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Abstract

We investigate the dynamic effects of an inducible prey defense in the Nicholson–Bailey predator–prey model. We assume that the

defense is of all-or-nothing type but that the probability for a prey individual to express the defended phenotype increases gradually with

predator density. Compared to a defense that is independent of predation risk, an inducible defense facilitates persistence of the

predator–prey system. In particular, inducibility reduces the minimal strength of the defense required for persistence. It also promotes

stability by damping predator–prey cycles, but there are exceptions to this result: first, a strong inducible defense leads to the existence of

multiple equilibria, and sometimes, to the destruction of stable equilibria. Second, a fast increase in the proportion of defended prey can

create predator–prey cycles as the result of an over-compensating negative feedback. Non-equilibrium dynamics of the model are

extremely complex.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Inducible defenses—protective structures or mechanisms
that prey organisms develop only in the presence of
predators—are often spectacular examples of adaptive
phenotypic plasticity. They may involve plastic changes in
morphology, behavior or life-history, and are thought to
evolve in systems that meet the following four conditions
(Tollrian and Harvell, 1999a): (i) predation risk is variable
in space or time; (ii) prey can estimate predation risk from
a reliable cue; (iii) prey can effectively reduce predation risk
by expressing a defensive phenotype; (iv) the defensive
phenotype incurs a fitness cost, which makes it disadvanta-
geous in the absence of predation risk. In recent years,
inducible defenses have become a popular model system in
e front matter r 2005 Elsevier Inc. All rights reserved.
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evolutionary ecology. For example, they have been used to
study the trade-offs involved in phenotypic evolution and
to understand fitness optimization in variable environ-
ments (see, Tollrian and Harvell, 1999a).
In addition, inducible defenses are receiving increasing

interest from population ecologists (reviewed by Lima,
1998; Werner and Peacor, 2003). Intuitively, by creating a
negative feedback between predator density and prey
vulnerability they have the potential to stabilize preda-
tor–prey cycles. Several authors have incorporated induci-
ble defenses (or related mechanisms such as prey refuges or
antipredator behavior) into predator–prey models, and
many models have, indeed, shown them to have a
stabilizing effect (e.g., Ives and Dobson, 1987; Gyllenberg
et al., 1996; Ruxton and Lima, 1997; Vos et al., 2004).
Other studies, however, have yielded more ambiguous
results (e.g., McNair, 1986; Kokko and Ruxton, 2000;
Luttbeg and Schmitz, 2000; Ramos-Jiliberto et al., 2002),
indicating that the relationship between inducibility and
stability is not always straightforward.

www.elsevier.com/locate/tpb
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The majority of previous models have been based on
differential equations (but see, Gyllenberg et al., 1996;
Kokko and Ruxton, 2000; Luttbeg and Schmitz, 2000),
that is they assume overlapping generations. Such an
approach is justified for many well-studied systems with
inducible defenses, for example in ciliates (Kuhlmann et al.,
1999) or freshwater cladocerans (Tollrian and Dodson,
1999). However, inducible defenses are also found in
systems with non-overlapping generations (or at least
strongly seasonal life cycles). Examples include the larvae
of mayflies and their stone-fly predators (Peckarsky et al.,
1993), tadpoles and larval dragonflies (e.g., McCollum and
Leimberger, 1997), wolf spiders (Persons et al., 2002),
spiders and grasshoppers (Schmitz et al., 1997), rose hip
flies and their parasitoids (Hoffmeister and Roitberg,
1997), or voles and weasels (Ylönen, 1989). For such
systems, a model framed in difference equations seems
more appropriate. Here, we develop and analyze a
predator–prey model with an inducible defense and non-
overlapping generations. We do not attempt to describe
any specific interaction. Instead, we build a very simple
model which we hope captures important aspects of real-
world systems.

Our model is based on the classical Nicholson–Bailey model.
This is one of the simplest discrete-time predator–prey models,
and it has played a prominent role in the search for stabilizing
mechanisms in predator–prey and host–parasitoid interactions
(e.g., Hassell, 1978). In its basic form, it is always unstable and
does not even allow persistence of the system (i.e., permanent
coexistence of the interacting species). However, it can be
stabilized by a variety of mechanisms (e.g., Hassell and May,
1973; Beddington et al., 1975; Hassell, 1978; Adler, 1993;
Godfray et al., 1994; Doebeli, 1997). For example, Hassell and
May (1973) showed that persistence and stability are possible
in a predator–prey system if a constant proportion of the prey
is protected from predation. Here, we use this ‘constant-
proportion defense model’ as a null model, and we extend it by
assuming that inducibility of the defense causes the proportion
of protected prey to increase with predator density.

Important properties of inducible defenses are deter-
mined by trade-offs and constraints (Tollrian and Harvell,
1999b). Trade-offs are caused by defense costs, such as
reduced fecundity of defended individuals. Constraints
may arise if the prey has limited information about its
environment or the induction mechanism is subject to
developmental noise. Here, we incorporate trade-offs and
constraints into a simple threshold model of defense
induction. More precisely, we assume that the prey can
express two alternative phenotypes: one phenotype is non-
defended and fast-growing, whereas the other one is
defended (‘induced’) but grows more slowly. The prey use
a cue, such as a kairomone (i.e., a predator-released
chemical), to estimate predator-density, and they develop
the defended phenotype if the estimated predator density
exceeds a threshold. Unreliability of the predator cue as
well as developmental noise generate stochastic variation in
the response of individual prey to the actual predator
density. This ‘response variance’ reflects constraints on
phenotypic plasticity and determines the effect of induci-
bility at the population level. We analyze how the dynamic
behavior of the predator–prey system is influenced by the
response variance, the mean induction threshold, and the
benefits and costs of the defense. We find that inducibility
of the defense facilitates persistence of the predator–prey
system. Furthermore, it has the potential to stabilize
predator–prey cycles, but only if the defense is not too
strong and the response variance not too small.

