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abstract: Levins’s fitness set approach has shaped the intuition of
many evolutionary ecologists about resource specialization: if the set
of possible phenotypes is convex, a generalist is favored, while either
of the two specialists is predicted for concave phenotype sets. An
important aspect of Levins’s approach is that it explicitly excludes
frequency-dependent selection. Frequency dependence emerged in a
series of models that studied the degree of character displacement
of two consumers coexisting on two resources. Surprisingly, the evo-
lutionary dynamics of a single consumer type under frequency de-
pendence has not been studied in detail. We analyze a model of one
evolving consumer feeding on two resources and show that, de-
pending on the trait considered to be subject to evolutionary change,
selection is either frequency independent or frequency dependent.
This difference is explained by the effects different foraging traits
have on the consumer-resource interactions. If selection is frequency
dependent, then the population can become dimorphic through evo-
lutionary branching at the trait value of the generalist. Those traits
with frequency-independent selection, however, do indeed follow the
predictions based on Levins’s fitness set approach. This dichotomy
in the evolutionary dynamics of traits involved in the same foraging
process was not previously recognized.
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In the presence of different resources, when should we
expect a generalist phenotype and when specialized phe-
notypes? This question has a long history in evolutionary
ecology (for reviews, see Futuyma and Moreno 1988; Wil-
son and Yoshimura 1994). One of the first answers to this
question, which is still widely accepted, was given by Levins
(1962) and is based on the shape of the fitness set, that
is, on the set of feasible phenotypes. A consumer feeding
on two different resources should be equally well adapted
to both of them, when the fitness set is convex (corre-
sponding to a weak trade-off). In this case, the fitness of
a consumer summed over the two resources is higher for
a generalist than for either of the two specialists. On the
other hand, in case of a concave fitness set (corresponding
to a strong trade-off), both specialists do better than a
generalist, and a consumer population is expected to spe-
cialize on either of the two resources.

A serious shortcoming of Levins’s approach is that it
explicitly excludes the possibility of both density-dependent
and frequency-dependent selection. These features cause the
fitness corresponding to a particular trait value to depend
on that trait value as well as on the frequency or abundance
of other trait values in the population. In this case, the fitness
landscape is not fixed anymore but changes with population
composition (Rueffler et al. 2004). Density and frequency
dependence arise in a natural way when resource con-
sumption and renewal are modeled explicitly. In this con-
text, frequency dependence has to be understood in a gen-
eralized sense. It can arise from direct interactions between
different phenotypes, but it can also be mediated by vari-
ables, such as resource densities, that depend on the com-
position of the consumer population.

MacArthur and Levins (1964) were the first to introduce
a model for the coevolution of two consumers feeding on
two resources with explicit dynamics. Their model was
analyzed by Lawlor and Maynard Smith (1976) using an
evolutionarily stable strategy (ESS) approach (Maynard
Smith 1982), put into a population genetics framework by
Lundberg and Stenseth (1985), and extended to more traits
by Abrams (1986). The evolution of a single consumer
was treated incompletely by these authors, maybe because
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it was considered trivial according to the predictions of
Levins’s earlier treatment. That this is far from true became
apparent in an article by Wilson and Turelli (1986). They
used a similar setting to explore the conditions under
which a population of homozygotes, specialized on one
resource, can be invaded by a new allele that causes the
heterozygote to be a generalist and the mutant homozygote
to be more specialized for another resource. The unex-
pected finding of Wilson and Turelli is that such an in-
vasion is possible even with marginal underdominance,
that is, when the efficiency of the heterozygote summed
over the two resources is lower than the same sum for
each of the two homozygotes. For a single diallelic locus,
marginal underdominance is equivalent to a strong trade-
off (Lundberg and Stenseth 1985; Wilson and Turelli
1986). Levins’s approach therefore would predict evolution
toward specialization. However, invasion of the hetero-
zygote can be seen as evolution in the direction of the
generalist. For a wide range of parameters, the new allele
does not go to fixation but coexists in a stable polymor-
phism. The finding of Wilson and Turelli is of particular
importance, because at population genetical equilibrium
the heterozygote has the lowest fitness, and any mechanism
preventing the production of the heterozygote is selected
for. Such convergence-stable fitness minima were named
“evolutionary branching points” by Metz et al. (1996a)
and Geritz et al. (1998).

Wilson and Turelli (1986) investigated the dynamics of
mutations with large phenotypic effect. A mutant arising
from a specialist for one resource immediately is a spe-
cialist for another resource, and both types can therefore
coexist in a protected dimorphism. Is it also possible to
obtain two specialists by accumulation of mutations with
small effects? In this article, we analyze the evolution of
a single consumer foraging on two resources with explicit
dynamics. Instead of formulating a population genetics
model, we assume clonal reproduction with rare muta-
tions. This allows us to use the toolbox of adaptive dy-
namics (Metz et al. 1992, 1996a; Geritz et al. 1998; Diek-
mann 2004). The assumption of clonal reproduction may
seem a limitation. However, in the limit of rare mutations
with small phenotypic effect and random mating, the re-
sults carry over to monomorphic diploid populations and
polygenic traits (Metz, forthcoming; Van Dooren, forth-
coming). In addition, this approach yields the same results
as models derived from quantitative genetics (Iwasa et al.
1991; Taper and Case 1992; Abrams et al. 1993b).

