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What is population genetics? – Basic concepts and definitions

Evolution describes the change in heritable characteristics of biological populations over
time. Depending on the type of these characteristics, and depending on the time-scale of
interest, we can distinguish different branches of evolutionary research.

• Phylogenetics is concerned with the construction of the tree of life, following Dar-
win’s insight that all life on earth (and the fossil record) is connected via common
ancestors. Changes in traits and characteristics among species, or the emergence of
new traits happen over macroevolutionary time-scales, millions or billions of years.
Differences among individuals within each species can usually be ignored relative to
the differences among species. Each species is therefore generally only represented
by a single data point, such as a consensus DNA sequence (“the” human genome).

• Population genetics and quantitative genetics are interested in the microevolutionary
process within a population. Microevolution is concerned with heritable characteris-
tics that differ among individuals in a population and describes how the distribution
of these characteristics changes across generations. Going back to Darwin (again)
and to Wallace, the elementary forces that drive these changes are well-understood:
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mutation, selection, recombination, genetic drift, and gene flow / migration. In
contrast to phylogenetics, which basically is a historical science, microevolution has
a mechanistic basis that can be used to construct theoretical models and to make
predictions for the future.

Genotype and phenotype

Each individual in a population can be characterized by a large number of morphological,
physiological, and behavioral traits, which collectively define its phenotype. Individual
phenotypes may be more or less adapted to the environmental conditions and influence
the viability or reproductive success of its carrier. As a consequence, selection operates
on phenotypes. Phenotypes themselves are not inherited, but phenotypic characteristics,
such as body size, are influenced by heritable and non-heritable factors.

The part of an individual that is directly heritable is its genotype. The genotype of each
individual is largely encoded in its genome and represented by its DNA (DeoxyriboNucleic
Acid) sequence. DNA is a polymer consisting of four types of nucleotides, which differ in
the base that they contain: adenine (A), guanine (G), thymine (T), and cytocine (C). The
nucleotides are organized in two polynucleotide chains that form a double-helix with A-T
and G-C base pairings. In eukaryotic cells (animals, plants, fungi), the cell nucleus contains
several such DNA double strands, called chromosomes. In prokaryotic cells (bacteria and
archea), DNA typically forms a single ring (bacterial chromosome). Through development,
the genotype determines (the heritable part of) the phenotype, but the connection is
exceedingly complex for most phenotypic traits. The genotype naturally decomposes into
genes, functional units of DNA that encode a single protein. Quantitative traits of interest
(such as milk yield in cows) are usually affected by a large number of genes.

Due to the complexity of the genotype-phenotype map, all models of (micro)evolution
must rely on simplifying assumptions. Models of quantitative genetics rely on phenotypic
data, but often do not resolve individual genes. They rather infer heritable and non-
heritable parts of phenotypic traits directly from trait measurements across generations.
On the other hand, models of population genetics directly follow the frequencies of geno-
types and variants of genes in a population. They often do not refer to phenotypes at all,
but assume that selection acts directly on the genes, no matter where the selection pressure
comes from and how it is transmitted via the genotype-phenotype map.

Genes, loci, and alleles

Population genetics is concerned with the evolutionary dynamics of genotypes. It follows
the frequencies of genetic variants or alleles that differ between individuals. The complete
genotype of each individual is given by its DNA sequence (≈ 3 billion base pairs in the
human genome, ≈ 130 million in Drosophila). Usually however, one is only interested in
changes at certain aspects of the genotype, such as the genomic positions, or genetic loci,
that affect a phenotypic trait of interest. On the molecular level, a locus is the position of a
single base in the DNA. There are four alleles, corresponding to the four different bases, A,
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T, G, and C. Frequently, however, the term locus is used on a coarser level as the position
of a gene (or some other significant stretch of sequence) . It is always assumed that a locus
is a “unit of recombination” that is not broken up during reproduction. There can be
many different alleles at a single locus (4n different alleles for a gene that is represented by
a DNA sequence of fixed length n), but usually one considers classes of equivalent alleles.
Many population genetic models only distinguish two classes: an ancestral wildtype and a
mutant allele.

Genetic loci can have different levels of ploidy. Most simple life forms (bacteria, mosses,
algae, fungi) have a single copy of each chromosome, they are haploid. For haploids,
a single-locus genotype is determined by a single allele. Almost all higher plants and
animals are diploid, i.e., most of their chromosomes (the so-called autosomes = non-sex-
chromosomes) are represented twice in each adult cell. Some organisms (mostly plants)
have even a higher ploidy level (e.g., tetraploid with a 4-fold set). Consequently, single-locus
genotypes in diploids are given by a pair of alleles (4 alleles in tetraploids, etc).

Mathematical methods

The art of mathematical modeling is to choose the appropriate mathematical methods to
address a scientific question. Since population genetics is concerned with the change of
allele frequencies as a function of time, natural mathematical methods come from fields
that describe such processes. Often, the main decision for a given problem is to decide
whether a deterministic or a stochastic framework is appropriate.

• Deterministic models in population genetics use methods from the theory of dynami-
cal systems and of differential equations (both ODE’s and PDE’s). On the biological
side, this is appropriate if stochastic effects due to a finite population size (genetic
drift) can be ignored. this is usually the case if selection is the dominant population
genetic force and if the total number of individuals that carry a certain allele is not
very small. The dynamics can be modeled in discrete time (using discrete dynam-
ical systems) if a generation is a natural time unit in the biological system, like in
annual plants. In other cases, a continuous-time dynamics (building of differential
equations) is more appropriate and/or more convenient.

• If genetic drift has a strong effect on the evolutionary process, stochastic models
are needed. Basically all these models build on Markov processes, typical examples
being birth-death processes or branching processes. As in the deterministic case,
they can proceed in discrete or in continuous time. Coalescent theory, in particular,
is a stochastic process that proceeds in the reversed time direction, from the present
to the past. It turns out that this is particularly appropriate if we want to explain
observed patterns of diversity in data by past evolutionary processes. If population
sizes are large and if selection is not too strong, allele frequencies can be treated as
a continuous random variable on the unit interval. This leads to diffusion processes
as a model of evolutionary change. Indeed, parts of the theory of diffusions was
developed in the early 20th century with applications in population genetics in mind.
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1 Selection at a single locus

1.1 Selection at a single haploid locus

Consider a haploid population of size N . We characterize the genotype by the allelic type
at a single locus. There are k alleles, denoted {A1, . . . , Ak}. Generations are discrete and
we assume that the population is sufficiently large that stochastic effects due to genetic
drift can be ignored. Assume that there are initially ni individuals with allele Ai. The
frequency of Ai in the population is thus pi = ni/N . Reproduction is clonal, offspring
inherit the genotype of their (single) parent, without any modification (no mutation). We
are interested in the change of allele frequencies due to selection across a single generation.

Fitness

The fundamental property of individuals that leads to selection and drives adaptive evolu-
tion is their fitness. In population genetics, we assign fitness values directly to genotypes
or alleles, as follows:

• The viability vi ≥ 0 measures the probability that a newborn Ai individual survives
to reproductive age (vi = 0 means that the individual is inviable).

• The fecundity fi ≥ 0 measures the expected number of offspring of an adult Ai
individual (fi = 0 means that the individual is sterile).

• Finally, the (absolute) fitness of allele Ai is defined as

wi = vi · fi .

wi ≥ 0 measures the expected number of offspring of a newborn Ai individual.
Ignoring stochastic effects, we thus have n′i = wini for the number n′i of Ai individuals
in the next generation.

For the change in a single generation, we obtain

N ′ =
∑
i

n′i =
∑
i

wini =
(∑

i

wipi

)
N =: w̄N (1.1)

where w̄ =
∑

i piwi is the mean fitness in the population. For the change in allele frequen-
cies, the canonical selection equation for a single haploid locus reads

p′i =
wi
w̄
pi or: ∆pi = p′i − pi =

wi − w̄
w̄

pi . (1.2)

We see that any fitness differences among alleles that are represented in the population
(wi 6= wj for pi, pj > 0) entails evolutionary change due to selection.

For allele frequency changes across multiple generations, we need to account for the fact
that absolute fitness values, as defined above, are usually not constant across generations.
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Indeed, wi = wi(N,p, t) is usually not only a function of the allelic type Ai, but also of
the population size N (or density), the distribution of allele frequencies p = (p1, . . . , pk),
and of generation time t.

• Imagine first that fitness does not depend on the population size (or density). We
then have n′i = wi(p, t)ni and usually obtain unlimited growth or decline of ni over
multiple generations. This is clearly unrealistic.

• Assume next that fitness does depend on density, but not on the allelic state. We
then have w̄(N,p, t) = wi(N,p, t) =: w(N, t) and thus

p′i = pi ; N ′ = w(N, t)N .

This means we have only changes in the population size (population dynamics), but
no changes in the allele frequencies (population genetics) and thus no evolution.
Pure population dynamics is a topic of theoretical ecology. With models like logistic
growth (w(N) = r− cN), population sizes can be regulated and converge to a finite,
no-zero value.

• To obtain a reasonable evolutionary model, we need to combine a model of population
regulation with a model of evolutionary change. A canonical approach that is implicit
to most models in population genetics is to assume that population size regulation
is independent of selection. Absolute fitness values then decompose into two parts

wi(N,p, t) := w(N, t) · wi(p, t) .

This leads to

p′i =
wi(N,p, t)

w̄
pi =

w(N, t)wi(p, t)

w(N, t)
∑

iwi(p, t)
pi =

wi(p, t)∑
iwi(p, t)

pi (1.3)

and the density dependence drops out. Following this idea, population genetic models
usually do not work with absolute fitness values, but only the relative fitness values.
If population size regulation is independent of selection, relative fitnesses are density
independent (wi = wi(p, t)). We can then ignore changes in the population size in
population genetic models and only follow the dynamics of allele frequencies. Note
that we use the same symbol wi for relative fitness. Since all fitness values in the
following are relative fitness values, this should not lead to any confusion.

• Since any factor that is common to all fitness values wi drops out of the selection
equation, relative fitness values wi are only defined up to a constant factor. We
can use this freedom to normalize the fitness of some reference allele A1 (often: the
ancestral wildtype allele) to w1 = 1.
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• Following these leads, the easiest model of selection results if we assume constant
relative fitness values for all alleles, wi = const. We say that selection is time homo-
geneous and frequency-independent. The change in pi across t generations follows
as

pi(t) =
ni(t)

N
=

wti ni(0)∑
j w

t
j nj(0)

=
wti pi(0)∑
j w

t
j pj(0)

. (1.4)

If w1 > wj, j ≥ 2, we obtain

pi(t) =
pi(0)∑

j

(
wj

wi

)t
· pj(0)

t→∞−−−−−→
pi(0)

p1(0) limt→∞

(
w1

wi

)t = δ1,i .

We conclude that with time-homogeneous and frequency-independent selection in
haploids only the fittest allele survives and fixes in the population. There is no
genetic variation maintained.

1.2 Selection at a single diploid locus

Consider a diploid locus with two alleles (wildtype and mutant), A and a. In principle,
there can be 2 × 2 = 4 genotypes at the locus, but if there is no position effect (i.e. it
does not matter on which DNA strand an allele is located), there are only three: the two
homozygous genotypes AA and aa and the heterozygous genotype Aa (= aA). Let x, y,
and z be the frequencies of genotypes AA, Aa, and aa, respectively. We can express the
frequencies p = x + y/2 of the A allele and q = z + y/2 of the a allele in terms of the
genotype frequencies, but note that this is generally not possible vice-versa.

Random mating and Hardy-Weinberg proportions

To describe evolutionary dynamics in diploids, even without selection, we first need a
model for the change in genotype frequencies under reproduction. Most diploids reproduce
sexually. Under Mendelian inheritance, each newborn inherits a single allele from both
parents at each autosomal locus. In general, the change of genotype frequencies across
generations depends on the mating pattern. For example, males and females often pre-
fer mating partners with similar phenotypic characteristics such as body size (assortative
mating). However, the simplest mating scheme that also serves that is used as default in
population genetic models just assumes that matings are random. We also assume that
sexes are equivalent and there are no differences in genotype frequencies among males and
females in the population (this is necessarily true for monoecius species, where all individ-
uals act in male and female roles). We can then summarize the offspring frequencies for
each mating type in a table:

The third column of the table gives the probability of the mating pair under random
mating and columns 4 to 6 the genotype frequencies in the offspring generation under
Mendelian inheritance, conditioned on the mating pair. The total (unconditioned) geno-
type frequencies in the offspring generation derived by summing over all mating pairs. We
observe:
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♀ ♂ mating
prob. x′ y′ z′

AA AA x2 1 0 0
Aa xy 1/2 1/2 0
aa xz 0 1 0

Aa AA xy 1/2 1/2 0
Aa y2 1/4 1/2 1/4
aa yz 0 1/2 1/2

aa AA xz 0 1 0
Aa yz 0 1/2 1/2
aa z2 0 0 1

x′ = 1 · x2 + 2
1

2
xy +

1

4
y2 =

(
x+

y

2

)2

= p2

y′ = 2
1

2
xy + 2

1

2
yz + 2xz +

1

2
y2

= 2
(
x+

y

2

)(
z +

y

2

)
= 2pq

z′ = 1 · z2 + 2
1

2
yz +

1

4
y2 =

(
z +

y

2

)2

= q2

• The genotype frequencies after a single generation of random mating are determined
by the allele frequencies, (x′, y′, z′) = (p2, 2pq, q2): Hardy-Weinberg proportions.

• The allele frequencies do not change under random mating

p′ = x′ +
1

2
y′ = p ; q′ = z′ +

1

2
y′ = q .

There is thus no loss of genetic variation under Mendelian inheritance.

• The so-called Hardy-Weinberg law states that, after a single generation of random
mating, both the allele frequencies and the genotype frequencies remain invariant:
They are in Hardy-Weinberg equilibrium.

• It is easy to extend the Hardy-Weinberg law to an arbitrary number of alleles
{A1, . . . , Ak}. Let Pij = Pji denote the frequency of the genotype AiAj. The al-
lele frequency of Ai is pi = Pii + 1

2

∑
j 6=i Pij . A straight-forward extension of the

2-allele derivation shows that p′i = pi, P
′
ii = p2

i and, for j 6= i, P ′ij = 2pipj.

The important consequence of the Hardy-Weinberg (HW) law for population genetic mod-
els is that it is sufficient to follow k allele frequencies, rather than the k(k+1)/2 frequencies
of diploid genotypes. However, the law is only valid under a number of assumptions.

• Random mating: with other mating schemes (e.g. assortative mating or selfing),
we obtain different equilibrium frequencies and generally only gradual (asymptotic)
convergence to this equilibrium, rather than convergence in a single generation.

• Discrete Generations: Convergence to HW proportions is only asymptotic if genera-
tions are overlapping (individuals do not all reproduce and die at the same time).

• Equivalent sexes: If the initial allele frequencies in males and females differ, HW
proportions are only reached in two generations of random mating.

• Autosomal loci: For X-linked loci (that are diploid in females, but haploid in males),
HW proportions are only reached asymptotically.
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• No selection, mutation, or drift: all evolutionary forces readily lead to deviations
from HW proportions. However, as we will see below, we can often still make use of
the HW law at certain stages of a diploid life cycle.

Viability selection at a single diploid locus

Consider a diploid population with discrete generations and equivalent sexes and a single
locus with two alleles, A and a with frequencies p and q, respectively. We also assume
that selection acts on the viability, the probability that newborn diploid individuals reach
reproductive age. We can then dissect the life-cycle of the population into two phases:
a selection phase, during which juveniles grow up and a reproductive phase where adults
mate and produce offspring. The key assumption is that selection and reproduction can
be separated and occur at different stages.

• Consider the reproductive phase first. If reproduction works via random mating
as described above, we can use the results of the HW law: Allele frequencies are
conserved during the reproductive step and genotype frequencies will be in HW
equilibrium directly after reproduction (for zygotes (= newly fertilized eukaryotic
cell) not yet affected by selection).

• We still need a model for the change of allele and genotype frequencies during the
reproductive phase. We assign fitness values wAA, wAa, and waa to the three geno-
types AA, Aa, and aa, respectively. The genotypes frequencies are PAA, PAa, and
Paa, and the allele frequencies are p = PAA + PAa/2 and q = Paa + PAa/2. We can
the define marginal fitness values for the alleles A and a,

wA =
wAA2PAA + wAaPAa

2PAA + PAa
, wa =

waa2Paa + wAaPAa
2Paa + PAa

.

The mean fitness in the population follows as

w̄ = wAAPAA + wAaPAa + waaPaa = wAp+ waq .

With these definitions, the changes in genotype and allele frequencies over a life cycle
can easily be expressed. They are summarized in the following table.

AA Aa aa A a
frequency

after random mating PAA = p2 PAa = 2pq Paa = q2 p q

frequency
after selection p2wAA

w̄
2pqwAa

w̄
q2waa

w̄
pwA

w̄
= p′ qwa

w̄
= q′

next gener. frequency
after random mating P ′AA = p′2 P ′Aa = 2p′q′ P ′aa = q′2 p′ q′

Note that the diploid selection equation for the allele frequencies takes the same
functional form as in the haploid case if we replace the allelic fitness value by the
corresponding marginal fitness. In general, marginal fitnesses and the mean fitness
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depend on the genotype frequencies and the equations on the level of allele frequencies
do not form a closed dynamical system. In the special case of random mating and
viability selection, however, we can express genotype frequencies as HW proportions
and the dynamical system for the allele frequencies closes. In particular, the marginal
fitness values simplify to

wA = wAAp+ wAaq , wa = waaq + wAap .

Selection scenarios

We have seen that viability selection on a single diploid locus with random mating leads
to a selection equation that is formally equivalent to the haploid case. The difference is
that the marginal fitness values for the alleles depend on the allele frequencies, even if
the genotypic fitness values are constant. This leads to differences in the evolutionary
dynamics. To characterize these differences, we use the following classical parametrization
of the genotypic fitness values.

waa = 1 normalization of the (relative) wildtype fitness (1.5a)

wAA = 1 + s s: selection coefficient for the homozygote mutant (1.5b)

wAa = 1 + hs h: dominance coefficient for heterozygote fitness (1.5c)

Depending on the value of the dominance coefficient, we distinguish the following biological
scenarios for the mutant allele A

h



> 1 overdominant
= 1 (fully) dominant
∈ (1

2
, 1) partially dominant

= 1
2

codominant (or no dominance)

∈ (0, 1
2
) partially recessive

= 0 (fully) recessive
< 0 underdominant

For all cases, the marginal allele fitnesses and mean fitness in HW equilibrium follow as

wa = 1 + p · hs (1.6a)

wA = 1 + q · hs+ p · s (1.6b)

w̄ = 1 + 2pq · hs+ p2 · s (1.6c)

and the allele frequency change per generation of the mutant allele is

∆p = p′ − p =
wA − w̄
w̄

p = pq
s(h+ (1− 2h)p)

w̄
.



1.2 Selection at a single diploid locus 11

In contrast to the haploid case, there is usually no explicit solution for the allele frequency
p(t) as a function of time. However, it is straightforward to derive the equilibrium frequen-
cies of the dynamical system. We have ∆p = 0 for

p = 0 , p = 1 [⇔ q = 0] (monomorphic equilibria)

h+ (1− 2h)p = 0 ⇒ p = p̂ =
h

2h− 1
(polymorphic equilibrium)

The equilibrium at p̂ is in the interior of the frequency space, 0 < p̂ < 1, if and only if
either h > 1 (A is overdominant) or h < 0 (A is underdominant). We can distinguish three
parameter ranges, based on the dominance coefficient, that lead to qualitatively different
dynamical behavior.

1. In the whole parameter range 0 ≤ h ≤ 1, ranging from complete recessiveness to
complete dominance of the mutant allele A, we have

h+ (1− 2h)p > 0 for 0 < p < 1

and thus ∆p > 0 for a beneficial mutant (s > 0), resp. ∆p < 0 for a deleterious
mutant (s < 0). The dynamical system therefore converges monotonically either to
the equilibrium at p = 1 or to p = 0 for the beneficial or deleterious case, respectively.

2. If an equilibrium p̂ at an intermediate frequency exists, we can write

∆p =
pqs(2h− 1)

w̄
(p̂− p) .

With s > −1, we also have

w̄ − pqs(2h− 1) = 1 + 2pqhs+ p2s− pqs(2h− 1) = 1 + ps > 0 .

We therefore obtain monotone convergence of p(t) toward the polymorphic equilib-
rium p̂ for the overdominant case (h > 1) if s > 0 and for the underdominant case
(h < 0) if s < 0. In both cases, the heterozygote is the fittest genotype (heterozygote
advantage). Note that an underdominant allele A corresponds to an overdominant
allele a. The term overdominance is often used as synonymous to heterozygote ad-
vantage, implicitly using the allele with the higher fitness as reference.

3. Analogously, we find monotonic divergence from p̂ toward either p = 0 or p = 1
for the underdominant beneficial case (h < 0 and s > 0) and for the overdominant
deleterious case (h > 1 and s < 0).

We see that heterozygote advantage (“overdominance”) is necessary and sufficient for the
maintenance of genetic variation under selection at a single diploid locus. With w̄ =
1 + 2p(1− p)hs+ p2s we have

∂w̄

∂p
= 2s

(
h+ p(1− 2h)

)
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and thus

∆p =
1

2
pq

1

w̄

∂w̄

∂p
=
pq

2

∂ ln w̄

∂p
.

We can therefore understand the evolutionary dynamics also as a process in the direction of
increasing mean fitness w̄. This is an example of Fisher’s fundamental theorem (see below).
Mathematically, this means that w̄ is a so-called Lyapunov function of the dynamics.

Multiple alleles

It is easy to extend the 2-alleles case for a single diploid locus to the general case of k alleles,
{A1, . . . , Ak} with frequencies {p1, . . . , pk}. Let wij = wji be the fitness value of genotype
AiAj, with frequency Pij in the population. After random mating, the population is in
HW equilibrium, thus Pii = p2

1 and Pij = 2pipj for i 6= j. The marginal allelic fitnesses
and the mean fitness are

wi =
∑
j

wijpj , w̄ =
∑
i

wipi =
∑
i,j

wijpipj

and the change in allele frequencies is

p′i =
wi
w̄
pi resp. ∆pi = p′i − pi =

wi − w̄
w̄

pi . (1.7)

Using

wi =
1

2

∂w̄

∂pi
and w̄ =

1

2

∑
i

pi
∂w̄

∂pi

we can also write

∆pi =
pi
2w̄

(∂w̄
∂pi
−
∑
j

pj
∂w̄

∂pj

)
(1.8)

Defining

~∇(ln w̄) =
(∂ ln w̄

∂p1

, . . . ,
∂ ln w̄

∂pk

)(t)

(· · · )(t) denoting transposition, and

G =

p1(1− p1) −p1p2 −p1p3 · · ·
−p2p1 p2(1− p2) p2p3 · · ·

...
. . .


we can write the evolution equation in matrix form,

∆p =
1

2
G · ~∇(ln w̄) . (1.9)

Here, the selection gradient ~∇(ln w̄) is a vector that points into the direction of steepest
ascent in mean fitness w̄. G is the covariance matrix of allele frequencies (Gij = cov[ri, rj],
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where ri = 1 if a randomly drawn allele is Ai and zero otherwise). The diagonal elements
pi(1−pi) are the variances of Bernoulli distributions with parameter pi, they are largest for
pi = 1/2. We see that selection does not necessarily drag a population into the direction

of steepest fitness increase (direction of ~∇(ln w̄)), but always needs to “work on” genetic
variation that is present in the population. Evolution proceeds in a direction where the
fitness gain times the genetic variation is largest.

