## Speciation and the neutral theory of biodiversity

## Michael Kopp

<sup>4</sup> Subtitle: Modes of speciation affect patterns of biodiversity in neutral communities.

5 Keywords: Ecological drift, holey adaptive landscapes, neutral theory of biodiversity, spe-

6 ciation, species-abundance distribution

1

2

3

7 Address: Mathematics and Biosciences Group, Max F. Perutz Laboratories and Faculty of

<sup>8</sup> Mathematics, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria

Author for correspondence: Michael Kopp, Dr. Bohrgasse 9, A-1030 Vienna, Austria. Phone:
++43-1-79044-4583, Fax: ++43-1-4277-9240, Email: michael.kopp@univie.ac.at

#### Abstract

The neutral theory of biodiversity purports that patterns in the distribution and 2 abundance of species do not depend on adaptive differences between species (i.e. niche 3 differentiation), but solely on random fluctuations in population size ("ecological drift"), 4 along with dispersal and speciation. In this framework, the ultimate driver of biodi-5 versity is speciation. However, the original neutral theory made strongly simplifying 6 assumptions about the mechanisms of speciation, which has led to some clearly unreal-7 istic predictions. In response, several recent studies have combined neutral community 8 models with more elaborate speciation models. These efforts have alleviated some of 9 the problems of the earlier approaches, while confirming the general ability of neutral 10 theory to predict empirical patterns of biodiversity. However, the models also show that 11 the mode of speciation can have a strong impact on relative species abundances. Future 12 work should compare these results to diversity patterns arising from non-neutral modes 13 of speciation, such as adaptive radiations. 14

## <sup>15</sup> The neutral theory of biodiversity

1

Over the course of the last half-century, several major controversies in biology have been 16 fought over the scopes and limits of natural selection. These include the neutralist-selectionist 17 debate [1, 2], and the controversies over levels of selection [3], sociobiology [4], and adapta-18 tionism [5]. In several instances, the conflict revolved around "chance and necessity" [6], that 19 is the relative importance of deterministic versus stochastic forces. For example, Kimura 20 claimed that much of DNA or protein sequence variation can be explained by genetic drift 21 alone [1], and Gould stressed the importance of mass extinctions and contingency for the 22 history of life on earth [7]. The latest incarnation of this debate is currently taking place in 23 the field of ecology. Here, the question is whether adaptive differences between species are 24 important for explaining large-scale patterns of biodiversity. 25

Why is it that some communities are species-rich and others species-poor? Why are some species common and others rare? How does the composition of communities change over space and time? – Traditionally, answers to these questions have been sought within niche theory [8–11], which posits that, in order to coexist, species need to be sufficiently different and use resources in sufficiently different ways [12]. The twin principles of competitive exclusion [13] and limiting similarity [14, 15] have long been among the corner stones of ecological
thinking. However, many feel that niche theory has problems in explaining highly speciesrich communities in relatively homogeneous environments [16, 17], such as marine plankton,
tropical forests or coral reefs (but see [18]). Furthermore, competitive exclusion can be
effectively infinitely delayed by dispersal-limitation [19].

In his 2001 monograph [20], Hubbell – building on MacArthur's and Wilson's theory of is-6 land biogeography [21] and Kimura's neutral theory of population genetics [1] – proposed a 7 radically different theory of biodiversity, which focuses on the effects of demographic stochas-8 ticity and dispersal-limitation (for reviews, see [22–27], and for a nice summary, [28, 29]). He g starts out from the premise that all individuals from all species within a given trophic level 10 are "ecologically equivalent", that is, they have the same probabilities of dying, reproducing, 11 dispersing and even of giving birth to a new species. Species abundances fluctuate randomly 12 due to stochastic birth and death events, leading to a process of "ecological drift", which 13 is analogous to genetic drift of neutral alleles and inevitably leads to random extinctions. 14 Hubbell's main model has two levels: In local communities, extinctions are balanced by 15 immigration of new species from a regional pool called the metacommunity. In the metacom-16 munity itself, drift is slow, and biodiversity is maintained in a balance between extinction and 17 speciation. Hubbell used his theory to derive the species-abundance distribution (SAD) at 18 both levels (see Box 1). Furthermore, he developed a spatially explicit version of the theory, 19 which allows to deduce the species-area curve (SAC). It is because of these two predictions 20 that he called his theory the "unified neutral theory of biodiversity and biogeography". Here, 21 I will use the simpler term neutral biodiversity theory (NBT). 22

The rise of NBT is generally seen as one of the most important developments in ecology during 23 the past decade [30]. Predictably, by radically pushing aside ecological complexity, it has 24 aroused abundant controversy. For example, NBT has been criticized for having insufficient 25 empirical support [31], focusing solely on pattern while neglecting process [26, 32], having a 26 limited scope of predictions [18, 26], and not being helpful for conservation [32]. In return, 27 its proponents have put forward that NBT has reinvigorated ecology [28], that it gives due 28 importance to sampling issues, demographic stochasticity and dispersal limitation [24], that 29 it can be viewed as a first approximation or a null model [33, 34], and that it is intended as a 30 stepping stone towards a more inclusive theory, which will combine neutral and niche-based 31

processes [20]. Nobody denies that niche differences do exist [20], but it has been argued 1 that they might be less important than commonly accepted [20, 33, 35] and that ecological 2 equivalence may arise as an emergent property of evolving communities |33, 35-37|. 3

While most debates over NBT have focused on the central assumption of neutrality (or the 4

"niche versus neutrality" dichotomy), other aspects of the theory may be equally important for its predictions. In the following, I will focus on one such aspect: the role of speciation.