2. The model

2.1. The inducible defense

We assume that both species have discrete, non-over-
lapping generations. At the beginning of each generation,
each prey individual uses a cue (e.g., a kairomone) to
estimate current predator density. The defense is expressed
if the estimated predator density P̂ exceeds an induction
threshold m̂. Both P̂ and m̂ are subject to stochastic
variation. Variation in P̂ is brought about by variation in
the level of the predator cue (e.g., kairomone concentra-
tion) experienced by individual prey. We assume that P̂ is
normally distributed with mean P (the true predator
density) and variance s2c . Therefore, s2c is a measure of
cue unreliability or imperfect information. Variation in m̂ is
caused by developmental noise, which may occur at any
step of the signal transduction chain leading from the
perception of the predator cue to the eventual expression of
the phenotype. We assume that m̂ is normally distributed
with mean m and variance s2d . Here, m is the (individual)
mean induction threshold, which may be viewed as
determining the prey’s strategy. In principle, m might vary
between individuals due to heritable genetic variation and
be subject to selection (see Discussion). In the present
paper, however, we will assume that m is identical in all
individuals (although some non-heritable variation in m
might be viewed as a component of developmental noise).
Together, cue unreliability and developmental noise

determine the prey’s ‘response variance’, that is the
variance in the response of individual prey to the actual
predator density P

s2 ¼ s2c þ s2d . (1)

Thus, s2 measures the inaccuracy of the prey’s response to
P, which may be viewed as a constraint on phenotypic
plasticity (in the sense that a plastic response to the
environment cannot be more accurate than the available
information and the precision of the developmental
system). The probability of a prey individual to express
the defense at a given predator density P is

dðPÞ ¼

Z P

�1

1ffiffiffiffiffiffiffiffiffiffi
2ps2
p e�ð1=2Þððx�mÞ=sÞ

2

dx, (2)

which is a cumulative normal distribution with mean m and
variance s2 (Fig. 1). P is, of course, always positive, but as a
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Fig. 1. Prey induction frequency d as a function of predator density P at

the beginning of a generation. For all graphs, the mean induction

threshold m ¼ 4. The slope of the graphs is determined by the response

variance s2. Its values are 1 (a), 4 (b), 25 (c), 100 (d), and 106 (e). The

smaller s2, the stronger phenotypic plasticity is ‘seen’ at the population

level. Note that for s2 ¼ 106, d is practically independent of P, and hence,

plasticity has no population-level effects at all.
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consequence of using the normal distribution, integration
starts at �1, leading to a positive value of d for P ¼ 0.
Furthermore, and somewhat counter-intuitively, the mean
induction threshold m may be negative. In this case, the
probability of defense induction in the absence of predators
is greater than 1

2
. At the population level, dðPÞ is the

proportion of defended prey, which we will refer to as the
prey’s ‘induction frequency’. Importantly, s2 determines the
slope of this function, and therefore, it determines the degree
of phenotypic plasticity ‘seen’ at the population level.

If s2 becomes very large, dðPÞ approaches a horizontal
line, that is the induction frequency becomes independent of
predator density (Fig. 1(e)). (Note that any value of d can be
achieved for arbitrarily large s2; however, for da0:5 and
s2!1, also m!�1.) This may happen if the prey either
has no useful information about predator density (large s2c :
the cue is totally unreliable) or is unable to react to this
information in a predictable manner (large s2d : developmental
noise is maximal). Thus, in the limit of s2!1, our model
reduces to a constant-proportion defense model (see below).
In this case, even though the prey still is phenotypically plastic
(in the sense of being able to produce two alternative
phenotypes), it no longer makes sense to speak of an
inducible defense, since there is no correlation between
phenotype and environment. Therefore, we will treat the
case s2!1 (i.e., the constant-proportion defense model) as
a null model with a constitutive (i.e., non-plastic) defense.

2.2. Population dynamics

Within each generation, undefended prey are killed by
predators at rate aP. If they survive, they produce an
average of l offspring. Thus, a measures the vulnerability
and l the fecundity of undefended prey. Note that
vulnerability is determined by several components of the
predation cycle, such as encounter rate, detection prob-
ability, attack rate, attack efficiency, handling time, and
digestion time (Jeschke et al., 2002). The mean fitness of
undefended prey is

w̄n;u ¼ le�aP. (3)

(The index n stands for prey and the index u for
undefended.) The exponential term gives the proportion
of surviving prey at the end of the generation, that is the
prey’s survival probability. Note that there is no direct
density-dependence in the prey (see Discussion).
The defense has the effect of reducing prey vulnerability

by a proportion b and reducing prey fecundity by a
proportion c (0pbp1; 0pcp1). Thus, b and c represent
the benefits and costs of the defense. The mean fitness of
defended prey is

w̄n;d ¼ ð1� cÞle�ð1�bÞaP. (4)

(The index d stands for defended.) We assume that
lð1� cÞ41, which assures that w̄41 for both prey types
in the absence of predation. The overall mean fitness of the
prey is

w̄n ¼ ð1� dÞw̄n;u þ dw̄n;d . (5)