• In the case of multiplicative fitness, wij = vivj, the mean fitness factorizes as w̄ =
(
∑

j vjpj)
2 =: v̄2 and the marginal fitness is wi = vi

∑
j vjpj = viv̄. The change in

allele frequencies therefore becomes

∆pi =
vi − v̄
v̄

and reproduces the dynamics of the haploid case. The haploid dynamics is therefore
a special case of the diploid dynamics. Also, multiplicative fitness is the only case
where selection does not lead to deviations from HW equilibrium.

• The equilibrium structure of the diploid dynamics can be complex. There are clearly
at least k equilibria (all monomorphic states). In general, we have either pi = 0, or
wj = w̄ for all j with pj 6= 0, at any equilibrium. For each choice of a (potentially
empty) subset S ⊂ {1, . . . , k}, with pi = 0 for i ∈ S and pj > 0 for j /∈ S (with j1

the smallest index with pj > 0), we can express the equilibrium condition as a linear
equation system

pi = 0, i ∈ S
wj = wj1 , j /∈ S, j > j1 (1.10)

k∑
i=1

pi = 1 .

There are 2k − 1 such equation systems for different choices of the subsets S. Each
system has either zero, one, or infinitely many solutions. We conclude that in non-
degenerate cases with a finite number of equilibria there are at most 2k−1 equilibrium
points. In particular, there is at most a single fully polymorphic equilibrium with
pi > 0 for all i.

• An easy example of a system with 2k − 1 coexisting equilibria is given by the fitness
values wii = 1 for all i and wij = 0 for i 6= j. Frequently one is interested in the
number of stable equilibria that can coexist. The maximum number of coexisting
stable equilibria for a single diploid locus with k alleles is unknown.

• One can show that dominance of the fitter allele for all pairs of alleles is a necessary
condition for a stable fully polymorphic equilibrium,

wij >
wii + wjj

2
, ∀i 6= j
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[see Nagylaki 1992, p. 62]. However, pairwise overdominance, wij > max[wii, wjj], is
not necessary, while the stronger condition of global overdominance, wij > maxk wkk,
is in general not sufficient. Computer simulations show that overdominance alone is
not very efficient in maintaining many alleles segregating at a single locus.

• Since mean fitness is non-decreasing (see below) and thus a Lyapunov function, we
can exclude cycling behavior for the dynamics.

Theorem: Mean fitness does not decrease [following Nagylaki 1992, p. 57/58]
Mean fitness is a non-decreasing function under selection on a single diploid locus, w̄′ ≥ w̄.
For a proof, we use Jensen’s inequality∑

i

pix
α
i ≤

(∑
i

pixi

)α
, α ≤ 1; pi probabilities

to obtain a lower bound for the mean fitness w̄′ of the offspring generation,

w̄′ =
∑
ij

p′ip
′
jwij =

1

w̄2

∑
ij

piwipjwjwi,j /wi =
∑
k

pkwik

=
1

w̄2

∑
i,j,k

pipjpkwijwik
wj + wj

2
=

1

w̄2

∑
i,j,k

pipjpkwijwik
wj + wk

2
/ (a+ b) ≥ 2

√
ab

≥ 1

w̄2

∑
i,j,k

pipjpkwijwik(wjwk)
1/2 =

1

w̄2

∑
i

pi

(∑
j

pjwijw
1/2
j

)2

/ (Jensen)

≥ 1

w̄2

(∑
i

pi
∑
j

pjwijw
1/2
j

)2

=
1

w̄2

(∑
j

pjw
3/2
j

)2

/ (Jensen)

≥ 1

w̄2

((∑
j

pjwj

)3/2
)2

= w̄ (1.11)

Continuous time model for selection

Mathematically, our model so far for the evolutionary dynamics has been a discrete dy-
namical system. A model in discrete time is realistic for some biological species (e.g. annual
plants), it has some technical advantages (in particular, it allows for a separation of repro-
duction and selection) and it is easy to simulate on a computer. However, we have also
seen that the number of explicit mathematical results that we can obtain is limited. It is
often more convenient (and/or more realistic biologically) to model evolution in continu-
ous time. As we will see, we naturally obtain such a model if we study the discrete time
model in a limit of weak selection. To this end, consider again a single locus with k alleles,
{A1, . . . , Ak} with genotypic and marginal fitness values defined as

wij := 1 + εmij ; wi = 1 + εmi ; mi =
∑
j

mijpj
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and corresponding mean fitness

w̄ = 1 + ε m̄ ; m̄ =
∑
i,j

mijpipj

The dynamical equation reads

∆pi = p′i − pi =
ε (mi − m̄)

1 + ε m̄
pi .

Assume now that fitness differences per generation are small (weak selection), generation
time is short (we thus have many generations per unit time interval). This can be done by
scaling both fitness differences and generation time by ε. In the limit of ε → 0, we then
obtain

ṗi =
dpi(t)

dt
= lim

ε→0

pi(t+ ε)− pi(t)
ε

= lim
ε→0

p′i − pi
ε

and thus
ṗ(t) = (mi − m̄) pi . (1.12)

This is the evolution equation in continuous time. Note that mi and m̄ depend on all allele
frequencies and m̄ is quadratic in the pj. We thus have a system of coupled non-linear
ordinary differential equations.

• The mij and mi are also called Malthusian fitness parameters (or log fitness). They
have the interpretation of growth rates per generation,

mi = lim
ε→0

logwi
ε

.

• The continuous-time evolution equation can alternatively be derived from a growth
model with overlapping generations, where birth and death events occur continuously
with given rates [e.g. Rice 2004, p. 15-17]. We note that the ODE (1.12) is only
approximate, since a diploid population under selection in continuous time will always
deviate from HW equilibrium (unless Malthusian fitness is additive, mij = mi +mj).
Deviations only vanish in the limit of weak selection. A comprehensive derivation
should also account for age structure in a population, with birth and death rates
depending on age [see Nagylaki 1992 for a detailed model]. In this case, the dynamics
can be much more complicated, but can reproduce (1.12) after the population has
reached a stable age distribution [see the Mathematical ecology lecture for more on
age-structured populations].

• The continuous-time single-locus selection dynamics has the same equilibria as the
discrete-time model and does therefore not lead to a simplification for this particular
problem. However, as we will see below and in the next section, model derivations
and extensions to include further evolutionary forces are often easier in continuous
time.
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Sir Ronald A. Fisher, 1890–1962, is well-known for both his work in statistics and genetics.
He is one of the founding fathers of population genetics (together with JBS Haldane and S
Wright) that combined Darwinian selection and Mendelian inheritance in the so-called Mod-
ern Synthesis and led to the breakthrough of Darwinism in the early 20th century. Fisher’s
1930 article on The Genetical Theory of Natural Selection defined large parts of the field.
In statistics, Fisher’s key achievement was his invention of the analysis of variance, or
ANOVA. This statistical procedure allows to connect the observed deviations in experimen-
tal data to different controlled and uncontrolled underlying factors. It constituted a notable
advance over the prevailing procedure of varying only one factor at a time in an experiment.
Fisher summed up his statistical work in his book Statistical Methods and Scientific Inference
(1956). Fisher became Galton Professor of Eugenics at University College, London in 1933.
From 1943 to 1957 he was Balfour Professor of Genetics at Cambridge. He was knighted
in 1952 and spent the last years of his life conducting research in Australia (adapted from
Encyclopedia Britannica and Wikipedia).

• It is straightforward to show that mean Malthusian fitness is non-decreasing under
(1.12),

˙̄m =
∑
ij

mij(ṗipj + piṗj) = 2
∑
ij

mijpipj(mi − m̄)

= 2
∑
i

pimi(mi − m̄) = 2
∑
i

pi(mi − m̄)(mi − m̄)

= 2Vg (1.13)

where Vg > 0 is the genetic variance in fitness. We thus see that the increase in mean
fitness is not just non-negative, but is always given by (twice) the current variance
in fitness in the population. This is the assertion of Fisher’s fundamental theorem
of natural selection that goes back to R.A. Fisher (1930) and has been discussed in
many population genetic textbooks. However, this theorem is only exact for a single
locus in continuous time and only holds approximately for discrete time and in more
general evolutionary situations.

1.3 Mutation-selection models

The ultimate source of all genetic variation in a population is mutation. So far, we have
assumed that genetic variation is just given as an initial condition and have not modeled
its creation explicitly. Since selection is usually a much stronger force that mutation
and leads to allele frequency changes over shorter time scales, this is often a reasonable
approximation. However, for a more complete description of evolution over longer time
scales, we need to include mutation into the model.
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Only mutation

Usually, mutation occurs during reproduction (or: the production of gametes) due to errors
in DNA copying. Each generation, there is a probability that an offspring individual does
not inherit the allelic state of (one of) its parent(s), but rather a mutated allele. For a
single locus and two alleles, A and a, assume that there is a fixed probability µ that an
ancestor carrying the ancestral allele a produces an offspring with A allele. Vice-versa,
there is a probability ν that A mutates back to a during reproduction. If the frequency of
A alleles is p, the single-generation dynamics reads

∆p = p′ − p = µ(1− p)− νp (1.14)

with equilibrium (∆p = 0)

p = p̂ =
µ

µ+ ν
.

For an arbitrary number of alleles A1, . . . , Ak and mutation probability from allele Ai to
allele Aj denoted as µij (= µi→j), we can define a mutation matrix U as follows

Uij = µij , i 6= j ; Uii = 1−
∑
j 6=i

µij . (1.15)

With p = (p1, . . . , pk) the probability vector of allele frequencies, we can then write the
evolution equation in matrix form as

p′ = p ·U and p(n) = p ·Un for n generations . (1.16)

We note the following

• The mutation matrix U is a stochastic matrix that transforms probability vectors
into probability vectors. All entries are non-negative and all rows of the matrix sum
to 1.

• Assume that U is irreducible and aperiodic. This is always the case, in particular, if
all diagonal entries are positive (all alleles can be inherited without being mutated)
and if we can get from each allele state to any other allele through mutation (or a
series of mutations). Then we can use the Perron-Frobenius theorem to conclude that
U has a unique largest eigenvalue λmax = 1 with corresponding left eigenvector pmax

that holds the equilibrium frequencies of the alleles A1 to Ak under mutation. [See
e.g. the lecture Mathematical Ecology for a proof of the Perron-Frobenius theorem.]

• Note that the mutation dynamics is the same for haploids or diploids.

Mutation and selection in discrete time

In discrete time, we can simply include mutation as a separate step into the life cycle. We
define the allele frequency change during one generation, starting with newborn zygotes,
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as pi → p
(s)
i → p′i with

p
(s)
i =

wi
w̄
pi , (1.17a)

p′i =
(

1−
∑
j

µij

)
p

(s)
i +

∑
j

µjip
(s)
j . (1.17b)

The scheme applies to both haploids and (random mating) diploids, with wi as marginal
fitness for diploids. The first step accounts for viability selection, the second step for
mutation during reproduction. It is easy to check that mutation in HW equilibrium changes
the allele frequencies, but maintains HW proportions.

In the haploid case, we can still write down the explicit solution of the evolutionary
process. Defining the mutation-selection matrix C = W · U, where U is the mutation
matrix (1.15) and W = diag[w1, w2, . . . ] is the diagonal matrix holding the fitness values,
we obtain

p′ =
p ·C
w̄

, (1.18a)

p(t) =
p(0) ·Ct∑
i

[
p(0) ·Ct

]
i

. (1.18b)

The denominator in both equations just serves for the normalization of the frequency
vector. If the matrix C is primitive (aperiodic and irreducible), there is a unique globally
stable and fully polymorphic equilibrium of the dynamics.

Perturbation analysis

For the diploid mutation-selection equation, there is no explicit solution and multiple
equilibria can exist (just like for the case without mutation). For two alleles A and a,
genotypic fitnesses as in Eq. (1.5), and forward and backward mutation rates µ and ν,
respectively, the frequency change of the mutant allele A is

p′ = f(p) = (1− ν)
wA
w̄
p+ µ

(
1− wA

w̄
p
)

(1.19)

with

wA = 1 + (1− p) · hs+ p · s (1.20a)

w̄ = 1 + 2p(1− p) · hs+ p2 · s (1.20b)

as in Eq. (1.6). The equilibrium points p̂ = f(p̂) are zeros of a third-order polynomial.
Since the absorptions points p̂ = 0 and p̂ = 1 are no longer equilibria, the exact solution is
no longer a simple expression. However, we can make use of the fact that mutation rates
are usually very small (∼ 10−8 per base or ∼ 10−5 per gene and generation). Because
we know the solution in the absence of mutation, we can obtain an approximate solution
for the mutation-selection dynamics by means of perturbation analysis. Since this is a
technique that can be used more generally, we will present the steps in some detail, with
the above problem as application.
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Step 1 Identify the small parameters of the problem and write them as a product of a
constant times a small perturbation parameter ε,

µ = µ̃ · ε ; ν = ν̃ · ε .

This way, the dynamical equation (1.19) becomes a function of ε, p′ = f(ε, p).

Step 2 Write the (unknown) equilibrium solution as a formal power series in ε,

p̂(ε) := p̂0 + εp̂1 + ε2p̂2 + . . .

and define

F (ε) : = f(ε, p̂(ε))− p̂(ε)

= (1− ν̃ε− µ̃ε) 1 + hs(1− p̂(ε)) + sp̂(ε)

1 + 2hsp̂(ε)(1− p̂(ε)) + s(p̂(ε))2
p̂(ε) + µ̃ε− p̂(ε) .

We can then write the equilibrium condition as F (ε) = 0.

Step 3 Expand F (ε) into a Taylor series in ε around 0

F (ε) = F (0) + F (1)(0) · ε+
1

2
F (2)(0) · ε2 +

1

6
F (3)(0) · ε3 + . . .

where F (n)(0) = ∂nF (ε)/∂εn|ε=0 denotes the nth derivative of F (ε) at ε = 0. As-
suming that the Taylor series converges, F (ε) = 0 implies F (0) = 0 and F (n) = 0 for
all derivatives.

Step 4 Solve the equations to the order desired.

(i) F (0) = 0 The 0th order leads back to the selection dynamics without muta-
tion.

1 + hs(1− p̂0) + sp̂0

1 + 2hsp̂0(1− p̂0) + sp̂2
0

p̂0 − p̂0 = 0

We can pick any solution of this equation to derive correction terms. Here, we
assume that the A mutant is deleterious, s < 0, in which case p̂0 = 0 is the
stable equilibrium of the selection dynamics in the absence of overdominance.

(ii) F (1)(0) = 0

F (1)(0) = p̂0 ·
∂

∂ε

[
(1− ν̃ε− µ̃ε) . . .

. . .

]
+ p̂1

1 + hs(1− p̂0) + sp̂0

1 + 2hsp̂0(1− p̂0) + sp̂2
0

− p̂1 + µ̃ = 0

Since p̂0 = 0, this results in p̂1(1 + hs)− p̂+ µ̃ = 0 and thus

p̂1 = − µ̃

hs
. (1.21)
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(iii) F (2)(0) = 0

F (2)(0) = 2p̂2(1 + hs) + 2p̂1

[
(−ν̃ − µ̃− 2hsp̂1)(1 + hs) + sp̂1(1− h)

]
− 2p̂2

= 2hsp̂2 −
2µ̃

hs

[
(µ̃− ν̃)(1 + hs) + µ̃− µ̃/h

]
using p̂0 = 0 and p̂1 from (1.21). Thus

p̂2 =
( µ̃
hs

)2 [
1− 1

h
+
(

1− ν̃

µ̃

)
(1 + hs)

]
. (1.22)

Step 5 Collect all terms in p̂(ε), using the original biological parameters µ̃ε = µ and ν̃ε = ν,

p̂ =
µ

|hs|
+
( µ

|hs|

)2[
1− 1

h
+
(

1− ν

µ

)
(1− |hs|)

]
+O[ε3] . (1.23)

We see that frequency of a deleterious mutant in mutation-selection balance is

p̂ ≈ µ

|hs|
(1.24)

as long as selection is much stronger than mutation, |hs| � µ. Back mutations do
not affect this leading-order result.

In our derivation above, we have derived an approximation for the equilibrium frequency
in mutation-selection balance, using perturbation theory around the stable equilibrium of
the pure selection dynamics. To complete our analysis, we still need to assess the stability
of the perturbed equilibrium. For a general discrete dynamical system p′ = f(p), an
equilibrium point p̂ is asymptotically stable if for sufficiently small δ,

|δ′| = |f(p̂+ δ)− f(p̂)| < |δ|

If f is continuously differentiable, we have

δ′ = λp̂ · δ +O(δ2) ; λp̂ =
∂

∂p
f(p)|p̂

and thus a stable equilibrium at p̂ if |λp̂| < 1. For |λp̂| > 0 the equilibrium is unstable, while
for |λp̂| = 1 stability depends on higher-order derivatives. At an perturbed equilibrium,
we derive

λp̂(ε) : =
∂

∂p
f(ε, p)|p̂(ε)=p̂0+εp̂1+...

= λp̂(0) +
∂

∂ε
λp̂(ε)|ε=0 · ε+O[ε2]

If the unperturbed equilibrium is stable with |λp̂(0)| = |λp̂0| < 1, this implies stability of
the perturbed equilibrium for sufficiently small ε. Similarly. |λp̂| > 1 implies that also the
perturbed equilibrium is unstable. For the mutation-selection dynamics discussed above,
we have λp̂ = λ0 = 1+hs < 1 for a deleterious mutant. In general, for hs 6= 0, the stability
of the perturbed equilibrium is the same as the unperturbed one.
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Mutation load

The effect of a deleterious mutation on an individual is measured by the corresponding
reduction in fitness, given by the selection coefficient s (or by hs in a diploid heterozygote).
Similarly, we can assess the effect of a deleterious mutation on the population level by the
reduction in mean fitness in mutation-selection balance. The standard measure is the
mutation load

Lm =
wopt − w̄
wopt

, (1.25)

where wopt is the fitness of an “optimal” genotype that is free from deleterious mutations.
If we normalize the optimal fitness wopt = 1 (as in the mutation model) studied above, we
simply have Lm = 1− w̄. With (1.20b) we obtain at the equilibrium p̂ = −µ/(hs) +O[µ2],

Lm = −2hsp̂− (s− 2hs)p̂2 = 2µ+O[µ2], (1.26)

as long as µ � |hs|. For arbitrarily many deleterious alleles Ai with mutation rates µi0
from a fittest wildtype a, we obtain more generally

Lm = 2
∑
i≥1

µi0 +O[µ2] .

We see that the mutation load depends (to leading order) only on the mutation rates,
but not on the fitness effects of the deleterious mutations. The reason is that a milder
mutation with small |hs| will segregate at a higher frequency p̂ = µ/|hs| in the population.
To leading order, the effects of mutation frequency and mutation size on the mean fitness
just cancel. This is also called Haldane’s rule or the Haldane-Muller principle. This has
relevant consequences for programs of public health that aim for an increase of population-
level parameters like the mean fitness. Indeed, according to the Haldane-Muller principle,
the mean fitness in a population is neither altered by eugenics (birth control for diseased
people, effectively increasing the deleterious fitness effect of a mutation) nor by a partial
cure of a genetic disease (reduction of |hs|). For population-level fitness, mildly deleterious
mutations are as harmful as strongly deleterious ones. Only the reduction of mutation
rates has a lasting effect on mean fitness.

Mutation and selection in continuous time

There are various ways to write down a mutation-selection equation in continuous time.
The most widely used formalism is simply to assume that mutation and selection are
independent processes that occur in parallel. This leads to the differential equation

ṗi = (mi − m̄)pi +
∑
j

(
µjipj − µijpi

)
(1.27)

extending Eq. (1.12). The mi are Malthusian fitness values (marginal fitnesses for diploids)
and the µij have the interpretation of mutation rates per time unit. Like for discrete time,
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JBS (John Burdon Sanderson) Haldane, 1892–1964, was a British geneticist, biometrician,
physiologist, and popularizer of science who opened new paths of research in population
genetics and evolution. Together with R.A. Fisher and Sewall Wright, but in separate math-
ematical arguments, he related Darwinian evolutionary theory and Gregor Mendel’s laws of
heredity. Haldane also contributed to the theory of enzyme action and to studies in human
physiology. He possessed a combination of analytic powers, literary abilities, a wide range of
knowledge, and a force of personality that produced numerous discoveries in several scientific
fields and proved stimulating to an entire generation of research workers.
Haldane announced himself a Marxist in the 1930s but later became disillusioned with the
official party line and with the rise of the controversial Soviet biologist Trofim D. Lysenko. In
1957 Haldane moved to India, where he took citizenship and headed the government Genetics
and Biometry Laboratory in Orissa (adapted from Encyclopedia Britannica).

Herrmann Joseph Muller 1890–1967, Nobel laureate in Medicine (1946) for his discovery of
the mutagenic effect of X-rays was very concerned about the reduction of mean fitness in
humans by radiation, also due to nuclear fallout caused by nuclear testing. Together with
fellow scientists, he was a vocal critic of nuclear weapons testing (from Wikipedia).

the dynamics for haploids is fully solvable also in continuous time. For mi = const and
m̄ =

∑
imipi, we can write

ṗ = p ·A− p m̄ (1.28)

with matrix A with entries aij = miδij + µij −
∑

l µilδij. Like in the discrete case, the
mean fitness m̄ is a common factor for all allele frequencies. It enforces normalization of
the frequency vector p during the dynamics, but does not affect the relative size of allele
frequencies pi/pj. We thus have a normalized linear dynamics for p with solution

p(t) =
exp[p(0) ·A t]∑
i

[
exp[p(0) ·A t]

]
i

. (1.29)

For a diploid locus with two alleles a and A, mutation rates µ from a to A and ν from
A to a, and Malthusian fitness values

maa = 0 ; mAa = hs ; mAA = s (1.30)

we have mA = spA + hs(1− pA) and m̄ = sp2
A + 2hspA(1− pA) and Eq. (1.27) results in

ṗA = s
(
pA + h(1− 2pA)

)
pA(1− pA) + µ(1− pA)− νpA . (1.31)

This is a thrid-order equation unless h = 1/2 (case of no dominance), where the diploid
dynamics reduces to an effective haploid one (mA − m̄ = (s/2)(1− pA), as in the haploid
model with mA = s/2 and m̄ = (s/2)pA).
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2 Recombination

In diploid organisms recombination happens during meiosis (the production of gametes).
Recombination mixes paternal and maternal material before it is transferred to the next
generation. Each gamete that is produced by an individual therefore contains material
from the maternal and the paternal side. To see what this means, take a look at your two
chromosomes number 1, one of which came from your father and one from your mother.
The one that stems from your father is in fact a mosaic of pieces from his mother and
his father, your two paternal grandparents. In humans these mosaics are such that a
chromosome is made of a couple of chunks or recombination blocks. There is generally
more than one such block, but rarely more than ten per generation. Chromosomes that
do not recombine are not mosaics. The Y -chromosome does not recombine at all, males
inherit it completely from their father and paternal grandfather, etc. Mitochondrial DNA
also does not normally recombine, both females and males inherit mitochondria from their
mother, maternal grandmother, etc. The X-chromosome only recombines when it is in a
female.