#### Speciation models in neutral biodiversity theory 7

#### **Point-mutation** speciation 8

5

6

Speciation plays a key role in NBT, because it is the ultimate driver of biodiversity. In 9 Hubbell's original model (as well as in the vast majority of subsequent studies), speciation 10 is analogous to point mutation: Each individual has a small probability of producing an 11 offspring that is the first member of a new species. Obviously, this assumption is a caricature 12 of biological reality. The only compatible speciation mechanism is polyploid speciation, which 13 has been estimated to account for 2 - 7% of speciation events in plants [38]. However, this 14 does not by itself mean that point-mutation speciation cannot be a useful simplification 15 in the context of NBT. Indeed, the point-mutation analogy has made it possible to directly 16 import results from neutral population genetics [17, 23, 26, 39]. For example, metacommunity 17 diversity is described by the Ewens sampling formula [40] and is uniquely determined by a 18 "fundamental biodiversity number"  $\theta = 2J_m\nu$ , which is not only completely analogous to the 19 respective parameter in population genetics but also asymptotically identical to Fisher's  $\alpha$ , 20 a common measure of biodiversity [20, 41]. (Here,  $J_m$  is the size of the metacommunity and 21  $\nu$  the per-capita speciation rate; the exact equation for  $\theta$  may vary slightly, depending on 22 model details [25].) 23

What is problematic, however, is that point-mutation speciation, though only an auxiliary 24 assumption of NBT, has a strong impact on many of its predictions. Because new species 25 appear as single individuals, most of them will go extinct almost immediately. In consequence, 26 the mean lifetime of species is extremely short, and most of the ephemeral species are unlikely 27 to ever be recognized by taxonomists. On the other hand, the time for a surviving species to 28

reach high abundance is extremely long and the speciation rate needed to explain a given total 1 diversity is unrealistically high. For example, the best-fitting model for a 50 ha plot of tropical 2 forest predicts the appearance of 25 new species every 100 years, with the mean lifetime of 3 all species being about 1100 years [42], whereas the time required by a species to reach a Δ relative abundance of 1% would equal the age of the angiosperms [17]. The latter problem 5 is part of a more general issue, namely that ecological drift is too slow to explain realistic turn-over rates [43]. The high influx of singleton species due to point-mutation speciation 7 also explains why the metacommunity SAD follows the highly asymmetric logseries (Box 1). 8 Indeed, under these conditions, the logseries also arises in non-neutral models [44]. Thus, it 9 appears to be a direct consequence of the speciation mode, not of neutrality per se. 10

For these reasons, the point-mutation assumption has recently been identified as a key weakness of NBT [45]. Clearly, alternative speciation models need to be explored before the neutrality assumption itself can be properly evaluated. In the following, I outline two main ways in which neutral theorists have tried to deal with this challenge.

### <sup>15</sup> Other phenomenological models

The first class of alternative approaches sticks with phenomenological models, which neglect
the population-genetics details of speciation. Several variants have been explored, which
differ in the statistical properties of new species.

The random-fission model The earliest alternative to the point-mutation model was 19 the random-fission model, originally proposed in Hubbell's book. Mathematical details have 20 recently been worked out by Etienne and Haegeman [46, 47]. In the random-fission model, 21 each species has a probability (proportional to its abundance) of randomly splitting into two 22 daughter species (as in allopatric speciation). The resulting SAD for the metacommunity is 23 very different from the logseries predicted under point-mutation speciation. It is unimodal 24 and predicts fewer rare, but also fewer very common species [20, 46]. In contrast to Hubbell's 25 original conjecture, however, it is also different from the zero-sum multinomial distribution. 26 Instead, it turns out to be identical to MacArthur's classical broken-stick model [46, 48]! 27 Furthermore, the distribution depends on a modified version of the fundamental biodiversity 28

number,  $\theta_{\rm rf} = J_m \sqrt{\nu}$  [46]. When applied to SAD data, the random-fission model generally fares worse (sometimes much worse) than the point-mutation model [20, 46], but it makes more realistic predictions for speciation rates and species lifetimes [46]. Etienne and Haegeman therefore conclude that both models have to be rejected in their current form, but they caution against premature conclusions regarding the mode of speciation in nature [46].

<sup>6</sup> The peripheral-isolate model In response to the early critique by Ricklefs [42], Hubbell <sup>7</sup> argued that point-mutation and random-fission speciation should be seen as the end points of <sup>8</sup> a continuum. He therefore suggested a third model, called peripheral-isolate model [28, 29], <sup>9</sup> in which the population size of newly formed species is small but greater than one (as in <sup>10</sup> founder effect speciation [49]). A similar approach has later been used by Allen and Savage <sup>11</sup> [43]. As expected, the peripheral-isolate model produces predictions intermediate between <sup>12</sup> those of the previous two models. However, it has not yet been tested against empirical data.

