . For a solution¯ ¯f p 1 � Ey
with , must have an eigenvalue 0 with eigenvectorx̄ p 0 E

. Then, . If 1 is in the im-
t t t t¯ ¯ ¯ ¯ ¯ ¯¯Vf f Vf p f V1 � f VEy p f V1

age of , this expression is 0 since the kernel and the imageE
of a symmetric matrix are orthogonal. In this case, how-
ever, necessarily since is invertible. Otherwise, iff̄ p 0 V
1 is not in the image of , the vector space of all epistasisE
factors, which is spanned by 1 and the image of , has aE
nontrivial intersection with the kernel of . Since isE V
invertible, the same holds true for the vector space of
vectors , which proves the assertion.¯Vf

A Four-Locus Model

Consider a trait that is determined by two modules with
two loci each:

x p y � y � y � y � � y y � � y y . (C1)1 2 3 4 12 1 2 34 3 4

Analyzing the eigenvalue equation (23) for this model as
described in the modular-trait section above we find that
four equilibria can exist. There is an equilibrium with both
modules at the balancing-forces equilibrium in their sub-
space; that is, , (result not shown). A numericalf̄ ( 0 Gii

stability analysis indicates, however, that this equilibrium
is unstable whenever it exists. In the other three cases, the
marginal effects of all mutations vanish in the subspace
of at least one of the modules. As it turns out, the equi-
librium structure of the other module coincides with that
of the two-locus model (treated above) after a transfor-
mation of the parameters. If the second module is kept at
the equilibrium, that is, , the background¯V p 0 f p 0A 3, 4

effect of this module on the first module consists of an
effective shift of the optimal trait value to .x p 1/�V p0 34A

In figure 2, this leads to the following changes of param-
eters:

� �12 34˜� r � p ,
� � �12 34

�12�g r g , (C2)1, 2 1, 2
�̃

where is an effective epistasis parameter that depends�̃
on the epistasis coefficients in both modules. With these
rescaled parameters, all means and variances are obtained
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from the two-locus results: the mean phenotype is the one
from the first subsystem (under the above rescaling), the
genetic and mutational variances are given by the sum of
the respective quantities in both subsystems, and the load
follows from these values. (Note that the contained ingi

the must also be rescaled.) If the first module is injm, i

the mixed regime (with ) and the second moduleu 1 u2 1

is under Gaussian conditions, we obtain, for example,

u1¯ ˜x p �� ,
s

2 2/3u u � j j1 1 34 m, 3 m, 42˜V p 2 � � � , (C3)( )G 2s s s

1/32 2 2L p 2u � s� j j( )1 34 m, 3 m, 4

1/3
2 2 4 4 4� u u � j j12 2 1 34 m, 3 m, 42 2V p s g g � � 2 . (C4)m 1 2 2 2( ) ( )�̃ u s s1

There is a substantial reduction (linear in the mutation
rate) of the genetic load and the genetic variances relative
to the additive model. Depending on the relative size and
sign of and , the mutational variance, on the other� �12 34

hand, may be significantly increased.
Since an equivalent result holds with both modules ex-

changed, we see in particular that two stable equilibria
with either module at the equilibrium in its sub-V p 0A

space exist for a large parameter range.

APPENDIX D

Higher-Order Epistatic Interactions

In this appendix, we expand some of our results on the effects of epistasis on the genetic variance in mutation-selection
balance to higher-order interactions. That is, we now consider the full multilinear model for the trait,

x p y � � y y � � y y y � … . (D1)� � �i ij i j ijk i j k
! ! !i i j i j k

We consider solutions in mutation-selection balance assuming linkage equilibrium. Since (due to multilinearity) the
marginal fitness function on each locus is quadratic and mutation is symmetric by assumption, the equilibrium
distribution is symmetric in all . As in the pairwise interaction case, we can set third cumulants to 0 and obtainyi

2 2 2DV p �sA f S C � 2V � j p 0 (D2)( )i i 4, i i m, i

as the equilibrium condition from the dynamical equations of the locus variances. We now expand as2A f Si

2
2 2 2 2¯A f S p f � A�f /�y S V � A� f /�y �y S VV � … . (D3)� � �i i i j j i j k j k

! ! !j j k j k l

For a proof of this relation, note first that is a multilinear function in the . In equation (D3), all purely multilinearf yi j

terms of are contained in . Terms with a quadratic component of the form are covered by the
2

2 2 2 2¯ …A f S f Ay y y Si i j j j1 2 m

term proportional to on the left-hand side of equation (D3). Finally, all terms proportional to a factor of…V V Vj j j1 2 m

the form that are absent from sum up as2 2 2 2…¯ ¯ ¯y y y A f Sj j j i1 2 m

m(m � 1) m(m � 1)(m � 2)
m1 � m � � � … � … p (1 � 1) p 0 (D4)

2! 3!

on the left-hand side of equation (D3) and exactly cancel. We express VG as (cf. Hansen and Wagner 2001b)

V p V � V � V � …G A AA AAA

2
2 2 3 2¯p f V � A� x/�y �y S V V � A� x/�y �y �y S V VV � … . (D5)� � �i i i j i j i j k i j k

! ! !i i j i j k

Remembering that and using the house of cards approximation ( ) in equation (D2), we obtain2 2f p �x/�y C ≈ V gi i 4, i i i
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uiV p � V � 2V � … � (k � 1)V � … , (D6)k�G AA AAA Asi

uiV p � 2V � 3V � … � kV � … (D7)k�A AA AAA Asi

under HC conditions. In the Gaussian regime ( ), we again find that the house of card results hold as an upperC p 04, i

limit and that in the epistatic system is always reduced relative to an additive model with the same single-locusVA

mutation rates and effects. The arguments are the same as in the pairwise interaction case. If we keep the locus means
fixed and evaluate the Gaussian case in the reference of the mean genotype we obtain

1 � (1/2) Var (f ) � (1/3) Var (f ) � (1/4) … j1 i 2 i m, iV p , (D8)�G � �1 � Var (f ) si i

1 jm, iV p , (D9)�A � �1 � Var (f ) si i

where is the mth order contribution to the variance of the epistasis factor , . It is given by the m-Var (f ) f Var (f )m i i i

fold sum term in equation (D3). We see that weak second-order epistasis increases while weak higher-order epistasisVG

reduces it. Any order of epistasis reduces .VA
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