There are various mechanisms for recombination. The most well-known one is crossing
over, where matching regions in homologous chromosomes (which pair during meiosis)
experience a double strand break and subsequently are reconnected to the other chromosome
(see Fig. 2.1). There are other recombination mechanisms like gene conversion, where a
stretch of DNA is copied from one chromosome to the matching region of its homologous
partner. Exchange of genetic material can also happen in haploid individuals. In this case
two different individuals exchange pieces of their genome.

Figure 2.1: Single recombination event by crossing over of chromosomes during meiosis.
The figure shows a pair of homologous chromosomes after the initial duplication, before and
after recombination. Black and gray parts derive from different parents. Subsequently, the
duplicated pair will segregate into four gametes, two recombined and two not recombined.
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2.1 Linkage and linkage disequilibrium

Linkage

Mendel’s second law (of independent assortment) states that genes are inherited indepen-
dently of each other. It means that the probability of inheriting a gene at some locus A
from one grandmother is independent of whether or not a gene at a different locus B has
been inherited from the same grandmother. This “law” is generally only true for gene
loci that are located on different chromosomes: they are unlinked. On the other hand, if
genes are on the same chromosome, they are said to be physically linked. Linked genes
are not inherited independently of each other. In particular, if gene loci are very close to
each other, recombination between them is rare and they are typically inherited together.
Mathematically, this is expressed by the recombination fraction r = rAB between loci A
and B, which defines the probability that genes inherited from different grandparents at
these loci end up on the same parental gamete (sperm, egg, pollen) that contributes to the
offspring genotype,

(
a1b1

a2b2

)
−→


a1b1

a2b2

}
freq. 1

2
(1− r) each

a1b2

a2b1

}
freq. 1

2
· r each

. (2.1)

Here, a1 and b1 (res. a2 and b2) do not denote an allelic state, but only the origin of the
gene either from grandparent 1 or 2.

• r is often also called a recombination rate, but it is really a probability in discrete
generation models. We generally have r = 1/2 as upper limit for unlinked loci on
different chromosomes and 0 ≤ r < 1/2 for linked loci.

• We can define a molecular recombination probability ρ as the probability for recom-
bination between neighboring base pairs along a chromosome. Typical values are
ρ ≈ 10−8 per generation. However, ρ generally depends strongly on the genomic
position x. The estimation of recombination maps ρ(x) from data is an important
task of genomics.

• For a given recombination map, we can define a recombination distance d along a
chromosome in units of Morgans (named after Thomas Morgan). A distance of d =
1M indicates that there is on average one recombination breakpoint per generation
within the stretch (e.g., due to crossing over). Typical lengths of chromosome regions
measure in centi-Morgans (cM).

• The recombination fraction r between loci on the same chromosome is the probability
of an odd number of recombination breakpoints between these loci. Ignoring interfer-
ence of recombination events in neighboring regions, r relates to the recombination
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distance d via Haldane’s mapping function

r =
1

2

(
1− exp[−2d]

)
. (2.2)

Linkage disequilibrium

Assume now that there are k alleles {A1, . . . , Ak} at locus A and l alleles {B1, . . . , Bl} at
locus B. There are then k × l gametes (or haplotypes) AiBj with frequency denoted as
PAiBj

. The allele frequencies derive as

PAi
=

l∑
j=1

PAiBj
; PBj

=
k∑
i=1

PAiBj
. (2.3)

As a measure of non-random association of alleles Ai and Bj at different loci on the same
gamete (or haplotype), we define the linkage disequilibrium (LD)

DAiBj
= PAiBj

− PAi
PBj

. (2.4)

If the linkage disequilibrium is zero, DAiBj
= 0, we say that alleles Ai and Bj are in linkage

equilibrium (LE).

• Mathematically, D is simply the covariance of two indicator random variables that
take value 1 if a randomly picked haplotype shows the corresponding allele at locus
A resp. B, and zero otherwise. Linkage disequilibria depend strongly on the allele
frequencies and (since PAiBj

≤ max[PAi
, PBj

]) we see that

DAiBj
≤ max[PAi

(1− PBj
), PBj

(1− PAi
)] .

In order to make disequilibria between different pairs of alleles better comparable,
one therefore often uses the normalized measure

r2
AiBj

=
D2
AiBj

PAi
(1− PAi

)PBj
(1− PBj

)
, (2.5)

which corresponds to the (squared) correlation coefficient of the indicator variables.

• In addition to two-locus disequilibria, we can also define higher-order linkage disequi-
libria between alleles at three or more loci (e.g. as higher-order cross-locus cumulants,
see chapter 5 of the book by R. Bürger).

• Note that linkage and linkage disequilibrium are concepts on different levels. While
linkage is a property of loci and manifests in each individual, linkage disequilibrium
is a population property and related to allele/haplotype frequencies. Unlinked loci
can certainly have non-zero linkage disequilibria among their alleles, while alleles at
linked loci (even with r = 0) can be in linkage equilibrium.
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2.2 Two-locus model

Only recombination

Consider the two-locus model as described above. Without mutation or selection (or drift),
the single-locus allele frequencies in the population stay constant, P ′Ai

= PAi
. However,

recombination will change the haplotype frequencies. Assuming HW proportions in the
germ cells prior to meiosis (and recombination), we obtain

P ′AiBj
= (1− r)PAiBj

+ r · PAi
PBj

= PAiBj
− r ·DAiBj

. (2.6)

Indeed, a fraction of (1 − r) of all gametes that contribute to the new generation has
not undergone any recombination. In this part of the population, haplotype frequencies
maintain their value from the previous generation. Conversely, a fraction of r of new
gametes are recombination products. In HW equilibrium, the probability for them to
result in a AiBj haplotype is PAi

PBj
. For the change in linkage disequilibrium, we obtain

D′AiBj
= P ′AiBj

− P ′Ai
P ′Bj

= (1− r)PAiBj
+ r · PAi

PBj
− PAi

PBj
= (1− r) ·DAiBj

. (2.7)

• We thus see that for r > 0 all linkage disequilibria decay to zero at geometric rate
(1 − r). The population approaches linkage equilibrium among all alleles, PAiBj

=
PAi

PBj
.

• Note that, in contrast to HW equilibrium, linkage equilibrium among alleles at dif-
ferent loci is not reached in a single generation, but only asymptotically – even for
unlinked loci with r = 1/2.

Recombination and selection in discrete time

Consider a model with two loci under selection and focus on the case of two alleles at each
locus. We can write the fitness schemes for haploid or diploid individuals as follows

B b
A wAB wAb
a waB wab

;

BB Bb bb
AA wABAB wABAb wAbAb
Aa wABaB wABab wAbab
aa waBaB waBab wabab

The diploid scheme assumes that the fitness of a genotype depends only on the number
and type of alleles in the genotype, but not on the association of the allele to a particular
haplotype (no position effect). I.e., the fitness of the diploid genotype (Ab, aB) is the same
as the one of (AB, ab). Assuming HW proportions for diploids in zygote state, marginal
fitness values for the 2-locus haplotypes follow in the usual way, wAB = wABAB PAB +
wABAb PAb + wABaB PaB + wABab Pab, etc. The mean fitness for both haploids and diploids
is

w̄ = wAB PAB + wAb PAb + waB PaB + wab Pab .
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It is convenient to write the linkage disequilibrium as

DAB = PAB − PAPB
= PAB(PAB + PAb + PaB + Pab)− (PAb + PAB)(PaB + PAB)

= PABPab − PAbPaB . (2.8)

It is easy to verify that

D := DAB = Dab = −DAb = −DaB .

Discrete time dynamics

Like for the mutation-selection model, we can construct a recombination-selection model
by including both events as separate steps into a life cycle. This is best done on the
level of haplotype frequencies. Indeed, with random mating, whole genotype frequencies
decompose into haplotype frequencies also in a diploid population. On the other hand,
haplotype frequencies do not factor into allele frequencies as long as D 6= 0. Starting
with zygotes, we first have selection, followed by recombination during reproduction. This
results in

P ′AB = P̂AB − rD̂ , (2.9a)

D′ = (P̂AB − rD̂)(P̂ab − rD̂)− (P̂Ab + rD̂)(P̂aB + rD̂)

= P̂ABP̂ab − P̂AbP̂aB − rD̂ , (2.9b)

and similar expressions for the other haplotype frequencies. P̂.. and D̂ are the values for
the frequencies and for LD after selection. We have

P̂AB =
wAB
w̄

PAB .

For D̂, we need to distinguish the haploid and diploid dynamics. For haploids that recom-
bine after random union of gametes after the selective phase, we obtain

D̂ = P̂ABP̂ab − P̂AbP̂aB =
wABwab
w̄2

PABPab −
wAbwaB
w̄2

PAbPaB

and thus
D′ = (1− r)

(wABwab
w̄2

PABPab −
wAbwaB
w̄2

PAbPaB

)
. (2.10)

For diploids, recombination occurs in the diploid phase after selection and we get

D̂ = P̂ABPab − P̂aBPAb =
wABab
w̄

(
PABPab − PAbPaB

)
=
wABab
w̄

D

resulting in

D′ =
wABwab
w̄2

PABPab −
waBwAb
w̄2

PAbPaB − r
wABab
w̄

D (2.11)



28 2 RECOMBINATION

Assume that, initially, D = PABPab − PAbPaB = 0. Eqs. (2.10) and (2.11) show that
selection will create positive or negative LD, depending on the fitness values for haplotypes
and on the so-called level of epistasis. In both cases

wABwab − wAbwaB


> 0 positive epistasis, creates positive LD D′ > 0

= 0 no epistasis, maintains LE D′ = D = 0

< 0 negative epistasis, creates negative LD D′ < 0 .

(2.12)

For haploids, we can normalize the fitness of the wildtype (ab) to 1 and set

wab = 1 ; wAb = vA ; waB = vB ; wAB = vAvB + ε

where vA and vB are the single-mutant fitness values and the epistasis parameter measures
the deviation of the double mutant fitness from the multiplicative effects of the single
mutants. Obviously, ε > 0 (ε < 0) implies positive (negative) epistasis and leads to
positive (negative) LD if evolution starts in LE. For the diploid case, the haplotype fitnesses
are marginal fitnesses and depend on the haplotype frequencies. We can still verify that
epistasis vanishes for all frequencies if the genotype fitnesses are multiplicative across loci
(wABAb = vAAvBb, etc). In contrast to the haploid case, there is more than one epistasis
parameter needed to parametrize deviations from multiplicative fitnesses in the full fitness
scheme. Even without epistasis, the dynamics in discrete time is complex and can only be
solved in special cases (see the books by Bürger, chapter 2 and by Nagylaki, chapter 8).

Continuous time dynamics

As in the case of mutation and selection we assume that selection and recombination
occur in parallel and independently of each other in continuous time. This is a good
approximation, in particular, if selection and recombination are both weak. For simplicity,
we focus on the haploid case. We assign Malthusian fitness values to the four hapotypes,
mab, mAb, maB, and mAB. The dynamical equations for the haplotype frequencies read

ṖAB = PAB(mAB − m̄)− rD (2.13a)

ṖAb = PAb(mAb − m̄) + rD (2.13b)

ṖaB = PaB(maB − m̄) + rD (2.13c)

Ṗab = Pab(mab − m̄)− rD (2.13d)

where m̄ is the mean Malthusian fitness. We focus on the case of no epistasis. On the
logarithmic scale of Malthusian fitnesses, this corresponds to additive contributions across
loci. Normalizing the wildtype fitness to zero, we have

mab = 0 ; mAb = mA ; maB = mB ; mAB = mA +mB .
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The dynamics of the mean fitness then becomes independent of the recombination rate,

˙̄m = ṖAbmA + ṖaBmB + ṖAB(mA +mB)

= PAbmA(mA − m̄) + PaBmB(mB − m̄) + PAB(mA +mB)(mA +mB − m̄)

= PAb(mA − m̄)2 + PaB(mB − m̄)2 + PAB(mA +mB − m̄)2 + Pab(0− m̄)2 . (2.14)

We see that mean fitness is non-decreasing (a Lyapunov function), with ˙̄m = 0 if and only if
the allele frequencies are at an equilibrium point. We conclude that PAB(mAB−m̄) = 0 and
thus with Eq. (2.13a) also D = 0 at each equilibrium. The dynamics of the disequilibrium
is

Ḋ = ṖABPab + PABṖab − ṖAbPaB − PAbṖaB
= PABPab(mAB +mab − 2m̄)− PAbPaB(mAb +maB − 2m̄)− rD
= (mA +mB − 2m̄− r)D . (2.15)

Like in discrete time, the dynamics with non-epistatic fitness thus maintains LE D = 0.
For the search of equilibrium points, we can thus restrict the dynamics to the LE manifold,
where we obtain

ṗA = ṖAB + ṖAb = PAB
(
mA(1− pA) +mB(1− pB)

)
+ PAb

(
mA(1− pA)−mBpB

)
= pA(1− pA)mA + (PAB − pApB)mB

= pA(1− pA)mA , (2.16)

and equivalently for pB. We see that the dynamics on the LE manifold simply reduces to
the single locus dynamics.

• The result shows under which conditions the use of simple single locus models is
meaningful in complex biological scenarios: If fitness epistasis can be ignored and
if loci are in LE, the multi-locus dynamics reduces to the single-locus dynamics.
Furthermore, even if starting conditions are not in LE, but D = 0 for all equilibria,
we can use the single-locus formalism to describe the equilibrium structure and the
long-term dynamics.

• Unless epistasis is very strong and/or linkage very tight, the mutilocus dynamics
usually converge to a parameter range very close to the LE manifold. One can then
solve the problem under the assumption of LE first and treat linkage disequilibria as
a perturbation. This is the idea of the quasi linkage equilibrium approximation, see
e.g. the book by Bürger.
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3 Genetic Drift

In the first part of the lecture, we have described the evolutionary dynamics using a de-
terministic framework that does not allow for stochastic fluctuations of any kind. In a
deterministic model, the dynamics of allele (or genotype) frequencies is governed by the
expected values: mutation and recombination rates determine the expected number of
mutants or recombinants, and fitness defines the expected number of surviving offspring
individuals. In reality, however, the number of offspring of a given individual (and the
number of mutants and recombinants) follows a distribution. Altogether, there are three
possible reasons why an individual may have many or few offspring:

• Good or bad genes: the heritable genotype determines the distribution for the number
of surviving offspring. Fitness, in particular, is the expected value of this distribution
and determines the allele frequency change due to natural selection.

• Good or bad environment: the offspring distribution and the fitness value may also
depend on non-heritable ecological factors, such as temperature or humidity. These
factors can be included into a deterministic model with space- or time-dependent
fitness values.

• Good or bad luck: the actual number of offspring, given the distribution, will de-
pend on random factors that are not controlled by either the genes nor the external
environment. This gives rise to the stochastic component in the change of allele
frequencies: random genetic drift.

For a general evolutionary system, we can define classes of individuals according to geno-
types and environmental parameters. Because of the law of large numbers, genetic drift
can be ignored if and only if the number of individuals in each class tends to infinity (or
if the variance of the offspring distribution is zero). Note that effects of genetic drift may
be relevant even in infinite populations if the number of individuals in a focal allelic class
is finite.

3.1 The Wright-Fisher model

The Wright-Fisher model (named after Sewall Wright and Ronald A. Fisher) is maybe
the simplest population genetic model for genetic drift. We will introduce the model for
a single locus in a haploid population of constant size N . Further assumptions are no
mutation and no selection (neutral evolution) and discrete generations. The life cycle is as
follows

1. Each individual in the parent generation produces an equal and very large number of
gametes (or seeds). In the limit of seed number →∞, we obtain a so-called infinite
gamete pool.

2. We sample N individuals from this gamete pool to form the offspring generation.
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Sewall Wright, 1889–1988, was an American geneticist. Wright’s earliest studies included
investigation of the effects of inbreeding and crossbreeding among guinea pigs, animals that
he later used in studying the effects of gene action on coat and eye color, among other
inherited characters. His papers on inbreeding, mating systems, and genetic drift make
him a principal founder of theoretical population genetics, along with R.A. Fisher and JBS
Haldane. Wright’s most eminent contribution to population genetics is his concept of genetic
drift and his development of mathematical theory combining drift with the other evolutionary
forces. He was also the inventor/discoverer of key concepts like the fitness landscape and the
inbreeding coefficient and originated a theory to guide the use of inbreeding and crossbreeding
in the improvement of livestock (adapted from Encyclopedia Britannica and Wikipedia).

Obviously, this just corresponds to multinomial sampling with replacement directly from
the parent generation according to the rule:

• Each individual from the offspring generation picks a parent at random from the
previous generation and inherits the genotype of the parent.

Remarks

• Mathematically, the probability for k1, . . . , kN offspring for individual number 1, . . . , N
in the parent generation is given by the multinomial distribution with

Pr
[
k1, . . . , kN

∣∣∑
iki = N

]
=

N !∏
i ki!N

N
. (3.1)

• The number of offspring of a given parent individual is binomially distributed with
parameters n = N (number of trials) and p = 1/N (success probability):

Pr
[
k1

]
=

(
N
k1

)(
1

N

)k1
(

1− 1

N

)N−k1

.

• Under the assumption of random mating (or panmixia), a diploid population of size
N can be described by the haploid model with size 2N , if we follow the lines of
descent of all gene copies separately. Technically, we need to allow for selfing with
probability 1/N .

• The Wright-Fisher model can easily be extended to non-constant population size
N = N(t), simply by taking smaller or larger samples to generate the offspring
generation.

• As long as the population is unstructured and evolution is neutral, the offspring
distribution is invariant with respect to exchange of individuals in each generation.
We can use this symmetry to disentangle the genealogies, as shown in Figure (3.3).

• Inclusion of mutation, selection, and migration (population structure) is straightfor-
ward, as shown in later sections.
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1 ●1 ●1 ●1 ●1 ●1 ●1 ●1 ●1 ●1 ●

Figure 3.1: The first generation in a Wright-Fisher Model of 5 diploid or 10 haploid
individuals. Each of the haploids is represented by a circle.
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Figure 3.2: The second generation (first offspring generation) in a Wright-Fisher Model.
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Figure 3.3: The tangled and untangled version of the Wright-Fisher Model after several
generations. Both pictures show the same process, except that the individuals in the
untangled version have been shuffled to avoid line crossings. The genealogical relationships
are still the same, but the children of one parent are now put next to each other and close
to the parent. (Web resource: www.coalescent.dk, Wright-Fisher simulator.)

3.2 Consequences of genetic drift

Genetic drift is the process of random changes in allele frequencies in populations. We will
now study the effects of genetic drift quantitatively using the Wright-Fisher model. To
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this end, consider a single locus with two neutral alleles a and A in a diploid population
of size N . We thus have a haploid population size (= number of gene copies) of 2N . We
denote the number of A alleles in the population at generation t as nt and its frequency as
pt = nt/2N . The transition probability from state nt = i to state nt+1 = j, 0 ≤ i, j,≤ 2N
is given by

Pij := Pr[nt+1 = j|nt = i] =

(
2N
j

)
·
( i

2N

)j
·
(

1− i

2N

)2N−j
. (3.2)

This defines the transition matrix P with elements Pij, 0 ≤ i, j ≤ 2N , of a time-
homogeneous Markov chain. If xt is the probability vector (of length 2N + 1) on the
state space at generation t, we have xt+1 = xtP. Some elementary properties of this
process are:

1. For the expected number of A alleles, we have E[n1|n0] = 2N · n0

2N
= i = n0 , and thus

E[n1] = E[n0] and
E[pt] = E[p0] .

The expected allele frequency is constant. The stochastic process defined by the
neutral Wright-Fisher model is thus a martingale. This holds true, in more general,
for any neutral model of pure random drift (no mutation and selection) in an un-
structured population. We can also express this in terms of the expected change in
allele frequencies as E[δp|p = p0] = E[p1 − p0] = 0.

2. For the variance among replicate offspring populations from a founder population
with frequency p0 = n0/2N of the A allele, we obtain: Var[n1|n0] = 2Np0(1 − p0)
and thus

V := Var[p1|p0] =
p0(1− p0)

2N
.

The variance is largest for p0 = 1/2. In terms of allele frequency changes, we can
also write Var[δp|p = p0] = Var[p1 − p0] = Var[p1|p0] = V .

3. There are two absorbing states of the process: Fixation of the A allele at pt = 1,
corresponding to a probability vector x(1) = (0, 0, . . . , 1), and loss of the allele at
pt = 0, corresponding to x(0) = (1, 0, . . . , 0). Both x(0) and x(1) are left eigenvectors
of the transition matrix with eigenvalue 1.

4. The absorption probabilities in x(0) and x(1) for an initial frequency p0 = n0/2N
are given by the corresponding right eigenvectors, y(0) and y(1), with normalization
x(i) · y(j) = δij: If we define as πi the fixation probability (absorption in x(1)) for a
process that starts in state p0 = i/2N , then y(1) = (0, π1, π2, . . . , π2N−1, 1). Indeed,
we have the single-step iteration

πi =
2N∑
j=0

Pijπj

which is just the eigenvalue equation for P with eigenvalue λ = 1.
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5. For a neutral process with two absorbing states, we can immediately determine the
fixation probability from the martingale property of the process. Assume that we
start in state p0 = i/2N . Since any process will eventually be absorbed in either x(0)

or in x(1), we have

lim
t→∞

E[pt] =
i

2N
= πi · 1 + (1− πi) · 0 ⇒ πi =

i

2N
.

In particular, the fixation probability of a single new mutation in a population is
π1 = 1/2N .

Random genetic drift has consequences for the variance of allele frequencies among and
within populations. For the variance among colonies that derive from the same ancestral
founder population, we have already derived above that V = p0(1− p0)/2N after a single
generation. After a long time, we get

V∞ = lim
t→∞

(
E[(pt)

2]−
(
E[pt]

)2
)

= p0 − p2
0 = p0(1− p0) .

The variance among populations thus increases with drift to a finite limit. To measure
variance within a population, we define the homozygosity Ft and the heterozygosity Ht as
follows

Ft = p2
t + (1− pt)2 ; Ht = 2pt(1− pt) = (1− Ft) .