**The Etienne** *et al.* **model** Etienne *et al.* analyzed a variant of the point-mutation model, 13 in which the speciation rate is independent of the abundance of the parent species [50, 51] 14 (i.e. the per capita speciation rate is inversely proportional to population size; see also [52]). 15 This is the usual assumption in phylogenetic studies, and it has some limited empirical 16 support [53]. However, the new model produces a much poorer fit to SAD data than the 17 original point-mutation model, mostly because it fails to produce a sufficient total number 18 of species. The only exception concerns the frequency of highly abundant species, which 19 is poorly predicted by the point-mutation model. The authors tentatively suggest that the 20 best of both worlds is contained in a third model, in which speciation rate is a saturating 21 function of species abundance. A high frequency of abundant species is also predicted by 22 a variant of the random-fission model with constant speciation rate per species [46]. Tests 23 of the latter two models are difficult, however, (and have not been attempted), because no 24 analytical sampling formulas exist. 25

The protracted-speciation model In contrast to the previous models, speciation events in nature are not instantaneous. To capture this aspect, Rosindell *et al.* recently developed a model of "protracted speciation" [45], which is identical to the point-mutation model, except that new species are recognized as such only after a given number of generations. Therefore,

many short-lived lineages are never counted as good species, but instead are interpreted 1 as natural variation within the parent species. The resulting metacommunity SAD is a 2 "difference logseries", which contains fewer rare species than the ordinary logseries (predicted 3 under point-mutation speciation), but otherwise is nearly identical to the latter. While the Δ two models cannot be distinguished using SAD data (because the rare species for which they 5 differ are impossible to sample), the protracted speciation model predicts speciation rates 6 and species lifetimes that are much more realistic. Basically, the model provides a formal 7 justification for reinterpreting the fundamental biodiversity number  $\theta$  in terms of the rate 8 of speciation initiation rather than successful speciation. More rigorous tests will require 9 independent estimates for the duration of speciation. 10

The above studies have shown that the mode of speciation leaves a signature in the SAD, 11 especially at the metacommunity level [20, 44–46, 50]. (Local communities are more strongly 12 influenced by the immigration rate.) This is remarkable, since SADs have often been claimed 13 to have low discriminatory power [54]. So far, however, none of the alternative models has 14 produced a significantly better fit to empirical SAD data than the point-mutation model. This 15 has been interpreted as supporting the position that most incipient species have small pop-16 ulation sizes [20, 26, 28, 45], which might indeed be the case in tropical trees [55]. However, 17 the point-mutation model makes clearly wrong predictions about speciation rates, species 18 lifetimes and the abundance of rare species. Some of these problems can be alleviated by 19 assuming protracted speciation. An alternative explanation is that an apparent signature 20 of point-mutation speciation is created by immigration of species via long-distance dispersal 21 [56]. Finally, it should be noted that the mode of speciation may also leave signatures in the 22 structure of phylogenetic trees. So far, however, these signatures have only been investigated 23 for the point-mutation model [20], and will not be discussed further here. 24

#### <sup>25</sup> Population-genetics models of reproductive isolation

None of the phenomenological approaches to speciation is satisfactory from a populationgenetic point of view. At least for sexual taxa, new species do not simply appear, but their formation is the outcome of a population-level process that results in the evolution of reproductive isolation. Research into this process has made considerable progress in the last decade [57-60]. Much less attention has been paid to the community-level consequences
of different speciation modes, and a recent volume on this topic is largely focused on niche
differentiation [61] (for a notable exception see [62]). The work by de Aguiar *et al.* [63] is the
first explicit attempt to relate a population-genetics speciation model to NBT.

The de Aguiar et al. model A speciation model for NBT must itself be neutral, that 5 is, compatible with the assumption of ecological equivalence [26, 64]. It should also reflect 6 the importance of dispersal limitation. The model by de Aguiar *et al.* [63] fulfills both 7 requirements (Box 2). Using a spatially explicit version of NBT, the authors performed 8 individual-based simulations of a community living on either a linear array or a rectangular 9 grid of habitat sites. Each individual has a genome consisting of a large number of loci. When 10 an individual dies, it is replaced by a new-born, which results from sexual reproduction of 11 two parents. The first parent (the one being replaced) chooses a partner from its spatial 12 neighborhood. The key point of the model is that potential partners must be genetically 13 similar (i.e. their genotypes cannot differ at more than G positions, where G is a parameter). 14 The offspring genotype is created from the parent genotypes by recombination and mutation, 15 and the new-born may disperse to a neighboring site. 16

Under suitable conditions (high genetic similarity and spatial proximity between partners), 17 this model results in speciation, that is, the formation of well-defined genotypic clusters, which 18 occupy coherent areas of space and are reproductively isolated from each other. Speciation is 19 rapid (the first split occurs within several hundred generations) and occurs at a higher rate 20 in one-dimensional habitats (such as rivers or shore lines) than in two-dimensional habitats. 21 Notably, it does not require any geographic barriers (i.e. it is parapatric), nor an involvement 22 of natural selection. It is worth noting, though, that sexual selection plays an important 23 role: It facilitates cluster formation, because locally rare genotypes have a low probability 24 of being chosen as mating partners. All these results are in line with previous models of 25 parapatric speciation [59, 62, 65–67]. What is new about the analysis by de Aguiar et al. is 26 that the authors proceed to analyze the patterns of biodiversity resulting from this speciation 27 process. While they do not directly compare their results to those obtained by standard NBT, 28 they obtain the same kinds of patterns: in particular, a SAD that is lognormal-like with an 29 excess of rare species, and a tri-phasic SAC, which follows a power law at intermediate 30 spatial scales (see Box 1). After "scaling up" their results to larger community sizes (which 31

are computationally unfeasible in their simulations), the model also provides good fits to
empirical data from, among others, British birds and Panamanian trees.