Prey that are killed by predators are converted into new
predators in the next generation. The number of new
predators produced per killed prey is denoted by b. If the
density of prey is N the mean fitness of predators equals

w̄p ¼ b
N

P
ð1� dÞð1� e�aPÞ þ dð1� e�ð1�bÞaPÞ
� �

. (6)

(The index p stands for predator.) This equation can be
understood by noting that, of the undefended prey, a
proportion 1� e�aP is killed by predators, as is a
proportion 1� e�ð1�bÞaP of the defended prey. Finally, the
dynamics of the predator–prey system are given by

Ntþ1 ¼ Ntw̄n, (7a)

Ptþ1 ¼ Ptw̄p, (7b)

where the index t measures time in units of one generation.
If d is independent of predator density (for s2!1, see

above), the model reduces to an extended version of the
constant-proportion defense model by Hassell and May
(1973), who assumed that the defense provides complete
protection (b ¼ 1) coming at no costs ðc ¼ 0Þ. (In their
original paper, Hassell and May (1973) termed this model the
‘constant-proportion refuge model’, because they envisaged
the prey using a physical refuge.) And for d ¼ 0 or d ¼ 1
(prey are either never or always defended), the model reduces
to the classical Nicholson–Bailey model, which (for d ¼ 0) is
given by

Ntþ1 ¼ Nte
�aPt , (8a)

Ptþ1 ¼ bNtð1� e�aPt Þ. (8b)
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3. Results

3.1. Equilibria

We start by analyzing the equilibrium structure of
system (7). Equilibrium requires w̄n ¼ w̄p ¼ 1. For any
given prey density, there is exactly one predator density
that satisfies w̄p ¼ 1. Therefore, a necessary and sufficient
condition for equilibrium is w̄n ¼ 1. Unfortunately, this
equation has no closed analytical solution, and so we are
restricted to solving it numerically.

The behavior of the mean prey fitness w̄n as a function of
predator density P is illustrated in Fig. 2. w̄n is close to wn;u

for small P and switches towards wn;d around P ¼ m. If s2

is small, the switch is fast, and if it happens in an area
where wn;d4wn;u, then w̄n may increase with predator
density over a certain range of P. In this range, the
increased encounter rate with the predator is outweighed
by the increased proportion of defended prey. If the
increasing part of w̄n crosses the line wn ¼ 1 then system (7)
has three non-trivial equilibria (in addition to the trivial
equilibrium N ¼ P ¼ 0): a low equilibrium characterized by
low predator density and low induction frequency, a high

equilibrium with high predator density and high induction
frequency, and an intermediate (saddle) equilibrium, which
Fig. 2. Prey fitness as a function of predator density. The figures show the

undefended prey (dashed line) and wn;d of defended prey (thin solid line), as a f

the intersections of w̄n with the line wn ¼ 1 (dotted line). In (a), the response

equilibrium. (b)–(c) show cases with low response variance (s2 ¼ 1), which lead

mean induction threshold m is 4:0 in (b), 5:5 in (c), and 10:0 in (d). Only in (b

c ¼ 0:4, l ¼ 3, m ¼ 5:5.
separates the other two equilibria and is always
unstable (see below). If the increasing part of w̄n does not
cross the line wn ¼ 1 then there is only one non-trivial
equilibrium.

Conditions for multiple equilibria. As can be seen from
Fig. 2, a necessary condition for multiple equilibria is
w̄nð ~PÞ41, where

~P ¼
� lnð1� cÞ

ab
(9)

marks the intersection point of wn;u and wn;d . w̄nð ~PÞ41
requires b4 ~b with

~b ¼
� lnð1� cÞ

ln l
. (10)

Multiple equilibria also require an intermediate value
of the mean induction threshold m, as illustrated in
Figs. 2(b)–(d). Fig. 3(a) shows the ‘domain of multiple
equilibria’ (i.e., the set of parameter combinations where
multiple equilibria occur) in the m versus b plane. Its lower
boundary is always close to ~P (see dashed line in Fig. 3(a)),
because only for P4 ~P does defense induction lead to an
increase in prey fitness. The upper boundary of the domain
of multiple equilibria increases with b. In particular,
multiple equilibria do not exist for any value of m if b is
mean fitness w̄n of the prey (thick line), together with the fitness wn;u of

unction of predator density P. Equilibrium predator densities are given by

variance of the prey is high (s2 ¼ 100), and there is only one non-trivial

s to an increase of mean prey fitness over a range of predator densities. The

), the system has three non-trivial equilibria. Parameters: a ¼ 0:3, b ¼ 0:8,
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Fig. 3. The domains of multiple equilibria, persistence, and stability in a m versus b plane for different values of the prey’s response variance s2. Values of
s2 displayed here were chosen to show typical and qualitatively different results. m is the mean induction frequency of the prey (i.e. the predator density

where each prey individual expresses the defended phenotype with probability 0:5), and b is the benefit of the defense. The hatched area is the domain of

multiple equilibria and the shaded area is the domain of persistence. Dark grey marks the domain of stability, and light grey marks parameter

combinations where the predator–prey system persists via non-equilibrium dynamics. No persistence is possible in unshaded areas. (a) The domain of

multiple equilibria. Above the dashed line, m4 ~P (see Eq. (9)). The dotted line marks bmin, the minimal value of b for which multiple equilibria are possible