The homozygosity (heterozygosity) is the probability that two randomly drawn individuals
carry the same (a different) allelic state, where the same individual may be drawn twice
(i.e. with replacement). We can generalize this definition for a model with k different alleles

with frequencies p
(1)
t , . . . , p

(k)
t and

∑
i p

(i)
t = 1,

Ft =
k∑
i=1

(
p

(i)
t

)2
= 1−Ht .

We obtain the single-step iteration

Ft =
1

2N
+
(

1− 1

2N

)
Ft−1

Indeed, if we take two random alleles (with replacement) from the population in generation
t, the probability that we have picked the same allele twice is 1/2N . If this is not the case,
we choose parents for both alleles in the previous generation t − 1. By definition, the
probability that these parents carry the same state is Ft−1. From this we get for the
heterozygosity

Ht =
(

1− 1

2N

)
Ht−1 =

(
1− 1

2N

)t
H0 ≈ H0 exp[−t/2N ] .
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Figure 3.4: Frequency curve of one allele in a Wright-Fisher Model. Population size is
2N = 2000 and time is given in generations. The initial frequency is 0.5.

We see that drift reduces variability within a population and Ht → 0 as t→∞. The char-
acteristic time for approaching a monomorphic state is given by the (haploid) population
size. We can derive the half time for Ht as follows

Ht

H0

=
(

1− 1

2N

)t1/2

≈ exp[−t1/2/2N ] :=
1

2

and thus
t1/2 = 2N log[2] ≈ 1.39N .

The half time scales with the population size. Note that the time scale to approach a
monomorphic state does not depend on the number of alleles that are initially present.

Note finally that heterozygosity and homozygosity (as defined here) should not be
confused with the frequency of heterozygotes and homozygotes in a population. Both
quantities only coincide under the assumption of random mating. For this reason, some
authors (e.g. Charlesworth and Charlesworth 2010) prefer the terms gene diversity for Ht

and identity by descent for Ft.

Exercises

1. We have defined homozygosity and heterozygosity by drawing individuals with re-
placement. How do the formulas look like if we define these quantities without
replacement (which is sometimes also done in the literature)?

2. Consider the neutral Wright-Fisher model with a variable population size. What is
then the fixation probability of a new mutant that arises in generation 1?
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4 Neutral theory

In a pure drift model, genetic variation within a population can only be eliminated, but
never created. To obtain even the most basic model for evolution, we need to include
mutation as the ultimate source for new variation. Just these two evolutionary forces,
mutation and drift, are the only ingredients of the so-called neutral theory, developed by
Motoo Kimura in the 50s and 60s. Kimura famously pointed out that models without
selection already explain much of the observed patterns of polymorphism within species
and divergence between species. Importantly, Kimura did not claim that selection is not
important for evolution. It is obvious that purifying selection is responsible for the main-
tenance of functional important parts of the genome (e.g. in coding regions). However,
Kimura claimed that most differences that we see within and among populations are not
influenced by selection. Today, selection is thought to play an important role also for these
questions. However, the neutral theory is the standard null-model of population genetics.
This means, if we want to make the case for selection, we usually do so by rejecting the
neutral hypothesis. This makes understanding of neutral evolution key to all of population
genetics.

Motoo Kimura, 1924–1994, published several important, highly mathematical papers on ran-
dom genetic drift that impressed the few population geneticists who were able to understand
them (most notably, Wright). In one paper, he extended Fisher’s theory of natural selection
to take into account factors such as dominance, epistasis and fluctuations in the natural envi-
ronment. He set out to develop ways to use the new data pouring in from molecular biology
to solve problems of population genetics. Using data on the variation among hemoglobins and
cytochromes-c in a wide range of species, he calculated the evolutionary rates of these proteins.
Extrapolating these rates to the entire genome, he concluded that there could not be strong
enough selection pressures to drive such rapid evolution. He therefore decided that most
evolution at the molecular level was the result of neutral processes like mutation and drift.
Kimura spent the rest of his life advancing this idea, which came to be known as the “neutral
theory of molecular evolution” (adapted from http://hrst.mit.edu/groups/evolution.)

4.1 Mutation schemes

There are three widely used schemes to introduce (point) mutations to a model of molecular
evolution:

1. With a finite number of alleles, we can define transition probabilities from any allelic
state to any other state. For example, there may be k different alleles Ai, i = 1, . . . , k
at a single locus and a mutation probability from Ai to Aj given by µij. Then µi =∑

j 6=i µij is the total mutation rate per generation in state Ai. Mutation according
to this scheme is most easily included into the Wright-Fisher model as an additional
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step on the level of the infinite gamete pool,

pt → p′t+1 = pt ·U

where pt is the (row) vector of allele frequencies and the mutation matrix U has
elements µij for i 6= j and µii ≡ 1 − µi. We then obtain the frequencies in the
next generations pt+1 from p′t+1 by multinomial sampling as in the model without
mutation.

2. If we take a whole gene as our locus, we get a very large number of possible alleles
if we distinguish different amino acid sequences. In particular, back mutation to an
ancestral allelic state becomes very unlikely. In this case, it makes sense to assume
an effectively infinite number of alleles in an evolutionary model,

A1 → A2 → A3 → . . .

Usually, a uniform mutation rate u from one allelic state to the next is assumed.
Formally, the infinite alleles model corresponds to a Markov chain with an infinite
state space.

3. In the infinite alleles model, we assume that the latest mutation erases all the memory
of the previous state. Only the latest state is visible. However, for a stretch of DNA,
point mutation rates at a single site (or nucleotide position) are very small. We can
thus assume that subsequent point mutations will always happen at different sites
and remain visible. This leads to the so-called infinite sites model for mutation that
is widely applied in molecular evolution. In particular, under the assumptions of
the infinite sites model (no “double hits”), we can count the number of mutations
that have occurred in a sequenced region – given that we have information about the
ancestral sequence.

4.2 Predictions from neutral theory

We can easily derive several elementary consequences of neutral theory, given one of the
mutation schemes above.

• Under the infinite sites model, new mutations enter a population at a constant rate
2Nu, where u is the mutation rate per generation and per individual for the lo-
cus (stretch of DNA sequence) under consideration. Since any new mutation has a
fixation probability of 1/(2N), we obtain a neutral substitution rate of

k = 2Nu · 1

2N
= u .

Importantly, the rate of neutral evolution is independent of the population size and
also holds if N = N(t) changes across generations. As long as the mutation rate u can
be assumed to be constant, neutral substitutions occur constant in time. They define
a so-called molecular clock, which can be used for molecular dating of phylogenetic
events.
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• For the evolution of the homozygosity Ft or heterozygosity Ht under mutation and
drift, we obtain for the infinite alleles model or the infinite sites model

Ft = 1−Ht = (1− u)2

(
1−

(
1− 1

2N

)
Ht−1

)
.

In the long term, the population will approach a state where both forces, mutation
and drift balance. We thus reach an equilibrium, Ht = Ht−1 = H, with

H =
1− (1− u)2

1− (1− u)2(1− 1/2N)
=

Θ(1− u/2)

Θ(1− u/2) + (1− u)2
≈ Θ

Θ + 1

where Θ = 4Nu is the population mutation parameter. In the case with a finite
number of alleles, we need to account for cases where one allelic state can be produced
by multiple mutations (i.e., Ft measures the identity in state rather than just the
identity by descent). For two alleles with symmetric mutation at rate u in both
directions,

1−Ht = (1− 2u)

(
1−

(
1− 1

2N

)
Ht−1

)
+ 2u

(
1− 1

2N

)
Ht−1

and thus

H =
Θ

2Θ + 1− 4u
≈ Θ

2Θ + 1
.

• For the special case of the expected nucleotide diversity, denoted as E[π], where the
focus is on a single nucleotide site, we usually have Θ � 1. We can then further
approximate

E[π] = Hnucleotide ≈ Θ ,

independently of the mutational scheme that is used.
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5 The coalescent

Until now, in our outline of the Wright-Fisher model, we have shown how to predict
the state of the population in the next generation (t + 1) given that we know the state
in the current generation (t). This is the classical approach in population genetics and
follows the evolutionary process forward in time. This view is most useful if we want to
predict the evolutionary outcome under various scenarios of mutation, selection, population
size and structure, etc. that enter as parameters into the model. However, these model
parameters are not easily available in natural populations. Usually, we rather start out
with data from a present-day population. In molecular population genetics, this will be
mostly sequence polymorphism data from a population sample. The key question then
becomes: What are the evolutionary forces that have shaped the observed patterns in our
data? Since these forces must have acted in the history of the population, this naturally
leads to a genealogical view of evolution backward in time. This view in captured by the
so-called coalescent process (or simply the coalescent), which has caused a small revolution
in molecular population genetics since its introduction in the 1980’s. There are three main
reasons for this:

• The coalescent is a valuable mathematical tool to derive analytical results that can
be directly linked to observable data.

• The coalescent leads to very efficient simulation procedures.

• Most importantly, the coalescent allows for an intuitive understanding of patterns
in DNA polymorphism data and of how these patterns result from evolutionary pro-
cesses.

For all these reasons, we will introduce this modern backward view of evolution in parallel
to the classical forward picture.

The coalescent process describes the genealogy of a population sample. The key event
of this process is therefore that, going backward in time, two or more individuals share a
common ancestor. We can ask, for example: what is the probability that two individuals
from the population today (t) have the same ancestor in the previous generation (t− 1)?
For the neutral Wright-Fisher model, this can easily be calculated because all individuals
pick a parent at random. If the population size is 2N the probability that two individuals
choose the same parent is

pc,1 = Pr[common parent one generation ago] =
1

2N
. (5.1)

Given the first individual picks its parent, the probability that the second one picks the
same one by chance is 1 out of 2N possible ones. This can be iterated into the past. Given
that the two individuals did not find a common ancestor one generation ago maybe they
found one two generations ago and so on. We say that the lines of descent from the two
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individuals coalescence in the generation where they find a common ancestor for the first
time. The probability for coalescence of two lineages exactly t generations ago is therefore

pc,t = Pr
[ two lineages coalesce
t generations ago

]
=

1

2N

(
1− 1

2N

)t−1

.

Mathematically, we can describe the coalescence time as a random variable that is geo-
metrically distributed with success probability 1

2N
. Figure 5.1 shows an example for the

common ancestry like it can be generated by a simulation animator, such as the Wright-
Fisher animator on www.coalescent.dk. In this case the history of just two individuals is
highlighted. Going back in time there is always a chance that they choose the same parent.
In this case they do so after 11 generations. In all the generations further back in time
they will automatically also have the same ancestor. The common ancestor in the 11th
generation in the past is therefore called the most recent common ancestor (MRCA).

The coalescence perspective is not restricted to a sample of size two but can be applied
to any number of individuals. For a sample of size n from the Wright-Fisher model of size
2N , the probability of coalescence in a single generation is

p
(n)
c,1 = 1−

(
1− 1

2N

)
·
(

1− 2

2N

)
· · ·
(

1− n− 1

2N

)
= 1−

n−1∏
i=1

(
1− i

2N

)
=

1

2N

n−1∑
i=1

i+O
[( n
N

)2
]

=
1

2N

(
n

2

)
+O

[( n
N

)2
]
. (5.2)

We can interprete this result as follows. In a sample of size n, there are
(
n
2

)
possible

coalescence events between pairs of individuals. If we assume that n � N , multiple
coalescence events in a single generation can be ignored and the leading order term in pnc,1
just accounts for the probability of a single pairwise coalescence event in the sample in
the previous generation. Multiple coalescence events and coalescence events of more than
two lineages simultaneously (so-called “multiple mergers”) only contribute to the error
term ∼ O[N−2], which can be ignored for small samples in a large population. In this
approximation, the coalescence probability after t generation in a sample of size n becomes

p
(n)
c,t ≈

1

2N

(
n

2

)
·
(

1− 1

2N

(
n

2

))t−1

. (5.3)

We can then construct the genealogical history of the sample in a two-step procedure:

1. First, fix the topology of the coalescent tree. I.e., decide (at random), which pairs
of genealogical lineages from individuals in a sample coalesce first, second, etc., until
the MRCA of the entire sample is found.

2. Second, specify the times in the past when these coalescence events have happened.
I.e., draw a so-called coalescent time for each coalescent event. This is independent
of the topology.
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Figure 5.1: The coalescent of two lines in the Wright-Fisher Model
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5.1 Topologies

With only pairwise coalescence events, the topology of a coalescence tree is easy to model.
Consider a sample of size n and represent the ancestry of this sample as coalescing lineages
back in time. Since each coalescence event reduces the number of ancestral lines by one, it
takes n− 1 such events to reach the MRCA as the root of the tree. We say that the tree
is in state k at some time t in the past if there are k ancestral lines at this time. Looking
further back in time, all k(k − 1)/2 pairs of lines that can be chosen from these k lines
are equally likely to be involved in the next coalescence event. If we start the coalescent
process with labeled individuals (representing the n tips of the tree in our sample), we thus
have

n∏
k=2

(
k

2

)
=
n!(n− 1)!

2n−1
(5.4)

different labeled and time-ordered histories, where we do not only distinguish who coa-
lesces with whom, but also different time orders in the coalescence events. In many cases,
however, we are not interested in the genealogy of a specific sample, but in the statistical
properties of (e.g. neutral) coalescent trees, such as the number of subtrees of a certain
size – irrespectively of any labels at the tips of the tree. In this case, it is sometimes easier
to construct the coalescent tree forward in time: For a tree currently in state k, we simply
pick one of the lines at random and split it to obtain state k + 1. For example, we can
prove the following

Theorem 1 Take a random coalescent tree of size n and consider the k branches that
exist at state k of the tree. Let λi, i = 1, . . . , k be the number of offspring of the ith
branch. Such a branch is also called a branch of size λi. Then, the offspring (λ1, . . . , λk)
of all k branches is uniformly distributed over all k-dim vectors with entries λi ∈ N+ and∑

i λi = n.

• Note that there are (
n− 1

k − 1

)
(5.5)

such vectors. To see this, imagine that we distribute n (identical) balls over k (la-
beled) groups. We can put all n balls next to each other in a single line and then
place vertical lines between the balls to delimit the groups. Then, k− 1 demarcation
lines are needed, which can go in any of the n− 1 spaces between the balls.

Proof To prove the theorem, consider first a specific history, forward in time, starting
at state k: Imagine that the first λ1 − 1 split events all occur in descendants of the first
branch, followed by λ2 − 1 split events in offspring of the second branch, and so on until
the k-th branch, which needs λk − 1 split events in its offspring. The probability of this
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particular history is(
1

k
· 2

k + 1
· · · λ1 − 1

k + λ1 − 2

)
·
(

1

k + λ1 − 1
· · · λ2 − 1

k + λ1 + λ2 − 3

)
· · ·

· · ·

(
1

k +
∑k−1

i=1 λi − k + 1
· · · λk − 1

k +
∑k

i=1 λi − k − 1

)
=

(k − 1)!
∏k

i=1(λi − 1)!

(n− 1)!
. (5.6)

As long as there are λi−1 splitting events in the descendants of the ith branch (i = 1, . . . , k),
we will always obtain the same distribution (λ1, . . . , λk), irrespective of the order of these
splitting events. If we can calculate the probability of each of these alternative histories
in a stepwise procedure like in (5.6), it is easy to see that the only difference to (5.6)
is a permutation of the numbers in the numerator. We conclude that the probability of
all alternative histories to obtain a specific offspring distribution (λ1, . . . , λk) is identical.
The number of alternative histories for a given distribution is given by the multinomial
coefficient

(
n−k

λ1−1,...,λk−1

)
, and thus

Pr[(λ1, . . . , λk)] =
(k − 1)!(n− k)!

(n− 1)!
=

(
n− 1

k − 1

)−1

. (5.7)

• The splitting scheme is also known as the Polya urn scheme in the mathematical
literature. This scheme starts with an urn containing k balls with k different colors.
Then, each round, take out one ball, put it back in and add another ball of the same
color.

• For k = 2, the result says that if we pick one of the branches after the first split,
the size of this branch will be uniformly distributed on 1, 2, . . . , n − 1. In the limit
n→∞, we obtain a coalescent tree of the “whole population”. Then, the proportion
X of lines that derive from the left branch after the first split is uniformly distributed
on the interval (0, 1). Consider now the coalescent tree of a random sample of size
m. The MRCA of the sample tree will be the same one as for the population tree
unless either all m lines or no lines at all trace back to the left branch after the first
split of the population tree. This occurs with probability∫ 1

0

(
xm + (1− x)m

)
dx =

2

m+ 1
.

The probability that the population MRCA coincides with the sample MRCA is thus

1− 2

m+ 1
=
m− 1

m+ 1
. (5.8)

In more general, if we pick a subsample of size m of a sample of size n, the probability
that both samples go back to the same MRCA is

(m− 1)(n+ 1)

(m+ 1)(n− 1)
. (5.9)
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For a proof, consider the n-tree after the first split and calculate the probability that
all m lines of the subsample go back to the left branch,

pl =
1

n− 1

n−1∑
k=m

k

n

k − 1

n− 1
· · · k −m+ 1

n−m+ 1
=
m!(n−m)!

(n− 1)n!

n−1∑
k=m

(
k

m

)
=

n−m
(n− 1)(m+ 1)

using the summation formula Eq. (10.3). The result (5.9) is then obtained as 1 −
2pl, since the m lines can either go back to the left or the right branch with equal
probability.

• In general, the uniform distribution over the branch sizes leads to a much higher
variance in branch size than expected under a binomial or multinomial distribution:
neutral coalescent trees can be both balanced or unbalanced.

Number of possible rooted and unrooted trees

In the examples above, we did not distinguish trees according to their branch length, but
we have still accounted for the order of coalescence events. However, we can also count
coalescence trees without any reference to time order.

For a sample of size n, we have n − 1 coalescence events until we reach the MRCA
(the root). This creates 2n − 1 so-called vertices in the tree: n are external (the leaves)
and n− 1 are internal. Every vertex has a branch directly leading to the next coalescence
event. Only the root, which is also a vertex in the tree, does not have a branch. This
makes 2n − 2 branches in a rooted tree with n leaves. As two branches lead to the root,
the number of branches in an unrooted tree with n leaves is 2n− 3.

Let Bn be the number of topologies of unrooted trees with n leaves. We can derive this
number recursively. Assume we have a tree with n− 1 leaves, representing the first n− 1
sampled sequences. We can ask in how many ways the nth sequence can be added to this
tree. There are 2n− 5 branches in a tree with n− 1 leaves. Since any branch can have the
split leading to the nth leave, we obtain

Bn = (2n− 5)Bn−1.

It is easy to see that there is only a single unrooted tree with three leaves. Thus

Bn = 1 · 3 · 5 · · · (2n− 7) · (2n− 5) = (2n− 5)!! . (5.10)

5.2 Coalescence times

For the branch lengths of the coalescent tree, we need to know the coalescence times. For a
sample of size n, we need n−1 times until we reach the MRCA. As stated above, these times
are independent of the topology. Mathematically, we obtain these times most conveniently
by an approximation of the geometrical distribution by the exponential distribution for
large N :
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• If X is geometrically distributed with small success probability p and t is large then

Pr[X ≥ t] = (1− p)t ≈ e−pt.

This is the distribution function of an exponential distribution with parameter p.

Let tn be the time until the first coalescence occurs in a smaple of size n. This time is
geometrically distributed according to

Pr[tn > t] =

[
1−

(
n
2

)
2N

]t
=

[
1− n(n− 1)

4N

]t
. (5.11)

The mean waiting time until the first coalescence event is E[tn] = 4N/n(n − 1) and thus
proportional to the population size. It is standard to integrate this dependence into a
“coalescent time scale”

τ :=
t

2N
.

We can then take the limit N →∞ to obtain a stochastic process with a continuous time
parameter τ . Coalescence times Tn := tn/2N in this limiting process are distributed like

Pr[Tn > τ ] = lim
N→∞

[
1−

(
n
2

)
2N

]2Nτ

= exp

[
−τ
(
n

2

)]
. (5.12)

In a sample of size n, the time to the first coalescence is thus exponentially distributed
with parameter λ = n(n−1)/2. The fact that in the coalescent the times are exponentially
distributed enables us to derive several important quantities.

• The time to the MRCA,

TMRCA(n) =
n∑
k=2

Tk,

is the sum of n−1 mutually independent exponentially distributed random variables.
Its expectation and variance derive to

E[TMRCA(n)] =
n∑
k=2

E[Tk] =
n∑
k=2

2

k(k − 1)
= 2

n∑
k=2

( 1

k − 1
− 1

k

)
= 2
(

1− 1

n

)
(5.13)

and

Var[TMRCA(n)] =
n∑
k=2

Var[Tk] =
n∑
k=2

4

k2(k − 1)2
= 8

n∑
k=2

1

k2
− 4
(

1− 1

n

)2

. (5.14)

We have E[TMRCA(n)]→ 2 for large sample sizes n→∞. Note that E[TMRCA(2)] = 1,
so that in expectation more than half of the total time to the MRCA is needed for the
last two ancestral lines to coalesce. Similarly, Var[TMRCA(n)] → 4π2/3 − 12 ≈ 1.16
for n→∞ is dominated by Var[T2] = 1.
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• Due to the independence of the coalescence times, the full distribution of TMRCA(n)
can be derived as an (n− 2)-fold convolution,

fTMRCA(n)(τ) =
n∑
k=2

(
k

2

)
exp

[
−
(
k

2

)
τ

] n∏
j=2,j 6=k

(
j
2

)(
j
2

)
−
(
k
2

) . (5.15)

• For the total tree length,

L(n) =
n∑
k=2

kTk,

we obtain the expected value

E[L(n)] =
n∑
k=2

k E[Tk] = 2
n∑
k=2

1

k − 1
= 2

n−1∑
k=1

1

k
. (5.16)

and the variance

Var[L(n)] =
n∑
k=2

k2 Var[Tk] = 4
n−1∑
k=1

1

k2
. (5.17)

Increasing the sample size will mostly add short twigs to a coalescent tree. As a
consequence, also the total branch length

E[L(n)] ≈ 2(log(n− 1) + γ) ; γ = 0.577216 . . . .

increases only very slowly with the sample size (γ is the Euler constant). The variance
even approaches a finite limit 2π2/3 ≈ 6.58 for n→∞.

• Again, also the entire distribution can be derived and takes a relatively easy form,

fL(n)(τ) =
n− 1

2
exp[−τ/2]

(
1− exp[−τ/2]

)n−2

(5.18)

• As we have seen above, the probability that the coalescent of a sample of size n
contains the MRCA of the whole population is (n−1)/(n+1) (for large, finite N). An
important practical consequence of these findings is that, under neutrality, relatively
small sample sizes (typically 10-20) will usually be enough to gain all statistical power
that is available from a single locus.