The Melián *et al.* model An approach similar to that by de Aguiar *et al.* has recently 3 been developed by Melián et al. [68] Their model, which is based on earlier work by Higgs and 4 Derrida [69, 70], assumes no spatial structure, that is, it is a model of sympatric speciation. (It 5 should be noted, though, that speciation in the Higgs-Derrida model requires high mutation 6 rates [59, 71] and that the current intense debate about sympatric speciation [58, 72–75] has 7 mostly been concerned with niche-based models.) The authors investigate how the speciation 8 rate and the resulting biodiversity depend on the genomic mutation rate and the minimal 9 genetic distance required for reproductive isolation. They also compare the sexual model with 10 an asexual alternative (in which species are defined by an arbitrary cut-off value for genotypic 11 distance) and a point-mutation model. The three models yield distinctly different SADs, 12 with the sexual model producing lower levels of diversity than the asexual one (apparently 13 because many new species have low abundance). The asexual model yielded a better fit than 14 the sexual model for 33 out of 180 data sets from coral communities. These 33 communities 15 are characterized by high overall diversity and a large number of species with intermediate 16 abundance. In a second study [76], Melián et al. investigated the effects of negative frequency-17 dependent selection (i.e. increased reproductive success for rare genotypes), as might occur, 18 for example, due to reduced selection pressure from pathogens [77]. They find a decrease in 19 speciation rate over time, a common pattern of radiations that is usually attributed to niche 20 filling [78]. 21

The study of NBT with sexual selection and reproductive isolation is just beginning. The 22 de Aguiar *et al.* model can be seen a proof of principle, demonstrating that such models 23 can produce diversity patterns similar to those seen in nature. Melián et al. started the 24 important task of comparing the predictions of population-genetic and phenomenological 25 speciation models. Their analysis has already confirmed the conclusion from the previous 26 section, namely that the mode of speciation can leave a signature in the SAD. By their nature, 27 the population-genetics models avoid some of the difficulties of the point-mutation model 28 concerning speciation rates and species lifetimes. They resemble the protracted-speciation 29 model in that the speciation rate and the abundance of incipient species are model outputs, 30

not parameters. An important challenge for future work will be to derive analytical results
comparable to those obtained for the simpler phenomenological models. Where simulations
are necessary, it is worth noting that deme-based models [62] might be a computationally
efficient alternative to individual-based approaches.

# Outlook: Neutral versus non-neutral mechanisms of speci ation

The population-genetics models reviewed above have focused on a specific model of repro-7 ductive isolation. However, there are many mechanisms of isolation and many modes of 8 speciation [57]. With respect to NBT, the most pertinent classification contrasts ecological 9 and non-ecological speciation [79]. Ecological speciation occurs in response to divergent selec-10 tion [79-82] and, thus, produces species adapted to different niches. Non-ecological speciation 11 occurs in response to drift, habitat-independent sexual selection, sexual conflict, or spatially 12 uniform natural selection, and produces species that are ecologically equivalent. Thus, only 13 non-ecological speciation is directly compatible with NBT (Box 2). 14

The relative importance of ecological versus non-ecological speciation is unknown. However, 15 there is currently more evidence favoring the former than the latter [79, 82] (but see [83]). 16 Furthermore, it is by no means clear how common mutation-driven mechanisms like those 17 studied by de Aguiar et al. are in nature [66]. How should NBT deal with this situation? 18 Some have argued that only non-ecological speciation leads to neutrally behaving commu-19 nities [64]. However, it seems unlikely that ecological speciation did not play a role in the 20 evolution of communities such as tropical forests or coral reefs. This then leads to the more 21 general question of why NBT works so well despite the fact that species and niche differ-22 ences undoubtedly exist [20, 33, 35]. Yet, if ecological speciation plays a role, there are good 23 reasons to believe that it has a profound impact on community structure [84]. First, it pro-24 duces species that can coexist through niche-based mechanisms in addition to neutral ones. 25 Second, a large number of models have shown that divergent selection greatly increases the 26 rate of speciation [59], and it appears likely that it also influences the abundance of incipient 27 species. Thus, ecological speciation has the potential to affect key determinants of biodiver-28 sity dynamics. These effects need to be understood before one can make robust inferences 29



Figure 1: Different theoretical shapes of the species-abundance distribution (SAD): Fisher's logseries, Preston's lognormal, and Hubbell's zero-sum multinomial (ZSM). The ZSM is for a local community of size J = 20000 experiencing immigration at rate m = 0.01 from a metacommunity with fundamental biodiversity number  $\theta = 50$  (data points calculated according to [90]). All plots show the relative frequency of species with 1, 2-3, 4-7, etc. individuals.

<sup>1</sup> about speciation modes from SAD data.