(see text). (b) The domains of persistence and stability for high response variance (s2 ¼ 25). Corresponds to Fig. 5(b). The area demarcated by dotted lines

is magnified in (c). (c) A detailed view of (b). To keep the graph simple, only the domain of stability is shaded. The thin line marks the boundary of the

domain of multiple equilibria. (1) Single equilibrium stable, (2) high equilibrium stable, (3) low and high equilibria stable, (4) low equilibrium stable. (d)

The domains of persistence and stability for low response variance ðs2 ¼ 0:01Þ. The ‘outer’ stability boundary is defined by condition (13b) and is

equivalent to the stability boundary in (b) and (c). The ‘inner’ stability boundary arises due to violation of condition (13c). In the area marked ‘‘O’’,

predator–prey cycles are induced by overcompensation (see text). Corresponds to Fig. 5(d). (e) Fragmentation of the domain of stability for extremely low

response variance (s2 ¼ 0:001225). Corresponds to Fig. 5(e). (f) The domain of persistence for s2 ! 0. Note that the domain of stability does not exist.

Parameters: a ¼ 0:4, b ¼ 0:4, c ¼ 0:4, l ¼ 2.
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less than a minimal value bmin. bmin, in turn, depends on s2

(see other panels in Figs. 3 and 5). In the limit of s2 ! 0
(where w̄n equals wn;u for Ppm and wn;d for P4m) bmin

equals ~b. Numerical approximations show that it increases
with increasing s2 and approaches 1 for s2!1. In
summary, multiple equilibria exist if the defense is strong,
the mean induction threshold m is high but not too high,
and the response variance s2 is low.

Fig. 4 illustrates the effects of m and b on the equilibrium
structure by plotting the equilibrium induction frequency
d� versus m for b4bmin and bobmin, respectively. The figure
also indicates the stability of the equilibria, which will be
discussed below. For b4bmin, the graph forms a hysteresis
loop within the range of multiple equilibria (Fig. 4(a)). For
bobmin, the hysteresis loop and the multiple equilibria
disappear (Fig. 4(b)).

3.2. Stability and persistence

3.2.1. General stability conditions

The simplifying assumption that the prey’s mean fitness
w̄n is not density-dependent makes it possible to analyti-
cally derive some general conditions for stability. In the
following, we regard a general formulation of model (7):

Ntþ1 ¼ Ntw̄nðPtÞ, (11a)

Ptþ1 ¼ Ptw̄pðNt;PtÞ. (11b)
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Fig. 4. Alternative equilibrium induction frequencies d� plotted against the mean induction threshold of the prey, m. m is the predator density where each

prey individual expresses the defended phenotype with probability 0:5. (a) If the defense is strong (b ¼ 0:75) the high and low equilibria are linked by an

unstable saddle equilibrium (dotted line), resulting in a hysteresis loop between m1 and m2. This means that a system at or near the high equilibrium will

switch to a neighborhood of the low equilibrium if m is gradually increased beyond the value m2, but will return to the high equilibrium only if m is

decreased beyond m1. The high and low equilibria are stable at intermediate d� (solid lines) and unstable at extreme d� (dashed lines). (b) If the defense is

weak (b ¼ 0:6) the hysteresis loop and the intermediate equilibrium disappear. Parameters: a ¼ 0:4, b ¼ 0:4, c ¼ 0:1, l ¼ 2, s2 ¼ 1.
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The Jacobian of system (11), evaluated at equilibrium, is

J� ¼

1 N�w̄0n
P�

N�
1þ P�w̄0p

0
@

1
A, (12)

where

w̄0n ¼
q
qP

w̄nðP
�Þ,

w̄0p ¼
q
qP

w̄pðN
�;P�Þ,

and the asterisks indicate equilibrium densities.
Applying the Jury test (e.g., Kot, 2001, p. 184) yields

three conditions for local stability

w̄0no0, (13a)

w̄0pow̄0n, (13b)

w̄0p4
1

2
w̄0n �

2

P�
. (13c)

Condition (13a) states that stability is only possible if, at
equilibrium, the mean fitness of the prey decreases with
increasing predator density (see Fig. 2). This proves that, in
the case of multiple equilibria, the intermediate equilibrium
can never be stable. According to condition (13b) stability
requires that the within-species effect of an increase in
predator density (increased competition for prey) must be
stronger than the between-species effect (increased preda-
tion pressure exerted on prey; note that, if (13a) is satisfied,
(13b) implies jw̄0pj4jw̄

0
nj). An inducible defense facilitates

fulfillment of this condition, because it weakens the
intraspecific effect of predator density and enhances the
interspecific effect. It is condition (13b) that is never
satisfied in the basic Nicholson–Bailey model (8). Condi-
tion (13c) gives a lower boundary for w̄0p relative to w̄0n,
thereby showing that stability can be lost again if the
intraspecific effect of the defense becomes too strong.