5.3 Polymorphism patterns

In order to generate DNA diversity patterns using the coalescent, we need to add mutations
to the process. This can be done according to any of the mutation schemes introduced
in section (4.1). Most frequently used are the infinite sites and the infinite alleles model,
which we will discuss in the following.
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The key insight for the description of neutral DNA diversity using the coalescent is that
neutral mutations do not interfere with the genealogy: state (the genotype) and descent
(the genealogical relationships) are decoupled for neutral evolution. This is easy to see from
the time-forward dynamics, since parents carrying different variants of a neutral allele are
still equivalent concerning the distribution of their offspring in all future generations. If
we want to create a random neutral polymorphism pattern using the coalescent process,
we can therefore pick a genealogy first (as described in the previous section) and decide
on the state later on. This is done by so-called mutation dropping, where mutations are
added to all branches of the tree.

Let us first discuss the infinite sites mutation scheme. I.e. each mutation hits a new
site (and thus leads to a new allele) and all mutations on a genealogy remain visible. If a
mutation occurs on a branch of size i in the genealogy of n individuals, it will give rise to
a polymorphism with frequency i/n of the derived (mutant) allele. Note that we do not
need to know the precise time for the origin of the mutations in the genealogy, all that is
needed is the total number of mutations that fall on each branch. On genealogical time
scales (as opposed to phylogenetic time scales), we can usually assume that the mutation
rate u (per haploid individual and generation) is constant.

For a branch of length l, we therefore directly get the number of neutral mutations
on this branch by drawing from a Poisson distributed with parameter 2Nlu. The factor
2N accounts for the fact that branch length l is measured on the coalescent time scale (in
units of 1/2N). In particular, the total number of mutations in an entire coalescent tree of
length L is Poisson distributed with parameter 2NLu. Let S be the number of segregating
(polymorphic) sites in a sample. Since each polymorphic site corresponds to exactly one
mutation on the tree under the infinite sites model, we have

Pr[S = k] =

∫ ∞
0

Pr[S = k|`] · fL(n)(`)d` =

∫ ∞
0

e−2N`u (2N`u)k

k!
· fL(n)(`)d` .

For the expectation that means

E[S] =
∞∑
k=0

k Pr[S = k] =

∫ ∞
0

`θ

2
e−`θ/2

( ∞∑
k=1

(`θ/2)k−1

(k − 1)!

)
· fL(n)(`)d`

=
θ

2

∫ ∞
0

` fL(n)(`)d` =
θ

2
E[L(n)] = θ

n−1∑
i=1

1

i
= anθ

(5.19)

with

an =
n−1∑
i=1

1

i
, (5.20)

and where
θ = 4Nu

is the standard population mutation parameter. Note that the distribution of S does not
depend on the coalescent topologies, but only on the distribution of the coalescence times.
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The mismatch distribution

For a Poisson distributed random variable, the time interval between consecutive events is
exponentially distributed. There is therefore an alternative way to derive the equilibrium
heterozygosity H (or the number of polymorphic sites in a sample of size 2) using the
coalescent. If we follow the genealogy of two copies of a homologous site back in time,
two things can happen first: (1) either one of the two mutates or (2) they coalesce. If
they coalesce first they are identical by descent, if one of the two mutates, they are not
identical. For both processes, the time back to the first event is exponentially distributed.
Since mutation (in either lineage) occurs at rate 2u and coalescence occurs at rate 1/2N ,
we directly obtain using Eq. (10.17),

H(u,N) =
2u

2u+ (1/2N)
=

θ

θ + 1
. (5.21)

We can easily extend this result and ask for the probability that we find precisely k dif-
ferences among the two sequences. Under the assumptions of the infinite-sites model, and
using that we can re-start the Poisson process after every event,

Pr[π = k] =
( θ

θ + 1

)k 1

θ + 1
, (5.22)

which is a modified geometrical distribution. Note that this is not the distribution of
pairwise mismatches in a larger sample, which will be correlated due to a shared history.
However, under the standard neutral model, we should see this distribution if we sequence
from independent loci along the genome (e.g. counting mismatches among the two copies
carried by a diploid individual).

The site frequency spectrum

The total number S of polymorphic sites is the simplest so-called summary statistic of
polymorphism data. There are many more. As a next step, we can ask for the number Si
of mutations of a given size i. To derive the expected value E[Si], we proceed in two steps.
First, we ask for the probability that a branch at state k of the coalescent process is of size
i,

P [i|k] := Pr[Probability for branch at state k to be of size i] .

From Theorem 1 we directly obtain P [i|k] as

P [i|k] =

(
n−i−1
k−2

)(
n−1
k−1

) (5.23)

Here, the numerator counts all different possibilities to distribute n − i descendants over
k− 1 branches – i.e. all remaining descendants after we have assigned i descendants to the
focal branch. Note that P [i|k] does not depend at all on the coalescent times, but only
on aspects of the topology. In the second step, we ask for the expected number E[S(k)] of
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mutations on a branch at state k. Noting that the length of such a branch is Tk, this is
easily derived (analogous to Eq. 5.19),

E[S(k)] =
θ

2
E[Tk] =

θ

k(k − 1)
. (5.24)

In contrast to P [i|k], this expression does not depend on the topologies, but only on the
coalescent times. Using the independence of coalescent times and topologies, we now obtain
the expected number of mutations of size i as

E[Si] =
n∑
k=2

kP [i|k] · E[S(k)]

=
n∑
k=2

θ

k − 1

(n− i− 1)!(k − 1)!(n− k)!

(k − 2)!(n− i− k + 1)!(n− 1)!

=
θ

i
(
n−1
i

) n∑
k=2

(
n− k
i− 1

)
=

θ

i
(
n−1
i

) n∑
k=2

((
n− k + 1

i

)
−
(
n− k
i

))
=

θ

i
(
n−1
i

) · (n− 1

i

)
=
θ

i
, (5.25)

where we have used Eq. (10.2). The expected number of mutations of size i is thus θ/i.
Together, these numbers define the (expected) site frequency spectrum of sample taken
from a standard neutral population.

• The frequencies of the expected normalized site frequency spectrum are pi = 1/(ani).
They are independent of θ. The characteristic (1/i)-shape is a prime indicator of
“neutrality”.

• We can easily obtain an empirical site frequency spectrum from any polymorphism
data. This empirical spectrum can then be compared to the spectrum predicted under
neutrality. Note that we need data from many independent (unlinked) loci to observe
the expected spectrum. For any single locus, the spectrum can differ considerably,
because we only have a single coalescent history.

• To determine the size of a given polymorphism in the sample, we need to know the
ancestral state at the locus. In practice, this is inferred from a so-called outgroup
(usually a single consensus sequence from a closely related sister species). If the
ancestral state cannot be determined, we can work with the so-called folded site
frequency spectrum, with mutation classes S̃i = Si +Sn−i for i < n/2 and S̃i = Si for
i = n/2.
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Infinite alleles and haplotype statistics

So far, we have considered polymorphism patterns under the assumption of the infinite sites
model, where all mutations that occur during the genealogy of a sample remain visible as a
polymorphic site. Depending on the type of the mutation, however, this may not always be
true. For example, the infinite sites model does not easily generalize to insertion/deletion
mutations. Alternatively, we may focus on the entire haplotype in a chromosomal window
and just ask for the distribution of different types (ignoring any information about the
mutational distances between these types). Questions like these can be addressed within
the framework of the infinite alleles model.

Just like in the case of the infinite sites model, we can construct the genealogical tree
first and add mutations later on. However, for the infinite alleles model, only the latest
mutations (the ones closest to the leaves of the tree) will be observed. As a consequence,
major parts of the genealogy do not influence the pattern. We can account for this by
adding mutations already as we build the genealogy. Once we encounter the first mutation
in the ancestry of an individual, we know the state of this this ancestor and of all its
descendants. So, before we construct the genealogy further back in time, we can stop (or
kill) this branch. This leads to the so-called coalescent with killings, where we have two
kinds of events:

1. As before, coalescence events occur at rate k(k − 1)/2 on the coalescence time scale
for a tree in state k (i.e. with k ancestral lines).

2. In addition, we directly account for mutation events, which occur at rate kθ/2 in
state k. Each mutation “kills” the corresponding branch.

Let Kn be the number of different haplotypes that we observe in a sample of size n. We are
interested in the probability that Kn takes a certain value k. By following the coalescent
with killings back in time to the first event (either coalescence or mutation), we can relate
the values for the distribution of Kn to the corresponding values for Kn−1,

P [Kn = k] =
θ

θ + n− 1
· P [Kn−1 = k − 1] +

n− 1

θ + n− 1
· P [Kn−1 = k] . (5.26)

As initial condition, we have P [K1 = 1] = 1. To solve this recursion, observe that the
denominator in both terms in (5.26) is the same. Note also, that for Kn = k, we need to
choose “mutation” k − 1 times before we reach a sample of size 1. Each time, we pick up
a factor of θ, like in the first term of (5.26). We thus can write

P [Kn = k] =
θk−1

(θ + 1)(θ + 2) · · · (θ + n− 1)
· S(n, k) =

θk

θ(n)

· S(n, k) (5.27)

where

θ(n) = θ(θ + 1) · · · (θ + n− 1)
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and the S(n, k) are the so-called Stirling numbers of the first kind, which follow the recur-
sion relation

S(n, k) = S(n− 1, k − 1) + (n− 1) · S(n− 1, k) . (5.28)

In analogy to the allele frequency spectrum, we can also ask for the frequency distribution
of haplotypes. Let Aj be the number of haploytpes that appear j times in a sample of size
n. For Kn = k, we thus have

n∑
j=1

Aj = k and
n∑
j=1

jAj = n ,

and let a = (a1, . . . , an) be a realization of (A1, . . . , An). We can prove the following

Theorem 2 The combined distribution of the number and frequencies of haplotypes under
the standard neutral model is given by the so-called Ewens’ sampling formula,

Pn[a] =
n!

θ(n)

n∏
j=1

(θ/j)aj

aj!
. (5.29)

• One interpretation of this result is to view theAj as independently Poisson distributed
random variables with parameter (= expected value) θ/j, and then consider the
marginal distribution under the condition

∑n
j=1 jAj = n. Note that the distribution

is strongly influenced by θ. For large θ > 1, the distribution is dominated by singleton
haplotypes ∼ θa1 , for small θ, a large number of singletons (large a1) is unlikely.

Proof To prove the theorem, we extend the recursion method that we have used in our
proof of the distribution of Kn. Note first that for n = 1, we have a1 = 1 with probability
1, in accordance with (5.29). Define ei = (0, . . . , 1, 0, . . .) as the ith unit vector (with entry
1 in the ith position). Now, start with a sample of size n and go back to the first event.
With probability θ/(θ + n − 1), this is a mutation, which creates a new haplotype. This
relates the partition a of the n haplotypes in the sample to the partition a − e1 of the
remaining n − 1 types. If the first event is coalescence (which it will be with probability
(n − 1)/(θ + n − 1)), this decreases the frequency of one of the haplotypes (with at least
two copies) by one. In terms of the allelic partitions, this turns a into a + ej − ej+1 for
some j ∈ {1, . . . , n − 1}. Conditioned on this latter partition for the tree at state n − 1,
the probability that (forward in time) the next split event will be in one of the haplotype
classes with j copies is thus (aj + 1)j/(n− 1). This results in the recursion

Pn[a] =
θ

θ + n− 1
Pn−1[a − e1] +

n− 1

θ + n− 1

n−1∑
j=1

(aj + 1)j

n− 1
Pn−1[a + ej − ej+1]. (5.30)
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It remains to be shown that (5.29) fulfills this recursion. For this, note that (5.29) implies
that

Pn−1[a− e1] =
(θ + n− 1)a1

nθ
Pn[a] (5.31)

Pn−1[a + ej − ej+1] =
(θ + n− 1)aj+1(j + 1)

(aj + 1)nj
Pn[a] (5.32)

Inserting this into (5.30) yields

1 =
a1

n
+

n−1∑
j=2

aj+1(j + 1)

n
=

1

n

n∑
j=1

aj ,

which holds true, since
∑

j aj = n.

• The underlying combinatorial problem is also known as the Hoppe urn scheme in
the mathematical literature. This scheme starts with k colored balls like the Polya
urn, but adds a special back ball with weight θ. Each time a colored ball is drawn,
the ball is returned with another ball of the same color. Each time the black ball is
drawn, it is put back with another ball of a new color.

• Note that the marginal distribution for the allelic partition given the number of
haplotypes can be written as

Pn[a|Kn = k] =
Pn[a]

P [Kn = k]
=

n!

S(n, k)

n∏
j=1

1

aj!jaj
, (5.33)

which is, in particular, independent of θ. In statistical terms this means that all
information about θ is already contained in the number of haplotypes found in a
sample: Kn is a sufficient statistic. Knowledge about their distribution does not add
any further information.

5.4 Coalescent and statistics

Coalescent trees show the genealogical relationships between two or more sequences that
are drawn from a population. This should not be confounded with a phylogenetic tree that
shows the relation of two or more species. Indeed, both “trees” have entirely different roles
for the theory of evolution. In phylogenetics, one is usually interested in the one “true
tree” and the parameters of this tree (such as split times) are estimated from data. In
contrast, there is no single “true tree” for a set of individuals from a population. Indeed,
the genealogy will usually be different for different loci. For example, at a mitochondrial
locus your ancestor is certainly your mother and her mother. However, if you are a male,
the ancestor for the loci on your Y-chromosome is your father and his father. So the
genealogical tree will look different for a mitochondrial locus than for a Y-chromosomal
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locus. But even for a single locus, we are usually not able to reconstruct a single “true
coalescence tree” and this is not the goal in coalescent studies. Instead, coalescent histories
are used as a statistical tool for inferences about an underlying model.

The general idea is as follow. We define an evolutionary model that depends on a
number of biological parameters (such as mutation rates, population sizes, selection co-
efficients). Under this model, we obtain a distribution of coalescent histories and (con-
sequently) a distribution of polymorphism patterns that is predicted under this model.
We can then compare measured data with the predicted distribution to make statistical
inferences. Usually, there is a twofold goal:

1. to reject (or not) the underlying model. This is true, in particular, for the neutral
model as the standard null model of population genetics.

2. to estimate model parameters. Note that the parameters of the coalescent tree (co-
alescent times, topology) are generally not model parameters. They are “integrated
out” in the statistical treatment.

In some easy cases (notably the neutral model), key aspects of the distribution of poly-
morphism patterns can be obtained analytically using coalescent theory. In many other
cases, this is no longer possible. However, even in these cases, the coalescent offers a highly
efficient simulation framework that is routinely used in statistical simulation packages.

Estimators for the mutation parameter θ

All population genetic models, whether forward or backward in time, depend on a set of
biological parameters that must be estimated from data. In the standard neutral model,
there are two such parameters: the mutation rate u and the population size N . However,
since both parameters only occur in the combination θ = 4Nu, the population mutation
parameter is effectively the only parameter of the model. From our derivation of the
expected site frequency spectrum, we easily obtain several estimators for θ. In principle,
we can use the total number of mutations of any size class to define an unbiased estimator
θ̂i,

E[Si] =
θ

i
−→ θ̂i := i · Si . (5.34)

In practice, widely used estimators are linear combinations across mutations of different
size classes. They can be distinguished according to the relative weight that is put on a
certain class. The most important ones are the following:

1. Watterson’s estimator,

θ̂W :=
S

an
=

1

an

n−1∑
i=1

Si =
1

an

∑
1≤i≤n/2

S̃i , (5.35)

uses the total number of segregating sites and puts an equal weight on each mutation
class. The last equation expresses θ̂W in terms of frequencies of the folded spectrum.
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Remember that the distribution of S – and thus of θ̂W – is independent of the
coalescent topologies, but only depends on the coalescent times.

2. Let πij be the number of differences among two sequences i and j from our sample.
We have E[πij] = E[S(n = 2)] = θ. If the sample size is just two, this corresponds to
Watterson’s estimator. In a larger sample, we can still take the pairwise difference
as our basis and average over all n(n − 1)/2 pairs. This leads to the diversity-based
estimator (sometimes also called Tajima’s estimator),

θ̂π :=
2

n(n− 1)

∑
i<j

πij . (5.36)

We can also express θ̂π in terms of the (folded) frequency spectrum as follows,

θ̂π =

(
n

2

)−1 n−1∑
i=1

i(n− i)Si =

(
n

2

)−1 ∑
1≤i≤n/2

i(n− i)S̃i . (5.37)

Whereas Watterson’s estimator weights all frequency classes equally, θ̂π puts the
highest weight on classes with an intermediate frequency. In contrast to θ̂W, it also
depends on the distribution of tree topologies. The estimator is often also just written
as π̂.

3. Fay and Wu’s estimator,

θ̂H :=

(
n

2

)−1 n−1∑
i=1

i2Si , (5.38)

puts a hight weight on mutation classes of the unfolded spectrum with a high fre-
quency of the derived allele. In contrast to the other estimators, it is not a summary
statistic of the folded spectrum and thus requires knowledge of the ancestral state.

4. Finally, the singleton estimator θ̂s uses the singletons of the folded spectrum,

θ̂s :=
n− 1

n

(
S1 + Sn−1

)
=
n− 1

n
S̃1 . (5.39)

It has all its weight at both ends of the unfolded spectrum.

Test statistics for neutrality tests

Estimators of any model parameter, such as θ, will only produce meaningful results if
the assumptions of the underlying model hold. In our case, we have assumed standard
neutral evolution. In addition to the absence of selection, this includes the assumptions
of a constant population size and no population structure. But how can we know whether
these assumptions do hold (at least approximately) for a given data set? This question asks
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for a test of the model assumptions. As it turns out, the availability of various different
estimators of the same quantity θ is helpful for the construction of such a test.

The key idea is to consider the difference among two different estimators, such as
θ̂π−θ̂W. Under standard neutrality, this quantity should be close to zero, whereas significant
deviations indicate that the model should be rejected. The most widely used test statistic
that is constructed in such a way is Tajima’s D,

DT :=
θ̂π − θ̂W√

Var[θ̂π − θ̂W]
. (5.40)

The denominator of DT is used for normalization and makes the distribution of the statistic
(almost) independent of θ and of the sample size. Tajima has shown that DT is approxi-
mately β-distributed. Today, however, the exact distribution under the standard neutral
null model is usually obtained (resp. approximated to arbitrary precision) by computer
simulations. For a given significance level α, one can then specify the critical upper and
lower bounds for DT, beyond which the null model should be rejected. Test statistics that
are constructed in a similar way are Fu and Li’s D,

DFL :=
θ̂W − θ̂s√

Var[θ̂W − θ̂s]
(5.41)

and Fay and Wu’s H,

HFW :=
θ̂π − θ̂H√

Var[θ̂π − θ̂H]
. (5.42)

To understand, which kind of deviations from the standard neutral model are picked up
by the three summary statistics, it is instructive to consider the contribution of the site
frequency classes Si to the numerator of each statistic. For example, DT will be negative
if we have an excess of very low or very high frequency alleles, whereas it will be positive
if many sites segregate at intermediate frequencies.
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6 Effective population size

In the previous chapter, we have constructed the coalescent for an idealized Wright-Fisher
population. Our assumptions have included the following:

1. neutral evolution with identical offspring distribution for all individuals,

2. a constant population size,

3. no population structure: i.e. offspring choose their parents with equal probability for
all individuals from the parent generation,

4. offspring choose their parents independently of each other: as a consequence, the
distribution of offspring for each parent is binomial (and approximately Poisson),

5. generations are discrete, individuals are haploid, and there are no separate sexes . . .

One may wonder whether such a simplified theory can tell us much about nature. In sta-
tistical terms: if we construct a null model under a large number of assumptions, rejecting
this null model does not provide us with a lot of information. Indeed, any of the assump-
tions could have been violated – for most biological populations we even know in advance
that several assumption won’t hold.

Luckily, the situation is not so bleak as it may look and we can often still use the theory
that we have developed. As it turns out, many biological factors can be taken care of by an
appropriate adjustment of the model parameters. This leads to the concept of the effective
population size.

6.1 The concept

The number of individuals in a natural population is referred to as the census population
size or per-capita population size. We have seen that finite population size often leads
to genetic drift and, prima facie, it seems natural to identify the number of individuals
(or individual gene copies) in a Wright-Fisher model with the census population size of a
natural population. However, as it turns out, this is usually not appropriate. The point of
the Wright-Fisher model (and similar models, like the Moran model) is to capture genetic
drift. It should therefore be chosen in such a way that the strength of drift in the natural
system is equal to the strength of drift in the model. The idea is to choose the size of an
ideal Wright-Fisher population in such a way, that this correspondence holds. The size that
is needed is called the effective population size. The remaining question is which measure
for genetic drift we should use. Unfortunately, there is more than one measure that is
commonly used. This leads to some ambiguity in the definition of the effective population
size. In general, we use the following philosophy:

Let • be some measurable quantity that relates to the strength of genetic drift
in a population. This can be e.g. the rate of loss of heterozygosity or the
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probability of identity by descent. Assume that this quantity has been measured
in a natural population. Then the effective size Ne of this population is the
size of an ideal (neutral panmictic constant-size equilibrium) Wright-Fisher
population that gives rise to the same value of the measured quantity •. To be
specific, we call Ne the •-effective population size.

With an appropriate choice of this measure we can then use a model based on the
ideal population to make predictions about the natural one. Although a large number of
different concepts for an effective population size exist, there are two that are most widely
used.

The coalescent (or inbreeding) effective population size

One of the most basic consequences of a finite population size - and thus of genetic drift -
is that there is a finite probability for two randomly picked individuals in the offspring gen-
eration to have a common ancestor in the parent generation. This is the single-generation
probability of identity by descent, which translates into the single-generation coalescence
probability of two lines pc,1 in the context of the coalescent. In the absence of population
structure and demography, we can iterate the single-generation step across multiple gen-
erations: conditioned on non-coalescence in a single generation, the two parents are again
random picks from a population of the same size. We thus obtain pc,t = pc,t(1 − pc,1)(t−1)

as a simple function of pc,1. For the ideal Wright-Fisher model with 2N (haploid) individ-
uals, we have pc,1 = 1/2N . Knowing pc,1 in a natural population, we can thus define the
coalescent effective population size

N (c)
e =

1

2pc,1
. (6.1)

The degree of inbreeding is one of the factors that influences N
(c)
e . For historic reasons,

N
(c)
e is therefore often referred to as inbreeding effective population size. The more relevant

connection is the one to coalescent times. Assume that N
(c)
e is constant over generations.

Then all coalescent times are directly proportional to this size. One also says that N
(c)
e

fixes the coalescent time scale.

The variance effective population size

Another key aspect about genetic drift is that it leads to random variations in the allele
frequencies among generations. Assume that p is the frequency of an allele A in an ideal
Wright-Fisher population of size 2N . In Section 3, we have seen that the number of A
alleles in the next generation, 2Np′, is binomially distributed with parameters 2N and p,
and therefore

VarWF[p′] =
1

(2N)2
Var[2Np′] =

p(1− p)
2N

.
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For a natural population where the variance in allele frequencies among generations is
known, we can therefore define the variance effective population size as follows

N (v)
e =

p(1− p)
2Var[p′]

. (6.2)

As we will see below, the inbreeding and variance effective sizes are often identical or at
least very similar. However, there are exceptions and then the correct choice of an effective
size depends on the context and the questions asked. Finally, there are also scenarios
(e.g. changes in population size over large time scales) where no type of effective size
is satisfactory. We then need to abandon the most simple ideal models and take these
complications explicitly into account.