One possible way forward might be to compare the patterns of diversity predicted by NBT 2 with those produced by adaptive radiations. Adaptive radiations imply repeated ecological 3 speciation and, therefore, may be seen as a niche-based alternative to neutral community 4 dynamics. Indeed, adaptive radiations have been modelled in a spatially explicit way [78, 85, 5 86], and variants of these models might be used to predict SADs and SACs in a way similar 6 to the one used by de Aguiar *et al.* It seems also possible to combine models of adaptive and 7 non-adaptive radiations [87], where speciation may occur due to either niche differentiation 8 or genetic drift and sexual selection. Such models would constitute a step towards a general 9 theory of biodiversity that combines neutral and non-neutral processes [18, 88, 89]. 10

## <sup>11</sup> Box 1: Predictions of neutral biodiversity theory

<sup>12</sup> Two key predictions of NBT are the species-abundance distribution and the species-area <sup>13</sup> curve. The **species-abundance distribution (SAD)** describes the number of species with <sup>14</sup> a given number of individuals [91]. Classical models include Fisher's logseries [92], Preston's <sup>15</sup> lognormal [93] and MacArthurs's broken-stick model [48]. With point-mutation speciation (see main text), Hubbell's model predicts the logseries for the metacommunity, and a new
distribution, called "zero-sum multinomial" for local communities. In the logseries, most
species are rare. In the zero-sum multinomial, most species have intermediate abundance
(but the number of rare species is higher than in the lognormal, Fig. 1). The reason metacommunity and local SADs differ is that rare species from the metacommunity are unlikely to
immigrate into any given local community (i.e. most immigrants are from common species).
This difference increases with decreasing immigration rate.

<sup>8</sup> The species-area curve (SAC) shows how the number of species increases with geographic <sup>9</sup> area. In agreement with empirical data, spatially explicit versions of NBT predict that SACs <sup>10</sup> are triphasic [20, 56]. At very small scales, species richness increases quickly due to an <sup>11</sup> increase in sample size. At intermediate spatial scales, the species-area curve follows a power <sup>12</sup> law ( $S = cA^z$ ). At very large scales, finally, biota are completely uncorrelated, and the SAC <sup>13</sup> increases linearly.

**Empirical tests of NBT** have yielded mixed results [31]. Most studies have focused on 14 the SAD. The zero-sum multinomial often provides good fits to data from local communities. 15 However, this may simply reflect its flexibility [31], and it is unclear whether the fit is better 16 than that of a standard lognormal [31, 94, 95]. Furthermore, similarly good fits can be 17 achieved by many alternative models, including niche-based ones [54, 91]. Therefore, fitting 18 a model to local SAD data is generally considered a weak test of the underlying theory, 19 whereas failure to fit the data is a strong argument for rejection. Metacommunity data 20 are consistent with the logseries [20, 96]. However, the frequency of extremely rare species is 21 virtually impossible to estimate from even the largest datasets – how would one find a species 22 that consists of only one or two trees in the whole Amazon? – and in practice, nobody really 23 believes that there are as many rare species as predicted by the logseries. 24

## <sup>25</sup> Box 2: Neutral speciation models

In the population-genetics models reviewed here, reproductive isolation emerges as a byproduct of genetic divergence: Two individuals are reproductively isolated if they differ at more than G loci. This assumption may seem overly simplistic, but it is backed up by a rather sophisticated body of theory. In particular, it can be derived from a multilocus extension of the standard Dobzhansky-Muller model [59, 97]. While the step function used by de Aguiar *et al.* and Melián *et al.* is a limiting case [59], the exact shape of the function does not seem
to be overly important, as other forms (including a linear decrease of compatibility with
genetic distance) yield similar results [67]. Speciation in these models is relatively insensitive
to genetic details such as linkage and diploidy, but it strongly depends on the mutation rate
[63, 66].

In the Dobzhansky-Muller model, evolution in each of the diverging lineages is unopposed by 6 selection (i.e. substitutions are either neutral or beneficial). Therefore, it is a prime example 7 for evolution and speciation on "holey adaptive landscapes" [59, 71, 98]. This metaphor has been created to describe evolution in high-dimensional genotype spaces. Such spaces necg essarily contain "nearly neutral networks" of mutationally connected high-fitness genotypes, 10 on which populations can evolve by genetic drift, sexual selection, or weak natural selection, 11 and which are punctuated by holes representing genotypes with low fitness. If two diverging 12 populations arrive at opposite sides of a hole, they are reproductively isolated – either be-13 cause they do not recognize each other as potential mates (prezygotic isolation) or because 14 their offspring have low fitness (postzygotic isolation). The theory of nearly neutral networks 15 and holey adaptive landscapes thus provides a natural framework for speciation in neutral 16 communities. 17

Acknowledgements I thank R. Etienne, B. Haegeman, C. Melián and J. Rosindell for sharing their unpublished work, and D. Alonso for pointing out this work to me in the first place. I also thank RE, CM, JR, J. Hermisson and one anonymous reviewer for discussions and valuable comments on the manuscript. This work was funded by a grant from the Vienna Science and Technology Fund (WWTF) to the Mathematics and BioSciences Group at the University of Vienna.

## <sup>24</sup> References

- [1] Kimura M. 1983. The neutral theory of molecular evolution. Cambridge: Cambridge
   University Press.
- [2] Ohta T. 1996. The current significance and standing of neutral and nearly neutral
   theories. *Bioessays* 18: 673–677.