3.2.2. Numerical results for stability and persistence

In the following, we use numerical methods to investi-
gate the stability and persistence of model (7) in greater
detail. In addition to the domain of multiple equilibria we
describe two more domains in parameter space: the
‘domain of stability’ (i.e., the set of parameter combina-
tions where at least one stable equilibrium exists) and the
‘domain of persistence’ (the set of parameter combinations
where predator and prey coexist for at least some initial
conditions). Note that the domain of stability is a subset
of the domain of persistence. The domain of stability
was determined by numerically investigating conditions
(13). The domain of persistence was determined
by simulating Eqs. (7). Simulations were started with
initial population densities close to equilibrium, and the
interaction was judged persistent if neither population
dropped below a density of 10�4 for 105 generations. In the
vast majority of simulations that did not meet this
criterion, the predator population went extinct in less than
104 generations.
Fig. 3 shows the domains of stability and persistence in a

m versus b plane for various values of the prey’s response
variance s2. Additionally, in Fig. 5, the domains of stability
and persistence are plotted in a d� versus b plane, where d�

is the induction frequency at equilibrium. These two ways
of presenting the results are complementary. Their relation-
ship is illustrated by Fig. 4, which contains information
about the domain of stability with respect to both d� and m
for a specific value of b. The m versus b plots have the
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Fig. 5. The domains of stability and persistence for various values of the prey’s response variance s2 in a d� versus b plane. d� is the induction frequency at

equilibrium (even if the equilibrium is not stable). b is the benefit of the defense. The shaded area is the domain of persistence. Dark grey marks the domain

of stability, and light grey indicates persistence via non-equilibrium dynamics. The hatched area is the domain of the unstable intermediate equilibrium. Its

boundaries correspond to those of the domain of multiple equilibria in Fig. 3 (see text and Fig. 4). (a) The constant-proportion defense model (s2 !1,

i.e. no plasticity ‘seen’ at the population level). d� ¼ d is a constant, and there is only a single equilibrium. For b ¼ 1, no equilibrium exists for

d41=½ð1� cÞl� (dotted line). (b) High response variance (s2 ¼ 25). For high b, there are three alternative equilibria. The domain of stability is reduced by

the domain of the unstable intermediate equilibrium. Corresponds to Figs. 3(b) and (c). (c) Intermediate response variance ðs2 ¼ 2:25Þ. (d) Low response

variance ðs2 ¼ 0:01Þ, creating a second, ‘inner’ stability boundary, and an area of overcompensation (marked ‘‘O’’, see text and legend to Fig. 3).

Corresponds to Fig. 3(d). (e) Fragmentation of the domain of stability for extremely low response variance (s2 ¼ 0:001225). Corresponds to Fig. 3(e).

Parameters: a ¼ 0:4, b ¼ 0:4, c ¼ 0:4, l ¼ 2.
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advantage that both m and b are model parameters,
whereas d� is a state variable. On the other hand, the d�

versus b plots have a much simpler structure, and they
allow to include results for the constant-proportion defense
model (Fig. 5(a)). Furthermore, d� has a direct interpreta-
tion in terms of stability, because the slope of the function
dðPÞ at this point determines the strength of the negative
feedback between predator density and prey vulnerability
at equilibrium. Note that, for each d�, there is a unique
equilibrium. Therefore, the d� versus b plots do not have a
domain of multiple equilibria. Instead, for b4bmin there
are separate domains for the low, intermediate and high
equilibrium, respectively, and the boundaries of the
domain of the intermediate equilibrium are analogous to
the boundaries of the domain of multiple equilibria in the m
versus b plane. The effects of inducibility on the behavior
of the model can be assessed by comparing the structure of
the various domains for different values of s2.

Infinite response variance—constant-proportion defense

model. We start with our null model, the non-plastic
constant-proportion defense model ðs2!1; dðPÞ ¼
d ¼ const:Þ. Fig. 5(a) shows the domain of stability in the
d versus b plane. (There is no corresponding plot in Fig. 3,
because the results of this model cannot be properly
displayed in the m versus b plane.) The constant-proportion
defense model has a unique non-trivial equilibrium, which
is stable if the defense is sufficiently strong (large b) and
both prey phenotypes are present at a sufficiently high
frequency (intermediate d). The requirement of intermedi-
ate d can be understood by noting that, for d ! 0 or
d ! 1, the model approaches the basic Nicholson–Bailey
model (8), which is always unstable. The boundary of the
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domain of stability is defined by stability condition (13b).
For b ¼ 1 (complete defense), no equilibrium exists if
d41=ðð1� cÞlÞ. In this case, predation is too weak to
regulate prey population growth, and both populations
increase without bounds (Hassell and May, 1973). Persis-
tence via non-equilibrium dynamics mainly occurs for
values of d below those allowing for stability. Interestingly,
if b is less than a minimal value, neither stability nor
persistence are possible.

Large response variance. Figs. 3(b) and (c) and 5(b)
illustrate the behavior of the model for a large but finite
response variance s2. A comparison of Fig. 5(b) with Fig.
5(a) shows that the domains of stability and persistence
have expanded towards the left, that is towards parameter
combinations with a weaker defense than in the constant-
proportion defense model. This is a stabilizing effect
of inducibility: a weak plastic defense may be able
to stabilize the system, where a weak non-plastic
(i.e., constant-proportion) defense cannot. Note that for
some regions, the boundary of the domain of stability
seems to coincide with the boundary of the domain of
persistence. However, we have no proof that the two
boundaries actually are identical. Note also that the part of
the domain of persistence located below the domain
of stability in Fig. 3(b) cannot be seen in Fig. 5(b), because
it is ‘condensed’ into an extremely narrow stripe close
to d� ¼ 1.