Estimating the effective population size

For the Wright-Fisher model, we have seen in Section 5 that the expected number of
segregating sites S in a sample is proportional to the mutation rate and the total expected
length of the coalescent tree, E[S] = uE[L]. The expected tree-length E[L], in turn, is
a simple function of the coalescent times, and thus of the coalescent effective population
size N

(c)
e . Under the assumption of (1) the infinite sites model (no double hits), (2) a

constantN
(c)
e over the generations (constant coalescent probability), and (3) a homogeneous

population (equal coalescent probability for all pairs) we can therefore estimate the effective
population size from polymorphism data if we have independent knowledge about the
mutation rate u (e.g. from divergence data). In particular, for a sample of size 2, we have

E[S2] = 4N
(c)
e u and thus

N (c)
e =

E[S2]

4u
.

In a sample of size n, we can estimate the expected number of pairwise differences to be
Ê[S2] = θ̂π (see (5.36)) and obtain the estimator of N

(c)
e from polymorphism data as

N̂ (c)
e =

θ̂π
4u
.

A similar estimate can be obtained from Watterson’s estimator θ̂W, see Eq. (5.35). While

the assumption of the infinite sites model is often justified (as long as 4N
(c)
e un � 1, with un

the per-nucleotide mutation rate), the assumption of constant and homogeneous coalescent
rates is more problematic. We will come back to this point in the next section when we
discuss variable population sizes and population structure.

6.2 Factors affecting Ne

Let us now discuss the main factors that influence the effective population size. For sim-
plicity, we will focus on N

(c)
e . We will always assume that there is only a single deviation

from the ideal Wright-Fisher population.
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Offspring variance

One assumption of the ideal model is that the offspring distribution for each individual
is binomial (approximately Poisson). In natural populations, this will usually not be the
case. Note that the average number of offspring must always be 1, as long as we keep the
(census) population size constant. The offspring variance σ2, however, can take any value
in a wide range. Let xi be the number of offspring of individual i with

∑
i xi = 2N . Then

the probability that individual i is the parent of two randomly drawn individuals from the
offspring generation is xi(xi−1)/(2N(2N−1)). Thus, the expected probability for identity
by descent of two random offspring individuals is

pc,1 = E

[ 2N∑
i=1

xi(xi − 1)

2N(2N − 1)

]
=

2N∑
i=1

E

[
xi(xi − 1)

2N(2N − 1)

]
. (6.3)

With E[xi] = 1 and E[x2
i ] = σ2 + 1 and the definition (6.1) we arrive at

N (c)
e =

1

2pc,1
=
N − 1/2

σ2
≈ N

σ2
. (6.4)

By a slightly more complicated derivation (not shown), we can establish that the variance

effective population size N
(v)
e takes the same value in this case.

Separate sexes

A large variance in the offspring number leads to the consequence that in any single gen-
eration some individuals contribute much more to the offspring generation than others.
So far, we have assumed that the offspring distribution for all individuals is identical. In
particular, the expected contribution of each individual to the offspring generation was
equal (= 1). Even without selection, this is not necessarily the case. An important exam-
ple is a population with separate sexes and unequal sex ratios in the breeding population.
Consider the following example:

Imagine a zoo population of primates with 20 males and 20 females. Due to dominance
hierarchy only one of the males actually breeds. What is the inbreeding population size that
informs us, for example, about loss of heterozygosity in this population? 40? or 21??

Let, in general, Nf be the number of breeding females and Nm the number of breeding
males. Then half of the genes in the offspring generation will derive from the Nf parent
females and half from the Nm parent males. Now draw two genes at random from two
individuals of the offspring generation. The chance that they are both inherited from
males is 1

4
. In this case, the probability that they are copies from the same paternal gene

is 1
2Nm

. Similarly, the probability that two random genes are descendents from the same

maternal gene is 1
4

1
2Nf

. We thus obtain the probability of finding a common ancestor one

generation ago

pc,1 =
1

4

1

2Nm

+
1

4

1

2Nf

=
1

8

( 1

Nm

+
1

Nf

)
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and an effective population size of

N (c)
e =

1

2pc,1
=

4
1
Nm

+ 1
Nf

=
4NfNm

Nf +Nm

.

In our example with 20 breeding females and 1 breeding male we obtain

N (c)
e =

4 · 20 · 1
20 + 1

=
80

21
≈ 3.8.

The coalescent (or inbreeding) effective population size is thus much smaller than the
census size of 40 due to the fact that all offspring have the same father. Genetic variation
will rapidly disappear from such a population. In contrast, for an equal sex ratio of
Nf = Nm = N

2
we find N

(c)
e = N .

Sex chromosomes and organelles

Take two random Y -chromosome alleles from a population. What is the probability that
they have the same ancestor one generation ago? This is the probability that they have
the same father, because Y-chromosomes come only from the father. So this probability
is 1

Nm
where Nm is the number of males in the population, so N

(c)
e = Nm. Similarly, for

mitochondrial genes N
(c)
e = Nf where Nf is the number of females in the population.

In birds the W-chromosome is the female determining chromosome. WZ individuals are
female and ZZ individuals are male. So for the W-chromosome Ne = Nf . For the X-
chromosome in mammals and the Z-chromosome in birds it is a bit more complicated.
Take two random X-chromosome alleles, what is the probability that they are from the
same ancestor? This is

1

2

(Nf

Nm

+
Nm

Nf

)
· 1

2Nf +Nm

.

Exercise 6.1. Explain the last formula. (Hint: You need to treat males and females in

both the offspring and parent generations seperately.) What is N
(c)
e for the X-chromosome

if the sex ratio is 1:1? 2

Fluctuating Population Sizes

Consider the evolution of a population with periodically varying size over a period of Tp
generations. Imagine that we have already calculated the effective population size for each
individual generation N0 to NTp−1. The Ni take breeding structure etc. into account. The
expected reduction of heterozygosity over Tp generations then is

HTp =
(

1− 1

2N0

)
· · ·
(

1− 1

2NTp−1

)
H0

= (1− p̄c,1)TpH0
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where p̄c,1 is the relevant average single-generation coalescence probability that describes
the loss of heterozygosity. We then have

1− p̄c,1 =
[(

1− 1

2N0

)
· · ·
(

1− 1

2NTp−1

)]1/Tp
≈
[

exp
(
− 1

2N0

)
· · · exp

(
− 1

2NTp−1

)]1/Tp

= exp
(
− 1

2Tp

( 1

N0

+ . . .+
1

NTp−1

))
≈ 1− 1

2Tp

( 1

N0

+ . . .+
1

NTp−1

)
and get an average (coalescent) effective population size of

N̄ (c)
e =

1

2

1

p̄c,1
≈ Tp

1
N0

+ . . .+ 1
NTp−1

.

• The (average) inbreeding-effective population size is thus given by the harmonic
mean of the population sizes over time. Other than the usual arithmetic mean, the
harmonic mean is most strongly influenced by single small values. E.g., if the Ni are
given by 100, 4, 100, 100, the arithmetic mean is 76, but we obtain a harmonic mean
of just N̄

(c)
e = 14.

• When can we use such an average effective size as a homogeneous time-scale for
coalescent calculations? Since population sizes affect coalescent probabilities, the
condition is that the population should run through many population-size cycles
during a typical coalescent time. I.e., we should have

Tp �
(
n

2

)−1

N̄ (c)
e = E[Tn] (6.5)

(in per-generation scaling). In practice, this is fulfilled, for example, for species with
several generations per year and seasonal variation in population size.

• We also note that periodicity in population sizes is not required for the definition of
an average effective size. It is generally sufficient that the population sizes experi-
enced during time periods of E(Tn) are representative of a long-term distribution of
population sizes.

From the cases studies in this section, we see that most populations are genetically much
smaller than they appear from their census size, increasing the effects of drift. There are
rare exceptions, as shown in the next section.

Two toy models

Let us deal with two examples of populations that are unrealistic but helpful to understand
the concept of effective sizes. The first example that is given represents a zoo population.
In order to keep polymorphism as high as possible, care is taken that every parent has
exactly one offspring. The ancestry is given by Figure 6.1(A).
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Figure 6.1: (A) The ancestry of a population that is kept as polymorphic as possible. (B)
The ancestry of a population where each generation only has one parent

The second example is similar to the example of unequal sex ratios where the population
had 20 males, but only one of them had offspring. However, in this case the individuals
are haploids, and only one ancestor is the parent of the whole next generation. A scenario
like this is shown in Figure 6.1(B).

Exercise 6.2. Figures 6.1(A) and (B) clearly do not come from ideal Wright-Fisher pop-
ulations. So Nc 6= Ne and we can try to calculate the effective population sizes for them.
Given the census size in the two cases is Nc what are the

• variance effective size,

• coalescent effective size (for a single generation).

2

Exercise 6.3. We have introduced the neutral fixation probability and the equilibrium
heterozygosity for an ideal Wright-Fisher population. How do we need to adjust the results
if we think of a natural population and the various concepts of effective population sizes?
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7 Demography: population growth and decline

So far, we have been concerned with biological factors that only change the rescaling of
the coalescent process and thus can be captured by an appropriate effective population
size Ne. However, some factors lead to more severe deviations from the standard neutral
theory. This is obvious for selection, but also occurs for neutral evolution if we allow for
major changes in the population size over time, or for population sub-structure. In this
section, we will focus on the changes of the neutral coalescent due to large-scale changes
in population size.

7.1 Effects of demography

We have seen in the previous section that short-term fluctuations in the population size can
be subsumed in an effective population size Ne that is the harmonic mean of the population
sizes over the period of the fluctuation. This holds as long as this period is short relative
to the typical coalescence time. This is no longer true, however, if population sizes change
over longer time scales. The latter will be the case, in particular, if there is no equilibrium
distribution of population sizes across generations at all, such as in continued population
growth or decline. The simplest model is that of an exponentially growing (or declining)
population.

N(τ) = N0e
−λτ , (7.1)

for some parameter λ which quantifies the speed of growth. Note that we measure time
τ in the backward direction. Exponential growth (λ > 0) or decline (λ < 0) is a nat-
ural consequence if populations regulation does not depend on the population density
(through competition), but only on external factors. For the coalescent, this means that
two individuals at time τ choose the same ancestor, i.e. coalesce in a single generation,
with probability 1/2N(τ). With a growing population, N(τ) declines as we go back in
time and the frequency of coalescent event thus increases relative to the standard neutral
model. Graphically this is shown in Figure 7.1: A typical coalescent tree in an expanding
population has reduced branch lengths near the root of the tree.

If N0 is the current (effective) population size, and if the coalescent time scale τ = t/2N0

is defined relative to this size, then the distribution of coalescence times in a population
with variable size is

Pr[Tn > τ ] = exp
[
−
(
n

2

)∫ τ

0

N0

N(t)
dt
]

= exp
[
−
(
n

2

)
τ ′
]
, (7.2)

where we have introduced a new time scale

τ ′ =

∫ τ

0

N0

N(t)
dt .

For an exponentially growing population, for example, we obtain

τ ′ =
exp[λτ ]− 1

λ
; τ =

log[λτ ′ + 1]

λ
(7.3)
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Figure 7.1: (A) The coalescent for a population of constant size and (B) for an expanding
population. Real time runs from bottom to top and coalescent time τ from top to bottom.

The point of this transformation is that the coalescence times are exponentially distributed
on the new τ ′ time scale. To obtain a coalescence time on the τ scale, we can thus pick an
exponentially distributed random variable on the τ ′ scale in a first step. Using the reverse
transformation, we can then derive the coalescence time on the original scale. Note that in
contrast to the cases with a single effective population size Ne, the time rescaling is not by
a constant factor, but varies with time. Still, the coalescent topologies do not change at all
under such a transformation. Mutations are added to the trees after the transformation
(on the τ scale). We can now ask for the effect of such a time-dependent rescaling on the
expected summary statistics for the polymorphism pattern.

1. For a growing population, the (reverse) transformation τ ′ → τ will reduce “older”
branches near the root of the tree by a larger factor than “young” branches at the
leaves. As a consequence, most mutations will fall on branches near the leaves, where
they affect only a single individual in the sample (mutation of size 1). We thus obtain
an excess of low-frequency polymorphisms in the site-frequency spectrum relative to
the standard neutral model. Looking at the test statistics, we see that Tajima’s DT

will be negative, while Fay and Wu’s HFW will be positive.

2. For a shrinking population, the transformation reduces primarily the branches at the
leaves. We typically obtain trees with a deep split, where most of the time during
the genealogy is spent for the last two lines to coalesce. Since mutations on these
branches produce mutations of any size (from 1 to n− 1) with an equal probability,
this results in a flat site-frequency spectrum, with a reduced number of singletons
relative to the standard neutral model. In contrast to population growth, such a
pattern is usually characterized by a positive value of DT.
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Figure 7.2: Two cases in a bottleneck mode. (A) Only one ancestral line survives the
bottleneck. (B) Two or more lines survive which leads to different patterns in observed
data.

3. A very complex demographic scenario are so-called bottlenecks, where the popula-
tion recovers after an intermediate phase with a reduced population size. The conse-
quences of such a demographic history depends on the parameters of the bottleneck
in a subtle way. This is seen in two examples in Figure 7.2. On the one hand, a very
strong and/or long reduction of the population size can lead full coalescence of the
genealogy with a very high probability during that phase. In this case, a bottleneck
will look like an expanding population. On the other hand, for a less severe or very
short reduction, it is most likely that two or more lines do not coalesce during the
bottleneck. As these lines enter (back in time) the ancestral phase with large popu-
lation size, the time to full coalescence at the MRCA may be very long. The pattern
in this case rather mimics one of a declining population. For intermediate bottleneck
strengths, both of these genealogical scenarios may occur with a high probability.
We then get a mix of patterns and a large increase in the variance of most summary
statistics if we analyze patterns from different loci along a chromosome.
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8 Selection and drift

In the first part of the lecture, we have described the consequences of selection in scenarios,
where the effect of genetic drift can be ignored. This can be done in a deterministic
framework. In contrast, in the second part, we have concentrated on models of neutral
evolution, where drift and mutation are the only evolutionary forces. It is natural to ask,
whether we can also combine all three forces, mutation, selection, and drift in a single
model to describe their combined effect. There are various approaches how this could be
done.

1. The introduction of selection into the Wright-Fisher model is straightforward, as
shown below. The problem is that almost no analytical results can be obtained from
this framework.

2. Some more progress can be made for the so-called Moran model. Several key prop-
erties can also be studied using branching processes, an even easier mathematical
framework. We will discuss both these models in the first part of this section below.

3. It is also possible to include selection into the coalescent framework. This theory
goes under the name of the ancestral selection graph. The problem that needs to be
addressed is that genotype and genealogy (state and descent) are no longer indepen-
dent. Since this leads to some major complications, we do not follow this approach
here.

4. A more traditional route to proceed is to approximate the Wright-Fisher model by
a diffusion process. This approach leads to several valuable results and will be the
main focus of the second part of this chapter.

8.1 Selection and the Wright-Fisher model

The Wright-Fisher model assumes a population with discrete generations and the following
life-cycle:

p p random union p̃ sampling p′

Adults =⇒ Gametes =⇒ Zygotes =⇒ Adults
(N) meiosis (∞) mutation (∞) drift (N)

selection

Adults from the parent generation produce a very large – effectively infinite – gamete pool
(sperm, eggs, pollen). Subsequently, these gametes randomly combine to diploid zygotes.
Zygotes are affected by selection and mutation, still in the infinite-population-size part of
the life cycle. Only afterwards, N individuals are sampled from this infinite pool to form
the adult population of the next generation. The advantage of this life cycle is that random
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mating (or random union of gametes), selection, and mutation all occur in an effectively
infinite population. It we are interested in the evolutionary change in the frequency of
some allele A, we can thus simply use the formulas from deterministic population genetics.
Only in a second step, the alleles undergo the sampling step to include drift into the model.

For example, consider a single locus with two alleles a and A and diploid fitness values
as in the following table,

Genotype aa aA AA
Fitness 1 1 + hs 1 + s

.

Further assume that mutation from a to A occurs at rate µ and back mutation from A to
a at rate ν. Let p be the frequency of allele A in the parent generation. Since each adult
contributes equally to the gamete pool, this step from a finite to an infinite population size
does not change the allele frequency. As in Eq. (1.19), we obtain for the action of selection
and mutation

p̃ = (1− ν)
wA
w̄
· p+ µ

(
1− wA

w̄
· p
)

(8.1)

where

wA = 1 + sp+ hs(1− p) and

w̄ = 1 + sp2 + 2hsp(1− p)

are the marginal fitness of the A allele and the mean fitness, respectively. As for the neutral
Wright-Fisher model, drift is modeled by binomial sampling,

Pr[p′ = j/2N |p̃] =

(
2N

j

)
p̃ j(1− p̃)2N−j . (8.2)

Although the Wright-Fisher model assumes a quite particular life cycle, it is thought to
work as a valid approximation for a broad range of biological scenarios.

• In many species, it may be more natural to assume that mutation happens already
during gamete production, prior to selection. This can be easily included by an
appropriate modification of the deterministic formula. However, for weak mutation
and selection, which we will assume below, this difference vanishes.

• Selection is included into the Wright-Fisher model as viability selection on the zy-
gotes. Since it directly follows random union of the gametes, we can (conveniently)
assume Hardy-Weinberg proportions prior to selection. We note that with multi-
plicative fitness, the selection scheme is equivalent to selection on haploids (cf. page
13). We could then also assume that selection affects the viability of gametes, or
their rate of production (i.e. adult fertility).
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• Finally, we note that the sampling step in the Wright-Fisher model is done on the
level of genes (i.e. haploids) rather than on the level of diploid individuals. As
long as diploids are in Hardy-Weinberg equilibrium, this does not make a difference.
However, unless fitness is multiplicative, zygotes will deviate from Hardy-Weinberg
proportions after selection. Technically, we then would need to assume that zygotes
already segregate directly after selection. Adults thus represent a haploid life stage,
which is indeed the case for some species (such as many algae). However, for weak
selection, only small deviations from Hardy-Weinberg occur, which can usually be
ignored. For this reason, the model is used in a much broader context.

Mathematically, Eq. (8.2) defines the transition matrix of a Markov chain with a finite
state space. Unfortunately, however, this matrix is so complicated that analytical results
cannot be obtained without further assumptions. Below, we will see that in the limit of
weak mutation and selection the Wright-Fisher model gives rise to a diffusion process.
Alternatively, we can try to construct a model with a simpler transition matrix. This leads
to the so-called Moran model.

8.2 The Moran model

The idea of the Moran model is that it breaks down the per-generation change in allele
frequencies of the Wright-Fisher model into individual birth-death events. Consider a
haploid population of size N and two alleles, a (wild type) and A (mutant) at a single
locus. In the neutral version of the model, two individuals from the population are chosen
at random (with replacement, i.e. allowing for the same individual to be chosen twice): one
for reproduction and the other one for death. The reproducing individual produces exactly
one offspring, such that total population size is maintained at all times. Biologically, we
can imagine that a random death creates the space for a random offspring (seed) to grow
and take its place. We can either assume that individual birth-death intervals occur in
discrete time intervals or we assume that they occur in continuous time at a fixed rate. In
contrast to the Wright-Fisher model, the survival time of individuals is not fixed, but either
geometrically distributed (in the discrete time version) or exponentially distributed (in the
continuous time version of the model). N time units in the Moran model (with birth-
death rate normalized to 1 in the continuous version) correspond to a single Wright-Fisher
generation, but generations are overlapping in the Moran case.

Mathematically, the Moran model corresponds to a simple Markov chain with a finite
state space. Define a random vector x(t) = (x0(t), . . . , xN(t)), where xk(t) is the probability
that there are k mutants (A alleles) in the population at time t. The dynamics of the
discrete-time Moran model is then given as x(t+1) = x(t)P with transition matrix P with
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entries

pk,k+1 =
k(N − k)

N2
(8.3)

pk,k−1 =
k(N − k)

N2
= pk,k+1 (8.4)

pk,k = 1− pk,k+1 − pk,k−1 (8.5)

All other entries are zero. The matrix P is thus tri-diagonal. We also observe the following:

1. For the Moran model in continuous time, the above Markov chain still describes the
transitions between states at consecutive birth-death events (the so-called jump-chain
of the process). Note that the timing of the events is independent of the state of the
process. For a given time interval ∆t, we can thus first determine the number of
events that have happened during this time (which is Poisson distributed) and then
follow the jump chain to derive the probabilities x(t0 + ∆t) from a given initial state
x(t0).

2. Without new mutations, the process as two absorbing states: fixation of the mutant
at k = N or fixation of the wildtype at k = 0. In the long term, evolution will always
reach one of these states.

3. For the neutral process (without mutation and selection) we have pk,k−1 = pk,k+1

and the expected number of mutant alleles E[k] is conserved under the process (the
process is a martingale). If a process is started at k0, and if u(k0) is the fixation
probability of this process at k = N , the martingale property implies k0 = E[k(0)] =
limt→∞[E[k(t)]] = u(k0) ·N + (1− u(k0)) · 0 and thus

u(k0) = k0/N.

4. The Moran process is a special case of a birth-death process, which is a standard
model of a Markov chain in the mathematical literature. It is also equivalent to a
one-dimensional random walk with absorbing boundaries.

Inclusion of mutation and selection into the Moran model is straightforward. For mutation,
we simply assume that the newborn individual is a new mutant with a specified mutation
rate (and potentially different back mutation rate). Selection can be introduced either via
the reproduction rates or the death rates. Let r be the fitness of the mutant allele A, where
the fitness of the a allele is normalized to 1. If fitness differences are due to differences in
rates of reproduction (production of seeds that could fill empty spots), we have

r =
Pr[repro. mutant]

Pr[repro. wt]

as the probability that a given mutant is selected for reproduction, relative to a wildtype.
If there are k mutants in the population of size N , the total probabilty that a mutant is
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chosen for reproduction is
r · k

r · k +N − k
(8.6)

and the corresponding probability for a wildtype is

N − k
r · k +N − k

. (8.7)

With death rates as in the neutral case, the transition probabilities of the Moran model
with selection (without mutation) are

pk,k+1 =
r · k(N − k)

(r · k +N − k)N
(8.8)

pk,k−1 =
k(N − k)

(r · k +N − k)N
. (8.9)

The Moran process including selection is no longer a martingale. However, it is still
possible to derive fixation probabilities for a general birth-death process with a tri-diagonal
transition matrix. Let ui be the fixation probability at N for a process started at k(0) = i.
Using the Markov property, we have:

u0 = 0 (8.10a)

ui = pi,i+1ui+1 + pi,i−1ui−1 + pi,iui (8.10b)

uN = 1 , (8.10c)

which can be written in matrix form as

u = Pu . (8.11)

The vector u of fixation probabilities is thus a (right) eigenvector of the transition matrix
P corresponding to eigenvalue 1. To derive the entries of u, define yi := ui − ui−1. We
have

N∑
i=1

yi = uN − u0 = 1 .