- [3] Okasha S. 2006. Evolution and the levels of selection. Oxford: Clarendon Press. 1
- [4] Segerstrale U. 2000. Defenders of the truth: The battle for science in the sociobiology 2 debate and beyond. Oxford: Oxford University Press. 3
- [5] Gould SJ, Lewontin RD. 1979. The spandrels of San Marco and the Panglossian Δ paradigm: a critique of the adaptationist programme. *PRSLB* 205: 581–598. 5
- [6] Monod J. 1972. Chance and necessity: an essay on the natural philosophy of modern 6 biology. New York: Collins. 7
- [7] Gould SJ. 1989. Wonderful life: The Burgess shale and the nature of history. New 8 York: W.W. Norton & Company. 9
- [8] Grinnell J. 1917. The niche-relationships of the California Trasher. Auk 34: 427–433. 10
- [9] Elton C. 1927. Animal ecology. London: Sidgewick & Jackson. 11
- [10] Hutchinson GE. 1959. Concluding remarks. Cold Spring Harbor Symp Quant Biol 12 **22**: 415–427. 13
- [11] Chase JM, Leibold MA. 2003. Ecological niches: linking classical and contemporary 14 approaches. Chicago: University of Chicago Press. 15
- [12] **Tilman D.** 1982. Resource competition and community structure. Princeton, NJ.: 16 Princeton University Press. 17
- [13] Gause I. 1934. The struggle for existence. Baltimore, MD: Williams and Wilkins. 18
- [14] Hutchinson GE. 1959. Homage to Santa Rosalia, or Why are there so many kinds of 19 animals? Am Nat 93: 145–159. 20
- [15] Meszéna G, Gyllenberg M, Pásztor L, Metz JAJ. 2006. Competitive exclusion 21 and limiting similarity: a unified theory. Theor Pop Biol 69: 68–87. 22
- [16] Hutchinson GE. 1961. The paradox of the plankton. Am Nat 95: 137–145. 23

29

- [17] Nee S. 2005. The neutral theory of biodiversity: do the numbers add up? Functional 24 *Ecology* **19**: 173–176. 25
- [18] Chase JM. 2005. Towards a really unified theory for metacommunities. Func Ecol 19: 26 182 - 186.27
- [19] Hurtt GC, Pacala SW. 1995. The consequences of recruitment limitation: reconciling 28 chance, history, and competitive differences between plants. J Theor Biol 176: 1–12.
- [20] Hubbell SP. 2001. The unified neutral theory of biodiversity and biogeography. Prince-30 ton, NJ: Princeton University Press. 31
- [21] MacArthur RH, Wilson EO. 1967. The theory of island biogeography. Princeton, 32

- <sup>1</sup> NJ: Princeton University Press.
- <sup>2</sup> [22] Bell G. 2001. Neutral macroecology. Science 293: 2413–2418.
- <sup>3</sup> [23] Chave J. 2004. Neutral theory and community ecology. *Ecol Lett* 7: 241–253.
- [24] Alonso D, Etienne RS, McKane AJ. 2006. The merits of neutral theory. Trends
   *Ecol Evol* 21: 451–457.
- <sup>6</sup> [25] Etienne RS, Alonso D. 2007. Neutral community theory: how stochasticity and
   <sup>7</sup> dispersal-limitation can explain species coexistence. J Stat Phy 128: 485–510.
- [26] Leigh Jr EG. 2007. Neutral theory: a historical perspective. J Evol Biol 20: 2075– 2091.
- [27] Beeravolu CR, Couteron P, Pélissier R, Munoz F. 2009. Studying ecological
   communities from a neutral standpoint: a review of models' structure and parameter
   estimation. Ecol Model 220: 2603–2610.
- [28] Hubbell SP. 2003. Modes of speciation and the lifespan of species under neutrality: a
  response to the comment of Robert E. Ricklefs. *Oikos* 100: 193–199.
- [29] Hubbell SP, Lake J. 2003. The neutral theory of biodiversity and biogeography, and
   beyond. In: Blackburn T, Gaston K, eds., Macroecology: patterns and process,
   Oxford: Blackwell, pp. 45–63.
- <sup>18</sup> [30] Gaston KJ, Chown SL. 2005. Neutrality and the niche. Functional Ecology 19: 1–6.
- <sup>19</sup> [31] McGill BJ, Maurer BA, Weiser MD. 2006. Empirical evaluation of neutral theory.
- *Ecology* **87**: 1411–1423.
- <sup>21</sup> [32] Clarke JS. 2009. Beyond neutral science. Trends Ecol Evol 24: 8–15.
- [33] Hubbell SP. 2006. Neutral theory and the evolution of ecological equivalence. *Ecology* 87: 1387–1398.
- <sup>24</sup> [34] Gotelli NJ, McGill BJ. 2006. Null versus neutral models: what's the difference?
   *Ecography* 29: 793–800.
- [35] Hubbell SP. 2005. Neutral theory in community ecology and the hypothesis of func tional equivalence. *Functional Ecology* 19: 166–172.
- <sup>28</sup> [36] Holt BD. 2006. Emergent neutrality. Trends Ecol Evol 21: 531–533.
- <sup>29</sup> [37] Scheffer M, van Nes EH. 2006. Self-organized similarity, the evolutionary emergence
   of groups of similar species. *Proc Natl Acad Sci U S A* 103: 6230–6235.
- <sup>31</sup> [38] Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annu Rev Genet 34:
   401-437.