Furthermore, the structure of the domain of stability is
complicated by the presence of multiple equilibria, as can
be seen on the right-hand sides of both plots. The right-
hand side of Fig. 5(b) shows the domains of stability for
both the low and the high equilibrium, separated by the
domain of the unstable intermediate equilibrium. For
b ¼ 1, the high equilibrium does not exist and the upper
limits of the domain of stability converge towards d� ¼ 1.
(The non-existence of the high equilibrium can be easily
seen from Fig. 2 by realizing that, for b ¼ 1, the fitness of
defended prey does not decrease with P.) Note that Fig.
5(b) does not show whether the high and the low
equilibrium can be stable simultaneously for a given set
of parameters. This information can be gained from Figs.
3(b) and (c) however, which show that simultaneously
stable equilibria are only possible for relatively low values
of m. Looking back at Fig. 5(b), it seems that the domain of
stability is reduced in size by the domain of the
intermediate equilibrium. Figs. 3(b) and (c) offer a more
mechanistic explanation for this finding: a shift in the mean
induction threshold m may destabilize the predator–prey
system not because a stable equilibrium loses its stability
but because a stable equilibrium ceases to exist and the
alternative equilibrium is unstable (see Fig. 4(a)). Thus, the
creation of multiple equilibria represents a destabilizing
effect of defense inducibility. This effect only operates for
highly effective defenses, and it contrasts the stabilizing
effect of inducibility for weaker defenses. Note also that
multiple equilibria reduce only stability, but not persistence
of the model (Fig. 3(b)).
Intermediate response variance. If the response
variance s2 is decreased, the domains of stability and
persistence as well as the domain of multiple equilibria
further expand to the left, that is towards weaker
defense (Fig. 5(c); note that there is no corresponding
plot in Fig. 3). We also varied the values of the other
model parameters and found that the same pattern holds
true for decreasing defense costs c, increasing prey
fecundity l, and decreasing prey vulnerability a (results
not shown).

Low response variance. If s2 drops below a critical value,
the structure of the domain of stability changes qualita-
tively: at high b, stability is lost for parameter combina-
tions that lead to intermediate induction frequencies d�

(Figs. 5(d) and 3(d)). The critical value of s2 leading to this
behavior decreases with increasing defense costs c (results
not shown). Whereas the ‘outer’ stability boundary
discussed previously is defined by stability condition
(13b), the new, ‘inner’ stability boundary arises due to
violation of stability condition (13c): at intermediate d�

and low s2, the slope of the function dðPÞ is so steep that
the negative feedback between predator density and
predation efficiency leads to overcompensation (e.g.,
Gurney and Nisbet, 1998, p. 60). This is another
destabilizing effect of inducibility. As was the case with
multiple equilibria, however, overcompensation does not
affect persistence of the predator–prey system via non-
equilibrium dynamics.
Finally, as s2 becomes smaller and smaller, the domain

of stability becomes fragmented (Figs. 3(e) and 5(e)),
and for s2! 0 it is easy to see that stability is impossible
(because only one prey type will be present at any
given predator density, as in the unstable original
Nicholson–Bailey model). However, even in this extreme
case, persistence of the predator–prey pair is still possible
in a domain not much smaller than that for larger s2

(Fig. 3(f)).
3.2.3. Non-equilibrium dynamics

The non-equilibrium dynamics of model (7) are extre-
mely complex, and a full analysis is beyond the scope of
this study. Elementary theory of discrete dynamical
systems (e.g., Gurney and Nisbet, 1998, p. 60) predicts
that violation of stability condition (13b) (i.e., crossing of
the ‘outer’ stability boundary in Figs. 3 and 5) induces
stable limit cycles of non-integer period, whereas violation
of stability condition (13c) (i.e. crossing of the ‘inner’
stability boundary) induces cycles of period 2. Further
away from the stability boundaries, the system undergoes
additional bifurcations which can lead to very complex and
chaotic behavior. Fig. 6 shows a bifurcation diagram with
respect to m for a parameter combination where both types
of stability boundary exist, and Fig. 7 presents some
selected attractors that arise beyond the ‘outer’ stability
boundary.
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Fig. 6. Bifurcation diagram for predator density P as a function of the

prey’s mean induction threshold m, for a parameter combination with only

one non-trivial equilibrium and potential destabilization due to over-

compensation. m is the predator density where each prey individual

expresses the defended phenotype with probability 0:5. The gradient of m
shown in the figure corresponds to a vertical cross-section at b ¼ 0:625 in

Fig. 3(d). The graph shows the predator densities that occur in the system

after transient dynamics have been damped away. Single lines represent

stable equilibria, multiple lines represent cycles with integer period, filled

regions with clear-cut boundaries reflect cycles with non-integer period,

and filled regions without clear boundaries point to chaotic dynamics. The

complex structure in the middle of the graph arises due to over-

compensation. Parameters: a ¼ 0:4, b ¼ 0:625, b ¼ 0:4, c ¼ 0:4, l ¼ 2,

s2 ¼ 0:01.
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4. Discussion

4.1. Dynamic effects of defense inducibility

We have shown that an inducible prey defense has
important effects on the dynamics of the Nicholson–Bailey
predator–prey model. The parameters characterizing the
inducible defense determine the persistence and stability
properties of the model, as well as the number of equilibria
and the nature of non-equilibrium dynamics. Of particular
importance is the prey’s response variance, which deter-
mines how strongly phenotypic plasticity is ‘seen’ at the
population level (i.e., how fast induction frequency
increases with predation risk). If the response variance is
very large, the behavior of the model approaches that of
the constant-proportion defense model (Hassell and May,
1973), which serves as a null model in our analysis. In the
constant-proportion defense model, induction frequency is
independent of predator density. The equilibrium structure
is simple, and persistence and stability are possible only if
the defense is very strong. Gradually decreasing the
response variance reveals three major effects of induci-
bility.