With pi,i = 1− pi,i+1 − pi,i−1 from (8.10b) we further obtain

yi+1 =
pi,i−1

pi,i+1

yi =: γiyi

and using y1 = u1

yk = u1

k−1∏
i=1

γi ,

thus

1 =
N∑
k=1

yk = u1

(
1 +

N∑
k=2

k−1∏
i=1

γi

)
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and

u1 =
1

1 +
∑N

k=2

∏k−1
i=1 γi

=
1

1 +
∑N−1

k=1

∏k
i=1 γi

.

The fixation probability for a process started in k(0) = j results in

uj =

j∑
k=1

yj = u1

(
1 +

j−1∑
k=1

k∏
i=1

γi

)
=

1 +
∑j−1

k=1

∏k
i=1 γi

1 +
∑N−1

k=1

∏k
i=1 γi

. (8.12)

• In the neutral case, pi,i−1 = pi,i+1 and γi = 1. We thus have

uj =
j

N

as expected.

• With selection

γi =
pi,i−1

pi,i+1

=
1

r

and

ui =

∑i−1
j=0 r

−j∑N−1
j=0 r−j

=
(1− r−i)/(1− r−1)

(1− r−N)/(1− r−1)
=

1− 1/ri

1− 1/rN
. (8.13)

The fixation probability of a single A mutant, in particular, is:

p
(A)
fix = u1 =

1− 1/r

1− 1/rN
≈ (r − 1)/r (8.14)

für rN � 1.

• Vice-versa, the fixation probability at k = 0 of a single wildtype in a mutant popu-
lation (k0 = N − 1) is

p
(a)
fix = 1− uN−1 =

1− r
1− rN

≈ (r − 1)/rN . (8.15)

We always have

p
(a)
fix

p
(A)
fix

= r1−N .

Fixation probabilities are small even for strongly advantageous mutants. For mutants with
deleterious effects, they are exponentially small, but always positive. Fixation probabilities
for a population of size N = 100 are given in the following table. #pfix= 1

2
gives the number



72 8 SELECTION AND DRIFT

of consecutive new mutants that is needed to switch a population from wildtype to mutant

state with probability 1
2
. (I.e. (1− p(A)

fix )
#

pfix= 1
2 = 1

2
).

fitness fixation prob. p
(A)
fix #pfix= 1

2
= − log(2)

log(1−p(A)
fix )

r = 2 (+100%) 0.5 1
r = 1.1 (+10%) 0.09 7
r = 1.01 (+1%) 0.016 44
r = 1 (neutral) 0.01(= 1/N) 69
r = 0.99 (−1%) 0.0058 119
r = 0.9 (−10%) 0.000003 234861

8.3 Branching processes

Branching processes constitute one of the most explicit class of models for evolutionary or
ecological dynamics. The focus is on growth rates and extinction probabilities of popula-
tions. Like the Wright-Fisher model, branching process models are individual based. In a
general branching process, individuals can have different types, where a type can represent
genetic or environmental factors, such as the individual’s genotype or its place of birth
in a spatially structured population. Individuals can reproduce (i.e. branch) or die with
type-dependent probabilities, and they may also change their type (e.g. due to mutation
or migration). However, in the most basic framework, the Galton-Watson process, there
is only a single type of individuals.

The Galton-Watson Process (GWP)

The GWP is the prototype of a branching process in discrete time. It assumes that there is
a single type of individuals. During its lifetime (one generation), each individual produces
offspring according to a distribution ρGW and then dies. The GWP is characterized by the
following conditions on the offspring distribution:

• ρGW is identical for all individuals,

• ρGW is independent of the number of individuals and of the reproductive success of
the other individuals,

• ρGW is constant over the generations.

Now let Xn be the number of individuals in generation n and let Zi,n be the number of
offspring of the ith individual in generation n. According to the definition of the process,
all Zi,n, i ≤ Xn are independently and identically distributed (i.i.d.) according to ρGW. Let
us define

ρGW : Zi,n = k with probability pk. (8.16)

with expected value

E[Zi,n] =
∞∑
k=0

kpk := µ. (8.17)



8.3 Branching processes 73

The offspring of all individuals in generation n− 1 build the nth generation of the process,
i.e.

Xn =

Xn−1∑
i=1

Zi,n−1. (8.18)

The expected number of individuals

The standard way to derive (or prove) properties for the branching process is by induction
over the generations, where the induction step uses the conditioned expectation

E[X] = EY [E[X|Y ]].

We are interested in the expected size of the population in the nth generation, E[Xn]. We
can use that E[Xn|Xn−1] = E[

∑Xn−1

i=1 Zi,n−1] = Xn−1µ and E[X0] = X0 for the starting
generation. We then find by induction

E[Xn] = E[E[Xn|Xn−1]] = µE[Xn−1] = µnX0. (8.19)

The extinction probability

A key question for a branching process is the probability for the extinction of a population.
Let πn be the probability that the population is extinct in generation n, i.e. πn = Pr[Xn =
0]. In particular,

π∞ := lim
n→∞

πn = lim
n→∞

Pr[Xn = 0]

is the probability that the population dies out at all. Equivalently, 1−π∞ is the probability
that it survives for ever. Note that the sequence πn is monotonic with 1 as upper bound and
therefore always converges. Since the descendants of different individuals in the founder
generation develop completely independent, we always have πn[X0 = m] = (πn[X0 = 1])m.
We can thus focus on the case X0 = 1, which we will do in the following. In this case, we
have π1 = p0, and for the πn the following recursion holds:

πn+1 = φ(πn); with φ(t) =
∞∑
k=0

pkt
k. (8.20)

To see this, note that X1 = k with probability pk and the probability that these individuals
have no descendants in generation n+1 is πkn. Note also that φ(t) is the generating function
of the probability distribution ρGW = pk. Since πn converges as n → ∞, π∞ must be a
fixed point of φ, i.e.

π∞ = φ(π∞) =
∞∑
k=0

pkπ
k
∞. (8.21)

We can now show the following:
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Proposition 1

1. For p0 = 0 we obtain π∞ = 0,

2. for p0 > 0; p0 + p1 = 1 we have π∞ = 1,

3. for p0 > 0; p0 + p1 < 1, π∞ is given by the smallest positive solution of the fixed
point equation φ(t) = t. This fixed point is π∞ < 1 if and only if µ > 1.

Proof

1. This is obvious.

2. To see this, note that we have µ < 1 in this case. Since E[Xn] = µn we have

Pr[Xn ≥ 1] ≤ µn ⇒ Pr[Xn = 0] ≥ 1− µn,

which converges to 1 in the limit n→∞.

3. We use 0 < φ(0) = p0 < 1 and φ(1) = 1. Furthermore, φ′(t) =
∑∞

k=1 kpkt
k−1

and φ′′(t) =
∑∞

k=2 k(k − 1)pkt
k−2 are positive for t ∈ (0, 1). In particular, we have

φ′(1) = µ. Therefore φ(t) has a fixed point 0 < t∗ < 1 iff µ > 1. Convergence to the
smallest fixed point is best seen graphically (”cob-web” picture).

It becomes evident that the expected growth rate µ is the crucial parameter also for the
extinction problem. Depending on its value, we distinguish subcritical (µ < 1), critical
(µ = 1) and supercritical (µ > 1) branching processes. While subcritical and critical
branching processes always die out, there is a “merciless alternative” of either extinction
or divergence to infinity for supercritical processes. This is expressed by the following
proposition:

Proposition 2

1. Excluding the trivial case with p1 = 1, a branching process does not return to the
same non-zero number of individuals infinitely many times,
Pr[Xn = k for infinitely many n] = 0 for k ≥ 1.

2. In the limit n → ∞, a branching process either goes extinct (with probability π∞)
or diverges (Xn →∞ with probability 1− π∞), but limn→∞ Pr[Xn = k] = 0 for each
finite k ≥ 1.
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Proof

1. We distinguish two cases. First, if p0 = 0, the sequence Xn is non-decreasing, Xn+1 ≥
Xn. Since, in particular, Pr[Xn+1 = k|Xn = k] = pk1 < 1, Xn = k cannot hold for
infinitely many n. Second, if p0 > 0, there is a fixed non-zero probability that a
population with size k dies out in the next generation, Pr[Xn+1 = 0|Xn = k] = pk0 > 0.
If we assume Xn = k for infinitely many n, extinction is certain, contradicting the
assumption.

2. limn→∞ Pr[Xn = k] = 0 for each finite k ≥ 1 is a direct consequence of the first part
of proposition 2 and the other assertions follow with proposition 1.

Application: Fixation probabilities

Branching processes are often used in ecology in a population dynamical context. In evo-
lutionary genetics, however, the most important application (which already goes back to
Haldane and Fisher) is the derivation of the fixation probability of a beneficial mutant
allele. To map this problem to a branching process, we need to assume that mutants re-
produce independently and with a distribution that is constant across generations. Both
these conditions are (approximately) fulfilled as long as the mutant is rare. In particular,
(i) we can ignore mutant homozygotes and (ii) the mean fitness is approximately equal
to the ancestral wildtype fitness (i.e. the mutant evolves in a constant “wildtype environ-
ment”). Both conditions are necessarily violated once the mutant frequency becomes large.
However, in a large population the number of mutants at this point is already sufficiently
large that extinction is very unlikely. Excluding the case of overdominance, the mutant will
then reach fixation and we can thus identify the fixation probability with the probability
of non-extinction. According to proposition 1, we obtain the fixation probability pfix as
solution of

1− pfix = φ(1− pfix) ≈ φ(1)− pfixφ
′(1) +

1

2
p2

fixφ
′′(1) +O

(
p3

fix

)
.

We have

φ(1) = 1 , φ′(1) = µ , φ′′(1) =
∞∑
k=2

k(k − 1)pk = σ2 + µ(µ− 1).

where µ and σ2 are the mean and the variance of the mutant offspring number. Assuming
that pfix is small, we can ignore all higher order terms in the Taylor expansion and find

pfix ≈
2(µ− 1)

σ2 + µ(µ− 1)
.

In terms of the selection coefficient with mutant fitness µ = 1 + s this takes the form

pfix ≈
2s

σ2
+O

(
s2
)
. (8.22)
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For the Wright-Fisher model, the offspring distribution is approximately Poisson if N is
large and the number of mutants is small. All mutant alleles appear in heterozygotes. We
thus have σ2 = µ = wA/w̄ ≈ 1 + hs and obtain

pfix ≈
2hs

(1 + hs)2
≈ 2hs

to leading order in s, a result first derived by JBS Haldane. Note that similar derivations
using branching processes are not possible for neutral or deleterious alleles. The crucial
condition is that the fate of the mutant is decided while it is rare.

Continuous-time branching process

We have derived the fixation probability for the Moran model explicitly. However, as for
the Wright-Fisher model, we can also approximate the Moran model by a branching-process
model that is even easier. We then obtain a branching process in continuous time, where
each individual independently gives birth at rate r (creating one new individual) or can
die at a rate normalized to 1. As before, we derive the probability that a single individual
“establishes” (i.e. it has offspring at any time in the future) by jumping to the next event
for this individual and by using the fact (Markov property) that any offspring individuals
have the same establishment probability (corresponding to a fixation probability) pfix. With
probability r/(r+1), the next event will be birth rather than death. Clearly, establishment
is only possible in this case. In the case of birth, the focal individual will establish unless
both of its offspring do not establish (which has probability (1 − pfix)2). We thus obtain
the recursion

pfix =
r

r + 1
(1− (1− pfix)2)

which is readily solved by

pfix = 2− r + 1

r
=
r − 1

r
, (8.23)

which can be compared with the exact result Eq. (8.14). We note that the approach only
works for r > 1 (a beneficial type, corresponding to a supercritical branching process). For
r = 1+s we have pfix ≈ s whereas we have pfix ≈ 2s for a haploid Wright-Fisher model. This
difference arises because death is stochastic in the Moran model, while it is deterministic
in the Wright-Fisher model (where everybody dies after one generation). This leads to a
larger variance in allele frequencies due to drift in the Moran model, corresponding to a
smaller effective population size.
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9 Diffusion models

9.1 Diffusions

Diffusions are a special class of Markov processes in continuous time with a continuous
state space. Below, we will give a general (but heuristic) exposition of diffusion theory.
Alongside, we apply each step to the Wright-Fisher diffusion as our special case of interest.
We define:

• Let X(t), t ∈ R be a continuously distributed random variable, which takes values
x ∈ I ⊂ R. For the Wright-Fisher case, X(t) will measure the allele frequency with
values in I = [0, 1].

• Let f(x, t) be the probability density of X(t) at time t, and let p(x, t|x0, t0) be the
transition probability density from state x0 at time t0 to state x at time t ≥ t0.

• Finally, we assume that the Markov property holds, i.e. for t0 ≤ t1 ≤ · · · ≤ tn,

p(x, t|xn, tn, . . . , x0, t0) = p(x, t|xn, tn) . (9.1)

With these conditions, one can easily show that the transition probabilities fulfill the so-
called Chapman-Kolmogorov equation,

p(x2, t2|x0, t0) =

∫
I

p(x2, t2|x1, t1)p(x1, t1|x0, t0)dx1 . (9.2)

To define a particular process, we need to specify the transition probabilities. Note that
the Chapman-Kolmogorov equation implies that it will be sufficient to know the transition
probabilities for arbitrarily small time intervals δt, since we can concatenate these intervals
for transitions across larger time spans. This is very convenient for applications in the
natural sciences since laws of nature usually predict instantaneous changes of a system
as a response to external forces. In our context, or example, these forces are mutation,
selection, and genetic drift, which change the allele frequency from one generation to the
next.

For a diffusion, the infinitesimal transition probabilities take a special form: If x and y
are the states of the process at times t and t+ δt, respectively, the moments of δx = y− x
fulfill the following conditions in the limit δt→ 0,

(i) lim
δt→0

1

δt
E[δx|x, t] = lim

δt→0

1

δt

∫
I

(y − x)p(y, t+ δt|x, t)dy = A(x, t) , (9.3)

(ii) lim
δt→0

1

δt
E[(δx)2|x, t] = lim

δt→0

1

δt

∫
I

(y − x)2p(y, t+ δt|x, t)dy = D(x, t) , (9.4)

(iii) lim
δt→0

1

δt
E[(δx)n|x, t] = lim

δt→0

1

δt

∫
I

(y − x)np(y, t+ δt|x, t)dy = 0 ; n > 2 . (9.5)
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As an important consequence of these conditions, one can show that ∀ε > 0

lim
δt→0

1

δt

∫
|x−y|>ε

p(y, t+ δt|x, t)dy = 0 . (9.6)

Diffusion processes therefore produce continuous trajectories x(t), even if these can be
quite irregular.

• The existence of a Markovian transition density with these limit properties needs a
proof that is beyond the scope of this lecture. We note that the choice of conditions
on the short-term moments is not at all arbitrary. For example, it is known that if
the third moment has a non-zero limit for δt→ 0, all higher-order moments must be
non-zero as well.

• A(x, t) is called the drift term of the diffusion – which should not be confused with
the notion of genetic drift. D(x, t) is the diffusion term.

• The prototype of a diffusion process is standard Brownian motion with A(x, t) = 0
and D(x, t) = 1, with the real numbers as state space.

9.2 The Wright-Fisher diffusion

Wright-Fisher model with weak mutation and selection

We want to derive a diffusion model as an approximation to the evolutionary dynamics
defined by the Wright-Fisher model. To achieve this, we need to transform the discrete state
space of the Wright-Fisher model to the continuous state space of the diffusion, where allele
frequencies take values on the unit interval. Since the distance between neighboring states
in the Wright-Fisher model is 1/N , the idea is to scale of the population size to infinity in
such a way that the key properties of the model remain approximately constant. It turns
out that this can be done if the (original) population size N is large, and if the mutation
rates µ, ν and the selection coefficient s are small. Specifically, in this approximation we
only maintain the leading order terms proportional to µ, ν, s, or N−1, but ignore higher
order terms, such as s2, s/N , νs, µ/N , N−2, etc. Formally, this can be achieved via the
definition of scaled mutation and selection parameters,

α := 2Ns ; β1 := 2Nν ; β2 := 2Nµ . (9.7)

With these scaled variables, we can simply develop all expressions as functions of N−1

according to a Taylor expansion and truncate after the first (linear) order. This is also
called the weak selection approximation.

We are interested in the change in the frequency of allele A across a single generation,
δx := x′ − x. Due to drift, δx is a random variable. In the weak selection approximation,
it is most convenient to express the distribution of δx in terms of its moments. For the
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first moment, we can use that E[x′] = x̃ with binomial sampling, and thus

E[δx] = E[x′]− x = x̃− x

=
1

2N

(
αx(1− x)(x+ h(1− 2x)) + β2(1− x)− β1x

)
+O

[
N−2

]
.

(9.8)
Note that this equation corresponds, to leading order, with the continuous-time dynamics
for mutation and selection, Eq. (1.31). For the variance, we obtain

Var[δx] = Var[x′] =
x̃(1− x̃)

2N
=
x(1− x)

2N
+O

[
N−2

]
, (9.9)

which thus does not depend on mutation and selection to leading order. Note also that
E[(δx)2] = Var[δx] to the order considered. For all higher order moments, we obtain

E[(δx)n] = O
[
N−(n−1)

]
, n ≥ 3 . (9.10)

They are thus ignored to the order of the approximation. These relations show that the
first two moments of the distribution of δx are sufficient to describe short-term changes in
the allele frequencies.

Diffusion limit

With these preparations, it is now straightforward to define the diffusion approximation
for the Wright-Fisher model. Consider the weak selection approximation of the model in
Eqs. (9.8 – 9.10). Let δt be the time interval between two generations. Now define a new
time scale t with a time unit of 2N generations. On this new time scale, we thus have

δt =
1

2N
. (9.11)

We note that this is exactly the same time rescaling that we have done in the coalescent
process – just that for the diffusion time is always measured in the forward direction.
Following standard notation, we maintain t as the new time variable for (forward) diffusion,
whereas we have used τ for the scaled (backward) coalescence time. With this new time
scale, let now N → ∞, keeping the values of the rescaled variables for selection α and
mutation µ, ν constant. We then obtain a transition to a process in continuous time with
a continuous state space. Comparing Eqs. (9.8 – 9.10) in this limit with (9.3 – 9.5) shows
that this process neatly fulfills the diffusion conditions with time-independent drift and
diffusion terms,

A(x, t) = αx(1− x)
(
x+ h(1− 2x)

)
− β1x+ β2(1− x) =: M(x) , (9.12)

D(x, t) = x(1− x) =: D(x) , (9.13)

where we now use x as a continuous variable for the allele frequency.
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• We stress once again that our treatment is heuristic. A rigorous proof for the con-
vergence of the discrete process to the diffusion needs more advanced concepts from
probability theory.

• Note that mutation and selection both enter into the “drift” term M(x), while genetic
drift (trough the sampling variance) gives rise to the diffusion term D(x).

• The diffusion scaling (δt)−1 = N → ∞ should not be considered as an assumption
of an infinite population size, but rather as a continuum approximation of a discrete
process. In particular, the diffusion limit does preserve the effects of genetic drift at
the “same strength” as in the original model. Similarly, the scaling N → ∞ with
constant α = 2Ns requires that s → 0 (and similarly for the mutation rates µ and
ν). Again, this should not be considered as an assumption of infinitely weak selection
(and mutation). The diffusion model preserves also these effects and should rather
be seen as an approximation to the model with the original (biological) parameters
s, µ, and ν.

• Note that for a good match of diffusion results to the original Wright-Fisher model,
we still need moderately large population sizes and small selection coefficients. This
is clear from the weak selection approximation of the Wright-Fisher model that is
used for the diffusion. In practice, mutation rates and population sizes are rarely
ever an issue, while selection coefficients should fulfill s < 0.1 (such that s2 � s)
for satisfactory results. However, it should also be noted that Wright-Fisher model
itself is only a crude approximation of any natural population. So, even if there
are deviations among the models, this does not necessarily imply that the diffusion
model is worse in approximating reality.

9.3 The Kolmogorov forward and backward equations

A key advantage of the diffusion process is that its transition probability can be shown to
fulfill two partial differential equations. The solution of the model can thus be reduced to
the solution of these equations.

Theorem 3: Kolmogorov forward equation Let p(z, t|x, t0) be the transition proba-
bility density of a diffusion process on I with drift term A(x, t) and diffusion term D(x, t).
Then p(z, t|x, t0) fulfills the partial differential equation

∂

∂t
p(z, t|x, t0) = − ∂

∂z

[
A(z, t)p(z, t|x, t0)

]
+

1

2

∂2

∂z2

[
D(z, t)p(z, t|x, t0)

]
. (9.14)
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Proof Let R(y) be a test function on C3[I] with R(y) and its derivative vanishing at the
boundaries on I. Then∫
I

R(y)
∂p(y, t|x, t0)

∂t
dy = lim

τ→0

1

τ

∫
I

R(y)
(
p(y, t+ τ |x, t0)− p(y, t|x, t0)

)
dy

= lim
τ→0

1

τ

∫
I

R(y)
(∫

I

p(y, t+ τ |z, t)p(z, t|x, t0)dz − p(y, t|x, t0)
)
dy

= lim
τ→0

1

τ

{∫
I

∫
I

(
R(z) + (y − z)

∂R(z)

∂z
+

1

2
(y − z)2∂

2R(z)

∂z2
+ . . .

)
×

× p(y, t+ τ |z, t)p(z, t|x, t0)dz dy −
∫
I

R(y)p(y, t|x, t0)dy

}
where we first use the Chapman-Kolmogorov equation and then develop R(y) into a Taylor
series. We can now apply the diffusion conditions (9.3 – 9.5) and evaluate the y integral
in the limit τ → 0 to obtain∫

I

R(y)
∂p(y, t|x, t0)

∂t
dy =

∫
I

p(z, t|x, t0)
(
A(z, t)

∂

∂z
R(z) +

1

2
D(z, t)

∂2

∂z2
R(z)

)
dz .

=

∫
I

{
R(z)− ∂

∂z

[
A(z, t)p(z, t|x, t0)

]
+

1

2

∂2

∂z2

[
D(z, t)p(z, t|x, t0)

]}
dz

after two times partial integration, using the boundary conditions for R(y). Now the
theorem follows since R(y) is an arbitrary test function.

• The PDE is alternatively also called the Fokker-Planck equation.

• An analogous equation holds for the probability density,

∂

∂t
f(z, t) = − ∂

∂z

[
A(z, t)f(z, t)

]
+

1

2

∂2

∂z2

[
D(z, t)f(z, t)

]
, (9.15)

which is obtained from (9.14) by multiplication with f(x, t0) and integration over x.
This is possible since the forward equation is independent of the initial condition x.