- [39] Hu XS, He F, Hubbell SP. 2006. Neutral theory in macroecology and population
   genetics. *Oikos* 113: 548–556.
- <sup>3</sup> [40] Ewens W. 1972. The sampling theory of selectively neutral alleles. Theor Pop Biol 3:
  <sup>4</sup> 87–112.
- 5 [41] Etienne RS. 2005. A new sampling formula for neutral biodiversity. Ecol Lett 8:
  6 253-260.
- 7 [42] Ricklefs RE. 2003. A comment on hubbell's zero-sum ecological drift model. Oikos
  8 100: 185–192.
- [43] Allen AP, Savage VM. 2007. Setting the absolute tempo of biodiversity dynamics.
   *Ecol Lett* 10: 637–646.
- <sup>11</sup> [44] Zillio T, Condit R. 2007. The impact of neutrality, niche differentiation and species
   <sup>12</sup> input on diversity and abundance distributions. *Oikos* 116: 931–940.
- [45] Rosindell J, Cornell SJ, Hubbell SP, Etienne RS. 2010. Protracted speciation
   revitalizes the neutral theory of biodiversity. *Ecol Lett* in press.
- [46] Etienne RS, Haegeman B. 2010. The neutral theory of biodiversity with random
   fission speciation. *Theor Ecol* in press.
- <sup>17</sup> [47] Haegeman B, Etienne RS. 2010. A self-consistent approach for neutral community
   <sup>18</sup> models with speciation. *Phys Rev E* 81: 031911.
- [48] MacArthur R. 1969. On the relative abundance of bird species. Proc Natl Acad Sci
   U S A 43: 293-295.
- [49] Templeton AR. 2008. The reality and importance of founder speciation in evolution.
   *Bioessays* 30: 470–479.
- [50] Etienne RS, Apol MEF, Olff H, Weissing FJ. 2007. Modes of speciation and the
   neutral theory of biodiversity. *Oikos* 116: 241–258.
- [51] Haegeman B, Etienne RS. 2009. Neutral models with generalized speciation. B Math
   Biol 71: 1507–1519.
- <sup>27</sup> [52] Mouillot D, Gaston KJ. 2007. Geographic range size heritability: what do neutral
   models with different modes of speciation predict? *Global Ecology and Biogeography* 16:
   367–380.
- <sup>30</sup> [53] Makarieva AM, Groshkov VG. 2004. On the dependence of speciation rate on
   <sup>31</sup> species abundance and characteristic population size. J Biosci 29: 119–128.
- <sup>32</sup> [54] Marquet PA, Keymer JA, Cofre H. 2003. Breaking the stick in space, of niche

- <sup>1</sup> models, metacommunities and patterns in the relative abundance of species. In: Black-
- <sup>2</sup> burn T, Gaston K, eds., Macroecology: patterns and process, Oxford: Blackwell, pp.
- з 64-86.
- [55] Leigh Jr EG. 2004. Why do some tropical forests have so many species of trees?
   *Biotropica* 36: 447–473.
- [56] Rosindell J, Cornell SJ. 2009. Species-area curves, neutral models, and long-distance
   dispersal. *Ecology* 90: 1743–1750.
- <sup>8</sup> [57] Coyne JA, Orr HA. 2004. Speciation. Sunderland, MA: Sinauer.
- <sup>9</sup> [58] Dieckmann U, Doebeli M, Metz JAJ, Tautz D, eds. 2004. Adaptive speciation.
   <sup>10</sup> Cambridge, UK: Cambridge University Press.
- [59] Gavrilets S. 2004. Fitness landscapes and the origin of species. Princeton, NJ: Princeton University Press.
- [60] Price T. 2008. Speciation in birds. Greenwood Village, Colorado: Roberts and Com pany Publishers.
- <sup>15</sup> [61] Butlin R, Bridle J, Schluter D. 2009. Speciation and patterns of diversity. Cam <sup>16</sup> bridge: Cambridge University Press.
- <sup>17</sup> [62] Gavrilets S, Acton R, Gravner J. 2000. Dynamics of speciation and diversification
   in a metapopulation. *Evolution* 54: 1493–1501.
- [63] de Aguiar MAM, Baranger M, Baptestini EM, Bar-Yam Y. 2009. Global
   patterns of speciation and diversity. *Nature* 460: 384–387.
- [64] Leibold MA, McPeek MA. 2006. Coexistence of the niche and neutral perspectives
   in community ecology. *Ecology* 87: 1399–1410.
- <sup>23</sup> [65] Gavrilets S, Li H, Vose MD. 1998. Rapid parapatric speciation on holey adaptive
   landscapes. Proc R Soc Lond B 256: 1483–1489.
- <sup>25</sup> [66] Gavrilets S, Li H, Vose MD. 2000. Patterns of parapatric speciation. Evolution 54:
   <sup>26</sup> 1126–1134.
- <sup>27</sup> [67] Hoelzer GA, Drewes R, Meier J, Doursat R. 2006. Isolation-by-distance and
   outbreeding depression are sufficient to drive parapatric speciation in the absence of
   environmental influences. *PLoS Computational Biology* 4: e1000126.
- [68] Melián CJ, Alonso D, Allesina S, Condit RS, et al. 2010. A neutral biodiversity
   theory with genetic speciation. submitted manuscript.
- <sup>32</sup> [69] Higgs PG, Derrida B. 1991. Stochastic models for species formation in evolving