First, a decrease in the response variance (i.e., an
increase in the amount of plasticity seen at the population
level) decreases the minimal strength of the defense that is
required for persistence or stability. That is, a weak
inducible defense can stabilize the system, or at least
promote its persistence, whereas a weak constitutive
defense cannot. In this sense, inducibility is stabilizing.
Mechanistically, the inducible defense creates a negative
feedback between predator-density and prey vulnerability,
which reduces the impact of predator density on prey
fitness and increases the impact of predator density on
predator fitness. Stability requires that the former is weaker
than the latter. This condition resembles similar conditions
for coexistence in standard models of interspecific competi-
tion (e.g., Begon et al., 1990). In the context of
Nicholson–Bailey models, inducible defenses join a long
list of potentially stabilizing mechanisms, such as density-
dependent prey growth (Beddington et al., 1975), predator
aggregation (Hassell and May, 1973), dispersal (Adler,
1993), phenological asynchrony between predator and prey
(Godfray et al., 1994), or genetic variation in prey
characteristics (Doebeli, 1997).
Second, if the defense is strong (large b), a finite response

variance can lead to the existence of multiple non-trivial
equilibria, which bring about interesting non-linear effects
such as hysteresis and bistability. The potentially stable
equilibria are characterized by low and high predator
densities and prey induction frequencies, respectively.
Multiple equilibria have no effect on persistence, but they
reduce stability, because for certain parameter values,
stable equilibria are replaced by unstable alternative
equilibria. A necessary condition for the existence of
multiple equilibria is an increase of prey fitness over a
certain range of predator densities. This somewhat
counter-intuitive behavior is a consequence of our assump-
tion that prey do not behave optimally (see also Ramos-
Jiliberto, 2003). Many models of inducible defenses do,
indeed, make such an optimality assumption (e.g. Ives and
Dobson, 1987; Gyllenberg et al., 1996; Křivan, 1998;
Kokko and Ruxton, 2000). However, in our model,
optimal prey behavior is not possible due to the constraint
set by the response variance (see below).
Third, a very low response variance can lead to

destabilization due to overcompensation. In this case, the
negative feedback between predator density and prey
vulnerability (i.e., the increase of prey induction frequency
with predator density) becomes so strong that it induces
oscillations, which are of high dynamic complexity but
limited amplitude (see Fig. 6). Therefore, even strong
overcompensation has no marked effect on persistence.
Destabilization due to overcompensation is typical for
discrete dynamical systems (e.g., May, 1974; Beddington
et al., 1975) and, therefore, is a consequence of our
assumption of non-overlapping generations. The effect of
non-overlapping generations can also be seen by compar-
ing our model to that of Křivan (1998). Křivan’s model is
similar to ours, but it is based on the continuous-time
Lotka–Volterra model and it assumes that prey behave
optimally. Therefore, at any given predator density, prey
are either all defended or all undefended. The optimality
assumption can be satisfied in our model in the limiting
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Fig. 7. Some possible attractors of model (7) in the P versus N phase plane, for a gradient of the mean induction threshold m (i.e., the predator density

where each prey individual expresses the defended phenotype with probability 0:5). The gradient corresponds to the right-hand side of a graph similar to

that in Fig. 6 (but without overcompensation), that is it crosses the ‘outer’ stability boundary. As m increases (and moves away from the domain of

stability) the dynamics change from a stable equilibrium to stable limit cycles with either integer (distinct points) or non-integer (closed curve) period and,

finally, to chaos (complex, ‘ragged’ plots). Parameters: a ¼ 0:4, b ¼ 0:75, b ¼ 0:4, c ¼ 0:2, l ¼ 2, s2 ¼ 4.
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case where s2! 0 and m ¼ ~P (see Eq. (9)). In Křivan’s
model, population dynamics follow Lotka–Volterra cycles
with only one prey phenotype. These cycles are neutrally
stable, but their amplitude is limited because they cannot
cross the threshold predator density ~P. In our model, in
contrast, the system performs chaotic oscillations with
predator density constantly crossing the value P ¼ ~P due
to overcompensation.

In general, our results are in line with those of previous
models. For a large parameter range, they support the
traditional view that prey behavior stabilizes predator–prey
dynamics. This view has been laid down in early papers on
refuges by Hassell and May (1973), Maynard Smith (1974)
and Murdoch and Oaten (1975) and has since been
confirmed in a large number of studies (e.g., Ives and
Dobson, 1987; Sih, 1987; Ruxton, 1995; Gyllenberg et al.,
1996; Ruxton and Lima, 1997; Křivan, 1998; Ramos-
Jiliberto, 2003; Rinaldi et al., 2004; Vos et al., 2004).
However, recent work has shown that inducible defenses or
related mechanisms are not stabilizing in all cases. Several
mechanisms can lead to destabilization. For example,
McNair (1986) found that prey refuges can both increase
or decrease stability, depending in part on how prey in the
refuge influence the predators functional response. Kokko
and Ruxton (2000) pointed out that the dynamic effects of
predator-induced breeding suppression in small mammals
depend on details of the prey’s density-dependence at
equilibrium. Similarly, Ramos-Jiliberto et al. (2002)
showed that the effects of antipredator behavior depend
critically on details of the assumed costs. Finally, Luttbeg
and Schmitz (2000) reported a destabilizing effect of
flexible prey behavior and attributed this finding to time
delays created by their assumptions of non-overlapping
generations and imperfect information for the prey (see
also Underwood, 1999). To these destabilizing mechan-
isms, we here add the effects of multiple equilibria and
overcompensation.