• An explicit solution of the forward equation is only possible in some special cases.
For standard Brownian motion with A(x, t) = 0 and D(x, t) = 1 and initial condition
z(t = 0) = z0, in particular,

f(z, t) =
1√

2πDt
exp

(
− (z − z0)2

2Dt

)
. (9.16)

• The Wright-Fisher diffusion can be fully solved only for vanishing M(z) = 0, i.e.,
without mutation and selection. The solution (due to Kimura) involves a series of
Gegenbauer polynomials and is quite complex. We therefore do not expand on it
here, but rather focus on the long-term behavior below, where more general (and
transparent) results can be obtained.
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Theorem 4: Kolmogorov backward equation Let p(z, t|x, t0) be the transition prob-
ability density of a diffusion process on I with drift term A(x, t) and diffusion term D(x, t).
Then p(z, t|x, t0) fulfills the partial differential equation

∂

∂t0
p(z, t|x, t0) = −A(x, t0)

∂

∂x
p(z, t|x, t0)− 1

2
D(x, t0)

∂2

∂x2
p(z, t|x, t0) . (9.17)

Proof Similar to the forward equation, we derive

∂p(z, t|x, t0)

∂t0
= lim

τ→0

1

τ

(
p(z, t|x, t0 + τ)− p(z, t|x, t0)

)
= lim

τ→0

1

τ

(
p(z, t|x, t0 + τ)−

∫
I

p(z, t|y, t0 + τ)p(y, t0 + τ |x, t0)dy
)

= lim
τ→0

1

τ

{
p(z, t|x, t0 + τ)−

∫
I

p(y, t0 + τ |x, t0)×

×
(
p(z, t|x, t0 + τ) + (y − x)

∂

∂x
p(z, t|x, t0 + τ)

+
1

2
(y − x)2 ∂

2

∂x2
p(z, t|x, t0 + τ) + . . .

)
dy

}
= −A(x, t0)

∂

∂x
p(z, t|x, t0)− 1

2
D(x, t)

∂2

∂x2
p(z, t|x, t0) .

• For a time-homogeneous process, such as the standard Wright-Fisher diffusion, the
transition probability only depends on the time interval t−t0. We can then also write
the transition probability as p(y, t − t0|x), or after a change of variables simply as
p(y, t|x), where t now denotes the time interval. The Kolmogorov backward equation
then reads

∂

∂t
p(z, t|x) = M(x)

∂

∂x
p(z, t|x) +

1

2
D(x)

∂2

∂x2
p(z, t|x) . (9.18)

The stationary distribution

In the presence of mutation in both directions, the Wright-Fisher distribution does not
have any absorbing states. Instead, the allele frequency distribution will converge to a
stationary distribution in the long-time limit. We can obtain this stationary distribution
from the forward equation. We proceed in two steps. Integrating (9.14) with respect to z,
we obtain

F (x, t) :=
∂

∂t

∫ x

0

f(z, t)dz = −M(x)f(x, t) +
1

2

∂

∂z

[
D(z)f(z, t)

]
z=x

+ C1 , (9.19)

where C1 is an integration constant. M(x) and D(x) are the drift and diffusion constants
of the Wright-Fisher diffusion as defined in Eq. (9.12) and (9.13). F (x, t) has the inter-
pretation of a probability flux. It measures the influx of total probability into the interval
[0, x] at time t. We can now use a symmetry argument to determine the constant C1. To
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this end, assume that we exchange the roles of the to alleles a and A in the model, i.e. we
choose x to be the frequency of a instead of A. This entails the following change of the
model parameters,

α→ α̃ = −α ; β1 → β̃1 = β2 ; β2 → β̃2 = β1 ; h→ h̃ = 1− h . (9.20)

We also have

f(x, t)→ f̃(x, t) = f(1− x, t) and F (x, t)→ F̃ (x, t) = −F (1− x, t) (9.21)

since the direction of the probability flux is reversed. We further easily derive

M̃(1− x) = −M(x) and D̃(1− x) = D(x), (9.22)

where M̃ and D̃ are the drift and diffusion constants of the process with exchanged alleles,
i.e. with parameters α̃, β̃1,2, and h̃. We then obtain

F (x, t) = −F̃ (1− x, t) = M̃(1− x)f̃(1− x, t)− 1

2

∂

∂z

[
D̃(z)f̃(z, t)

]
z=1−x

− C1

= −M(x)f(x, t) +
1

2

∂

∂z′

[
D(z′)f(z′, t)

]
z′=x
− C1 (9.23)

with the substitution z′ = 1− z. Comparison with (9.19) shows that C1 = 0.
For the stationary distribution, we have f(x, t)→ f(x) and F (x, t)→ F (x) = 0. Thus,

0 = −M(x)f(x) +
1

2

∂

∂z

[
D(z)f(z)

]
z=x

(9.24)

with the boundary condition
∫ 1

0
f(x)dx = 1. This first order ordinary differential equation

is easily solved to give

f(x) =
C

D(x)
exp

[
2

∫ x M(y

D(y)
dy
]

(9.25)

where the constant C takes care of the normalization. For Wright-Fisher, we find explicitly

f(x) =
C

x(1− x)
· exp

[
2αhx− α(2h− 1)x2

]
· exp

[
2β2 ln(1− x)− β1 ln(x)

]
= C

exp
[
2αhx− α(2h− 1)x2

]
x1−2β2(1− x)1−2β1

. (9.26)

The latter is also called Wright’s formula.

• The shape of the equilibrium distribution depends strongly on the strength of muta-
tion. For β1,2 > 0.5, we are in a mutation-dominated regime and f(x) drops to zero
near the boundaries at x = 0 and x = 1. In contrast, for β1,2 < 0.5, the stationary
distribution has singularities at the boundaries. This reflects the fact that the A
allele is frequently either temporally absent or fixed for extended time periods, until
mutation introduces a new A or a allele.
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• Selection contributes an exponential factor to the stationary distribution. For strong
negative selection on A with α� 0, the frequency x of A will almost always be small
and we can approximate

f(x) = Cx2β2−1 exp[−2|αh|x] . (9.27)

From this approximate distribution, we obtain a mean mutant frequency in terms of
(incomplete) Gamma functions as

E[x] =
Γ(1 + 2β2) + Γ(1 + 2β2, 2|hα|)
2|hα|(Γ(2β2) + Γ(2β2, 2|hα|))

≈ Γ(1 + 2β2)

2|hα|Γ(2β2)
=

β2

|hα|
=

µ

|hs|
(9.28)

for |hα| >> β2, in accordance with the result (1.24) for mutation-selection balance
from the deterministic theory. However, the stationary distribution is only peaked
around this value if 2β2 � 1.

Fixation probabilities

If we consider the Wright-Fisher diffusion without mutation, the process has two absorbing
states in x = 0 and x = 1. We can then ask: Given the initial frequency x0, what is the
probability for absorption in x = 1, rather than in x = 0? This probability is also called
the fixation probability of the allele A. To answer this question, we define the probability
for absorption in x = 1 by time t as follows,

P1(x0, t) := lim
ε→0

Fε(x0, t) ; Fε(x0, t) =

∫ 1

1−ε
p(y, t|x0)dy . (9.29)

We now use the backward equation on p(y, t|x0). After exchanging integral and derivatives,
and performing the ε limit, we see that also P1(x0, t) fulfills the backward equation, i.e.,

∂

∂t
P1(x0, t) = M(x0)

∂

∂x0

P1(x0, t) +
D(x0)

2

∂2

∂x2
0

P1(x0, t) . (9.30)

Now, let t→∞, where P1(x0, t)→ P1(x0) and ∂P1(x0, t)/∂t→ 0. Then

M(x0)
∂

∂x0

P1(x0) +
D(x0)

2

∂2

∂x2
0

P1(x0) = 0 (9.31)

with boundary conditions P1(0) = 0 and P1(1) = 1. This ODE is solved by integrating
twice, using the boundary conditions to determine the integration constants. We obtain

P1(x0) =

∫ x0

0
exp

[
− 2

∫ y M(z)
D(z)

dz
]
dy∫ 1

0
exp

[
− 2

∫ y M(z)
D(z)

dz
]
dy

. (9.32)
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Using the drift and diffusion terms of the Wright-Fisher diffusion,

P1(x0) =

∫ x0

0
exp[−αy2 − 2hαy(1− y)]dy∫ 1

0
exp[−αy2 − 2hαy(1− y)]dy

(9.33)

For no dominance with h = 1/2, the remaining integral can be evaluated to give

P1(x0) =
1− exp[−αx0]

1− exp[−α]
. (9.34)

In particular, if α� 1, and if we start with a single mutant x0 = 1/2N , this is

pfix = P1(1/2N) ≈ 1− exp[−α/2N ] ≈ α

2N
= s (= 2hs) . (9.35)

• Even selection coefficients of strongly beneficial alleles are usually at most s = 0.1,
and most beneficial alleles rather have s < 0.01. We thus see that the overwhelming
majority of beneficial alleles that arise as new mutations in a population do not reach
fixation, but are lost again due to genetic drift. Note that (to leading order) this
does not depend on the population size.

• For a deleterious mutation with s < 0 we find that the fixation probability of a new
mutant is exponentially small, pfix ∼ exp[−|α|]. Note that this depends strongly on
the population size, in contrast to the beneficial case.

Absorption times

Another classical question for a diffusion process with absorbing states is the one for the
absorption time. In the population genetic context, in particular, we can ask: given that
an allele segregates in the population at an initial frequency of x0, how long does it take
until it reaches one of the absorbing boundaries at x = 0 or x = 1? The density of the
absorption time can be expressed as

φ(x0, t) =
∂
(
P0(x0, t) + P1(x0, t)

)
∂t

, (9.36)

where P0(x0, t) and P1(x0, t) is the probability for fixation by time t in x = 0 or x = 1,
respectively. We already know from Eq. (9.30) that P1(x0, t) fulfills the backward equation
and the same holds true for P0(x0, t) by an analogous argument. Exchanging derivatives,
we see that also φ(x0, t) fulfills the backward equations, and hence (following Ewens 2004,
p. 141),

−1 = −
∫ ∞

0

φ(x0, t) dt

= −tφ(x0, t)
∣∣∣∞
0

+

∫ ∞
0

t
∂φ

∂t
dt (9.37)

= 0 +

∫ ∞
0

t

{
M(x0)

∂φ

∂x0

+
D(x0)

2

∂2φ

∂x2
0

}
dt ,
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assuming that tφ(x0, t) → 0 for t → ∞. We then obtain for the mean fixation time
t̄(x0) =

∫
tφ(x0, t)dt (exchanging integration and differentiation)

−1 = M(x0)
∂t̄(x0)

∂x0

+
D(x0)

2

∂2t̄(x0)

∂x2
0

. (9.38)

Using the boundary conditions t̄(0) = t̄(1) = 0, this ODE can again be solved by integra-
tion. We obtain

t̄(x0) =

∫ 1

0

t̄(x|x0)dx (9.39)

where

t̄(x|x0) = t̄<(x|x0) =
2P0(x0)

∫ x
0

exp
[
− 2

∫ y M(z)
D(z)

dz
]
dy

D(x) exp
[
− 2

∫ x M(z)
D(z)

dz
] , 0 ≤ x ≤ x0 (9.40)

t̄(x|x0) = t̄>(x|x0) =
2P1(x0)

∫ 1

x
exp

[
− 2

∫ y M(z)
D(z)

dz
]
dy

D(x) exp
[
− 2

∫ x M(z)
D(z)

dz
] , x0 ≤ x ≤ 1 (9.41)

with P1(x0) = 1−P0(x0) is the fixation probability as given in (9.32). Indeed, the function
t̄(x|x0) has the more direct interpretation as sojourn time density,∫ x2

x1

t̄(x|x0)dx (9.42)

is the mean time the diffusion process started in x0 spends in the interval [x1, x2] before
absorption. For the Wright-Fisher diffusion without dominance (h = 1/2), we obtain

t̄(x|x0) =
2P0(x0) (exp[αx]− 1)

αx(1− x)
, 0 ≤ x ≤ x0 , (9.43)

t̄(x|x0) =
2P1(x0) (1− exp[−α(1− x)])

αx(1− x)
, x0 ≤ x ≤ 1 . (9.44)

An explicit evaluation of the integral for the mean absorption time is only possible for the
neutral case α→ 0, where

t̄(x|x0) =
2(1− x0)

1− x
, 0 ≤ x ≤ x0 , (9.45)

t̄(x|x0) =
2x0

x
, x0 ≤ x ≤ 1 , (9.46)

and thus
t̄(x0) = −2

(
x0 log x0 + (1− x0) log[1− x0]

)
(9.47)

in units of 2N generations. We can note the following
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• The maximal time to absorption occurs for x = 1/2 and derives to

t̄(1/2) = 2 log[2] ≈ 1.4

corresponding to 2.8N generations.

• On the other hand, for a new mutation that enters the population at frequency
x0 = 1/2N we obtain

t̄(1/2N) = [2 log[2N ]− (2N − 1) log[1− 1/2N ]]/2N ≈ [2 log[2N ] + 2]/2N ,

or 2 log[2N ] + 2 on a generation scale, which only scales logarithmically with the
population size. Note also that we have t̄(x|(2N)−1) = 1/(Nx). Without recurrent
mutation on a single site, we thus obtain a 1/x scape of the neutral site-frequency
spectrum, consistent with the coalescent results for the infinite-sites model.

Conditioned fixation time Frequently, we are interested specifically in alleles that
reach one absorbing state, say x = 1, and the expected time until they reach this state.
This gives rise to the conditioned fixation time t̄1(x0). We can derive an expresion for this
time using the backward equation following the recipe for the unconditioned fixation time
above. Defining

φ1(x0, t) =
∂

∂t
P1(x0, t) , (9.48)

the density of the conditioned absorption time is φ1(x0, t)/P1(x0). We see that φ1(x0, t)
fulfills the backward equation just like φ(x0, t). Repeating the calculation from above, we
obtain

−P1(x0) = −
∫ ∞

0

φ1(x0, t) dt

= −tφ1(x0, t)
∣∣∣∞
0

+

∫ ∞
0

t
∂φ1

∂t
dt (9.49)

= 0 +

∫ ∞
0

t

{
M(x0)

∂φ1

∂x0

+
D(x0)

2

∂2φ1

∂x2
0

}
dt .

We have

t̄1(x0) =
T1(x0)

P1(x0)
where T1(x0) =

∫ ∞
0

tφ1(x0, t)dt

and T1(x0) fulfills the ODE

−P1(x0) = M(x0)
∂T1(x0)

∂x0

+
D(x0)

2

∂2T1(x0)

∂x2
0

. (9.50)

We also know that T1(x0) ≤ t̄(x0) for all x0 and so we must have the boundary conditions
T1(0) = T1(1) = 0. A solution to this ODE is given by

T1(x0) =

∫ 1

0

t̄(x|x0)P1(x)dx
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with t̄(x|x0) given in (9.40) and (9.41) above. The sojourn time density at frequency x
before fixation at x = 1 follow as

t̄1(x|x0) =
P1(x)

P1(x0)
t̄(x|x0) .
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10 Appendix: Mathematical basics

10.1 Calculation rules for binomials

Our derivations frequently use calculation rules for binomial coefficients, which are sum-
marized here. We generally define

(
n
k

)
= 0 for k < 0 and for k > n. We find

1.

k

(
n

k

)
=

k · n!

k!(n− k)!
= n

(n− 1)!

(k − 1)!(n− k)!
= n

(
n− 1

k − 1

)
, (10.1)

2. (
n

k − 1

)
+

(
n

k

)
=
n!k + n!(n− k + 1)

k!(n− k + 1)!
=

(
n+ 1

k

)
, (10.2)

3.
n∑
k=0

(
m+ k

m

)
=

(
n+m+ 1

m+ 1

)
, (10.3)

which is proved by induction since, for n = 0,
(
m
m

)
=
(
m+1
m+1

)
= 1, and(

n− 1 +m+ 1

m+ 1

)
+

(
m+ n

m

)
=
n(n+m)! + (m+ 1)(n+m)!

(m+ 1)!n!
=

(
n+m+ 1

m+ 1

)
.

10.2 Probability distributions

The derivations in the main text repeatedly use some elementary properties of probability
distributions, which are summarized in this appendix. Generally, two types of random
variables are used in the models, depending on the biological question that is addressed.
First, a random variable X for the number of events (e.g. number of mutations on a
coalescent tree). In discrete time this number generally follows a binomial distribution and
in continuous time a Poisson distribution – or a derivative of these distributions. Second,
a random variable T asks for the distribution of the waiting time to a specific event. The
relevant distributions are the geometrical distribution in discrete time and the exponential
distribution in continuous time.

Binomial distribution Let X by a random variable that tells us about the number of
successes in an n-fold repeated Bernoulli experiment (with two possible outcomes: “suc-
cess” or “no success”) with success probability p. Then X is binomially distributed with

Pr[X = k] =

(
n

k

)
pk(1− p)n−k . (10.4)
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For the expectation of X we obtain, using Eq. (10.1) and the normalization of the binomial
distribution,

E[X] =
n∑
k=0

k

(
n

k

)
pk(1− p)n−k = np

n∑
k=0

(
n− 1

k − 1

)
pk−1(1− p)(n−1)−(k−1) = np . (10.5)

Similarly, for the variance

E[X2 −X] =
n∑
k=0

k(k − 1)

(
n

k

)
pk(1− p)n−k

= n(n− 1)p2

n∑
k=0

(
n− 2

k − 2

)
pk−2(1− p)(n−2)−(k−2) = n(n− 1)p2 ,

and so

Var[X] = E[X2]− E[X]2 = E[X2 −X] + E[X]− E[X]2 = n(n− 1)p2 + np− n2p2

= np− np2 = np(1− p). (10.6)

Geometrical distribution Assume that the we perform a sequence of Bernoulli ex-
periments with success probability p. Then the waiting time T to the first success is
geometrically distributed with

Pr[T = t] = (1− p)t−1p, Pr[T > t] = (1− p)t . (10.7)

The expectation and variance are

E[T ] =
∞∑
t=1

t p(1− p)t−1 = −p ∂

∂p

∞∑
t=1

(1− p)t = −p ∂

∂p

(
1

p
− 1

)
=

1

p
, (10.8)

E[T (T − 1)] =
∞∑
t=1

t(t− 1) p(1− p)t−1 = p(1− p) ∂2

∂p2

∞∑
t=1

(1− p)t = p(1− p) 2

p3
,

Var[T ] = E[T (T − 1)] + E[T ]− (E[T ])2 =
1− p
p2

. (10.9)

In many cases, we also use a different time unit, such as n Bernoulli experiments, which are
performed during a binomial trial representing a “generation”. On this larger time scale,
we obtain E[T ] = 1/(np) and Var[T ] = (1− p)/(np)2.

Poisson distribution If a random variable X is binomially distributed with parameters
n and p such that n is big and p is small, we can approximate its distribution by letting
n→∞ and p→ 0, such that np = λ = const. This gives

Pr[X = k] =

(
n

k

)
pk(1− p)n−k =

n · · · (n− k + 1)

k!nk
λk
(
1− λ

n

)n
(1− p)k

n→∞−−−−→
p→ 0

e−λ
λk

k!
. (10.10)
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These are the weights of a Poisson distribution with parameter λ. For the expectation and
variance of X, we compute

E[X] = e−λ
∞∑
k=0

k
λk

k!
= e−λλ

∞∑
k=1

λk−1

(k − 1)!
= λ, (10.11)

E[X(X − 1)] = e−λ
∞∑
k=0

k(k − 1)
λk

k!
= e−λλ2

∞∑
k=2

λk−2

(k − 2)!
= λ2,

Var[X] = E[X(X − 1)] + E[X]− (E[X])2 = λ. (10.12)

More generally, we can imagine the switch from the binomial to a Poisson distribution as
a transition from discrete time to continuous time as follows: if X is the number of events
during some unit time interval (a generation), we can either assume that all these events
occur simultaneously and X is drawn from a binomial distribution. Or we can assume
that the events occur in continuous time, uniformly distributed over our unit time interval.
In the latter case, we can dissect generation time into smaller intervals of length δt and
perform a binomial sampling step for each sub-interval. The success probability for each
time step will be δt · p and the total number of Bernoulli trials (over all time steps) n/δt.
Letting δt → 0 results in a Poisson distribution for X in continuous time with the same
expected number of successes during a generation as the discrete time model. Note that
we have assumed that all binomial sampling steps in the sub-intervals are independent. As
a consequence, it is possible that we have more than n successes during one generation,
which is not possible with the original binomial model. This is also reflected by the slightly
larger variance of the Poisson model. However, with small p the difference becomes very
small.

Exponential distribution Just like for the binomial model in discrete time, we can
also ask for the waiting time until the first success for the Poisson model in continuous
time. Starting with the discrete model, we use the per-generation scaling, where one time
unit corresponds to n Bernoulli trials. Using the same procedure as before, we dissect
this generation into time intervals of length δt and perform n Bernoulli trials during this
shorter time span, but with a reduced success probability of δt · p. In the limit δt→ 0, we
get

lim
δt→0

Pr[T > t] = lim
δt→0

(1− p · δt)nt/δt = exp[−pn] = exp[−λ] . (10.13)

with λ = np. This is the distribution function of the exponential distribution with density
f [T ] = λ exp[−λ] and

E[T ] =
1

λ
, Var[T ] =

1

λ2
, (10.14)

which should be compared to the corresponding quantities of the geometrical distribution
in the generation (n Bernoulli time steps) scaling.
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10.3 Multiple Poisson processes

A Poisson process is a process that records events that occur at a constant rate λ per unite
time. The number of events in a time interval τ is Poisson distributed with parameter λτ
and the waiting time between events is exponentially distributed with parameter λ. Indeed,
the waiting time to the next event starting from any moment is always exponentially
distributed with the same parameter λ. For the process, it makes no difference whether
the last event had just occurred a moment ago or already a long time ago. The Poisson
process is therefore also called a memoryless process.

In many applications, we do not only have a single Poisson process, but multiple Poisson
processes running in parallel. There is a number of useful results know for this case. Let
Xi(t) be independently Poisson distributed,

Pr[Xi(t) = k] =
(λit)

k

k!
exp[−λit] . (10.15)

Then the time to the first event T = mini[Ti] of all these processes is exponentially dis-
tributed with parameter λ =

∑
i λi, since

Pr[T > t] =
∏
i

Pr[Ti > t] =
∏
i

exp[−λit] = exp
[
−
∑

iλit
]
. (10.16)

Again, starting from any moment of time, the time to the next event will always follow
this same distribution. The probability that this event is of a given type (say of type 1
counted by the first Poisson process) is

Pr[T = Ti] =

∫ ∞
0

λ1 exp[−λ1t]
∏
i≥2

Pr[Ti > t] dt =

∫ ∞
0

λ1

exp
[∑

i λit
] dt =

λ1∑
i λi

. (10.17)

Finally, if we wait repeatedly for the next event of whichever Poisson process for a given
time span t, we will account for all events during this time. The number of all events,
X(t) =

∑
iXi(t), will again be Poisson distributed with parameter λt.