- <sup>1</sup> populations. J Phys A: Math Gen 24: L985–L991.
- [70] Higgs PG, Derrida B. 1992. Genetic distance and species formation in evolving
   populations. J Mol Evol 35: 454–465.
- [71] Gavrilets S. 1999. A dynamical theory of speciation on holey adaptive landscapes. Am
   Nat 154: 1-22.
- [72] Dieckmann U, Doebeli M. 1999. On the origin of species by sympatric speciation.
   *Nature* 400: 354–357.
- [73] Doebeli M, Dieckmann U, Metz JAJ, Tautz D. 2005. What we have also learned:
   adaptive speciation is theoretically plausible. *Evolution* 59: 691–695.
- [74] Bolnick DI, Fitzpatrick BM. 2007. Sympatric speciation: models and empirical
   evidence. Annu Rev Ecol Evol Syst 38: 459–487.
- <sup>12</sup> [75] Pennings PS, Kopp M, Meszéna G, Dieckmann U, et al. 2008. An analytically
   tractable model of competitive speciation. Am Nat 171: E44–E71.
- <sup>14</sup> [76] Melián CJ, Alonso D, Vázquez DP, Regetz J, et al. 2010. Frequency-dependent
- $_{15}$  selection predicts patterns of radiations and biodiversity. *submitted manuscript*.
- <sup>16</sup> [77] Janzen DH. 1970. Herbivores and the number of tree species in tropical forests. Am
   <sup>17</sup> Nat 104: 501-528.
- <sup>18</sup> [78] Gavrilets S, Losos JB. 2009. Adaptive radiation: contrasting theory with data.
   Science 323: 732-737.
- [79] Schluter D. 1994. Evidence for ecological speciation and its alternative. Science 323:
   737–741.
- <sup>22</sup> [80] Schluter D. 2000. The ecology of adaptive radiation. Oxford: Oxford University Press.
- <sup>23</sup> [81] Rundle HD, Nosil P. 2005. Ecological speciation. *Ecol Lett* 8: 336–352.
- [82] Sobel JM, Chen GF, Watt LR, Schemske DW. 2010. The biology of speciation.
   *Evolution* 64: 295–315.
- [83] Hendry AP. 2009. Ecological speciation! O the lack thereof? Can J Fish Aquat Sci
  66: 1383–1398.
- <sup>28</sup> [84] Butlin R, Bridle J, Schluter D. 2009. Speciation and patterns of biodiversity. In:
- Butlin R, Bridle J, Schluter D, eds., Speciation and patterns of diversity, Cambridge:
  Cambridge University Press, pp. 1–14.
- <sup>31</sup> [85] Gavrilets S, Vose A. 2005. Dynamic patterns of adaptive radiation. Proc Natl Acad
   <sup>32</sup> Sci U S A 102: 18040–18045.

 [86] Gavrilets S, Vose A. 2009. Dynamics patterns of adaptive radiation: evolution of mating preferences. In: Butlin R, Bridle J, Schluter D, eds., Speciation and patterns of diversity, Cambridge: Cambridge University Press, pp. 1–14.

[87] Rundell RJ, Price TD. 2009. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. *Trends Ecol Evol* 24: 394–399.

6 [88] Tilman D. 2004. Niche tradeoffs, neutrality, and community structure: a stochastic

theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci

<sup>8</sup> U S A **101**: 10854–10861.

[89] Volkov I, Banavar JR, He F, Hubbell SP, et al. 2005. Density dependence explains
 tree species abundance and diversity in tropical forests. Nature 438: 658–661.

<sup>11</sup> [90] Volkov I, Banavar JR, Hubbell SP, Maritan A. 2005. Neutral theory and relative
 species abundance in ecology. *Nature* 424: 1035–1037.

[91] McGill BJ, Etienne RS, Gray JS, Alonso D, et al. 2007. Species abundance distributions: moving beyond single prediction theories to integration within and ecological framework. Ecol Lett 10: 995–1015.

- [92] Fisher RA, Corbet AS, Williams CB. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. J
   Anim Ecol 12: 42–58.
- <sup>19</sup> [93] **Preston FW**. 1948. The commonness, and rarity, of species. *Ecology* **29**: 254–283.

<sup>20</sup> [94] McGill BJ. 2003. A test of the unified neutral theory of biodiversity. Nature 422:
 881–885.

- <sup>22</sup> [95] McGill BJ. 2003. Does mother nature really prefer rare species or are log-left-skewed
   sads a sampling artefact? *Ecol Lett* 6: 766–773.
- <sup>24</sup> [96] Hubbell SP, He FL, Condit R, Borda-de Agua L, et al. 2008. How many tree
   species are there in the Amazon and how many of them will go extinct? Proc Natl Acad
   Sci U S A 105: 11498–11504.
- <sup>27</sup> [97] Orr HA. 1995. The population genetics of speciation: the evolution of hybrid incom patibilities. *Genetics* 139: 1805–1813.
- <sup>29</sup> [98] Gavrilets S. 1998. Evolution and speciation on holey adaptive landscapes. Trends Ecol
   <sup>30</sup> Evol 12: 307–312.