4.2. Influence of defense costs on stability

Increasing the costs of the defense increases the minimal
strength of the defense required for stability. High defense
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costs tend to counteract the effect of low s2 by increasing
the effect of predator density on prey fitness (i.e., they
impede fulfillment of stability condition (13b)). Further-
more, high costs increase the likelihood of overcompensa-
tion. In these regards, defense costs are destabilizing.
However, high costs also decrease the likelihood of
multiple equilibria and are, in this regard, stabilizing.
These results are in line with previous studies that have
shown equivocal effects of defense costs on stability. In the
model by Ramos-Jiliberto and González-Olivares (2000),
high costs of refuge use increase stability. Similarly, Sih
(1987) and Ruxton (1995) noted that costs for the use of
refuges reduce the probability that the prey escapes from
predator control. However, Sih (1987) also found that costs
counteract the direct stabilizing effect of refuge use. In the
models by Ramos-Jiliberto et al. (2002) and Ramos-
Jiliberto (2003), costs are either stabilizing or destabilizing,
depending on the details of the model assumptions and
parameters.

4.3. Discussion of the model assumptions

We will now discuss some of the key simplifying
assumptions of our model. First, we assume that the prey
can express only two discrete phenotypes. Such discrete
polyphenisms do indeed exist both in morphological
(Lively, 1986) and life-history (Washburn et al., 1988;
Ślusarczyk, 1995) characters. A model with two discrete
phenotypes is also appropriate if the prey choose between
two alternative habitats (e.g., de Meester et al., 1999).
Nevertheless, many inducible defenses can be graded
according to the magnitude of predation risk (e.g.,
Kuhlmann and Heckmann, 1985; Tollrian, 1993). We
expect, however, that our results might also apply to
systems with a graded defense. This is because inducibility
of the defense influences population dynamics entirely
through the prey’s induction frequency, which indeed is a
graded and continuous function of predator density (Fig.
1). Furthermore, our threshold model captures an im-
portant property of inducible defenses in the wild, namely
that defended and undefended prey are usually present
simultaneously (see, Vos et al., 2004).

Second, in our model, the defense is the only stabilizing
mechanism. In particular, there is no direct density-
dependence. Neglecting density-dependence in order to
analyze other potentially stabilizing factors has a long
history in the study of Nicholson–Bailey type models (e.g.,
Hassell and May, 1973; Adler, 1993; Doebeli, 1997; see
also, Sih, 1987; Křivan, 1998). However, future studies
might investigate the interplay between inducible defenses
and other stabilizing mechanisms.

Finally, some discussion is warranted by our treatment
of constraints on phenotypic plasticity. The way our model
is formulated, constraints such as imperfect information
and developmental noise are summarized by the response
variance s2, which directly determines the effect of
plasticity at the population level. Therefore, the effects of
constraints on population dynamics are just the inverse of
the effects of inducibility. In particular, strong constraints
(large s2) lead to destabilization. A destabilization of
the dynamics due to imperfect information in the prey
has also been found by Luttbeg and Schmitz (2000), but
the underlying mechanisms (time-delays due to informa-
tion gathering of the prey) was different. Furthermore,
constraints on plasticity prevent optimal prey behavior.
This is not only true in the direct sense that prey
make mistakes in estimating or reacting to predator
density. It also means that there is no a priori optimal
value for the mean induction threshold m. Instead, m
should equal �1 for P4 ~P and þ1 otherwise (with ~P
being the predator density at which both prey phenotypes
have equal fitness, see Eq. (9)), because this minimizes
the probability of developing the ‘wrong’ phenotype. If m
were allowed to evolve in a temporarily heterogeneous
environment (with predator densities fluctuating above and
below ~P), its current value would reflect the history of
predator densities encountered by the prey’s ancestors (see,
Hazel et al., 1990, for a similar argument applying to
spatially heterogeneous environments). This is why we
treated m as a model parameter that can be chosen
arbitrarily and we investigated the population dynamics
for all possible values of m.
Furthermore, in treating m as a constant, we implicitly

assumed that evolution of m takes place on a time-scale
much larger than that of population dynamics. However, a
separation of ecological and evolutionary time-scales need
not always hold true (Thompson, 1998). Therefore, an
interesting extension of the present model would incorpo-
rate evolution of m into the dynamic equations of system
(7). For example, m could be modeled as a quantitative
genetic trait (Hazel et al., 1990, 2004). Preliminary results
suggest that, in this case, evolution of m leads to an
eventual destabilization of population dynamics and
induces cycles in both the population densities and the
value of m itself (Kopp, 2003).
4.4. Conclusions

In summary, the effects of inducible defenses on the
stability of predator–prey systems can be complex. In our
model, inducibility reduces the strength of the defense
required to stabilize the system, but it also increases the
likelihood of destabilization due to multiple equilibria or
overcompensation. Therefore, stability is greatest if the
defense is strong but not too strong, defense costs are low,
and the prey’s response variance is low but not too low. In
contrast to the effects on stability, inducibility almost
universally facilitates persistence. Most generally, our
results show that inducible defenses can have important
consequences not only for the fitness of individual
predators and prey, but also for the dynamics of
populations and communities.
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Ramos-Jiliberto, R., González-Olivares, E., 2000. Relating behavior to

population dynamics: a predator–prey metaphysiological model

emphasizing zooplankton diel vertical migration as an inducible

response. Ecol. Model. 127, 221–233.
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