Lawlor and Maynard Smith (1976) and Wilson and Tu-
relli (1986) assumed a linear (Type I) functional response.
In our model, we assume that handling time is an im-
portant component of the foraging process and that there-
fore the resource uptake is governed by a saturating (Type
II) functional response. Because of this assumption, our

model involves more traits than those considered by earlier
authors (but see Abrams 1986), and the question arises
whether different traits involved in the foraging process
differ in their evolutionary dynamics. A major goal of our
article is therefore to compare the evolutionary dynamics
of different traits.

We find that the evolutionary dynamics of different traits
fall into two different categories. In one category, the dy-
namics is driven by frequency-dependent selection, while
in the other case, selection is frequency independent. For
traits under frequency-dependent selection, the trait value
of the generalist is approached for both weak and strong
trade-offs. In the first case it is the end point of evolution,
while in the latter case it is a branching point where pro-
tected polymorphisms can emerge by small mutational
steps. For traits experiencing frequency-independent selec-
tion, the classical predictions of Levins apply, although we
cannot use his methodology in general. For such traits, two
different consumers can generically not coexist.

The Model

In this section, we develop a population dynamical model
for a consumer feeding on two nutritionally substitutable
resources that are assumed to be homogeneously distrib-
uted in space. From this model, we will derive invasion
fitness that we use to investigate the evolutionary dynam-
ics. Table 1 gives an overview of all model parameters.

Population Dynamics

The population dynamics of the consumer and the two
resources are similar to those described by Wilson and
Turelli (1986). The consumer is an annual organism with
its population census after juvenile mortality. Consumer
densities are assumed to be constant within the foraging
season. The dynamics of the resources occur on a much
faster timescale and are followed in continuous time within
a year. Since the consumer density does not change on
this timescale, resource densities reach a within-year equi-
librium. We first introduce the dynamics of the consumer
as a function of the equilibrium densities of the resources
reached within a year. In a second step, we derive the
resource dynamics within a year and its equilibrium (cf.
Geritz and Kisdi 2004).

The recurrence equation for the consumer is given by

N p (a C � a C )N , (1)t�1 1 1 2 2 t

where the functional response Ci describes the amount of
resource of type i consumed as a function of resource
density. The constant ai is the conversion efficiency of
consumed resource into offspring. Thus, a linear numer-
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Table 1: Notation

Symbol Definition

ai Conversion efficiency of consumed resource into
offspring

bi Constant resource influx
Ci Consumer’s functional response
di Death rate of resource
ei Consumer’s search efficiency (area/time step)
fi Capture probability for an attacked resource item
Nt Consumer population density at time step t
pi Consumer’s probability of attack upon encounter

with resource
Ri Resource density (1/area)
tmi Manipulation time (needed for treatment of an

already captured resource item)
tpi Pursuit time (needed to catch an attacked resource

item)
s Search probability (fraction of time spent searching

for resources)
v Specialization coefficient � [0, 1]; determines

location on the trade-off curve
w Invasion fitness
z Strength of trade-off (!1, strong; 1, linear;

11, weak)

Note: The index i refers to one out of two possible resources.

ical response is assumed. Prey consumption is modeled
by means of a two-species version of Holling’s disk equa-
tion, which gives rise to a saturating (Type II) functional
response Ci for each resource i (Holling 1959):

ˆe R p fi it i iC p , (2)i ˆ ˆ1 � e R p (t � f t ) � e R p (t � f t )1 1t 1 p1 1 m1 2 2t 2 p2 2 m2

for . We use a rather detailed version of Holling’si � {1, 2}
equation, as described in Case (2000). In many biological
systems, not all elements will be of importance. Such a
detailed model can be adapted by simplification to systems
where only a subset of parameters is relevant. The number
of encountered prey per time step is the product of search
efficiency ei ( ) and equilibrium resourcearea/time step
density ( ) in a given year t. This introduces aR̂ 1/areait

time dependence into the functional responses, but we
suppress the time index for clarity. The search efficiency
ei depends on the speed of the consumer while searching
for prey, its search area, and its ability to detect a prey
item within the search area. Upon encounter, the con-
sumer decides to attack the prey with probability pi.
Throughout this article, we assume that consumers behave
opportunistically. Encountered prey is always attacked, and
therefore . Hence, we will omit the p’s fromp p 1 p p1 2

now on. In a follow-up article, we will incorporate flexible
diet choice. The capture probability fi describes the prob-

ability that an attacked prey is actually subdued. The han-
dling time consists of two components: the pursuit time
tpi and the manipulation time tmi . The pursuit time is the
time needed to get hold of a prey once it is detected.
Caught prey might still need treatment before it can be
consumed; the duration of this treatment is the manip-
ulation time. Note that the denominators of C1 and C2 are
identical and can be factored out. This factor, to be called
search probability,

1
s p , (3)ˆ ˆ1 � e R (t � f t ) � e R (t � f t )1 1t p1 1 m1 2 2t p2 2 m2

is the fraction of a time step that is not spent handling
prey but left for searching prey. We can therefore write
equation (1) as

ˆ ˆN p s(a e R f � a e R f )N . (4)t�1 1 1 1 1 2 2 2 2 t

If both pursuit and handling times are negligible, then
and equation (4) describes the consumer’s populations p 1

dynamics according to a linear (Type I) functional response.
If only the pursuit time is negligible, the rather complicated
formulas for the functional response and search probability
simplify to the more familiar formulas ˆC p (e R )/(1 �i i it

and , re-ˆ ˆ ˆ ˆe R t � e R t ) s p 1/(1 � e R t � e R t )1 1t m1 2 2t m2 1 1t m1 2 2t m2

spectively (e.g., Abrams 1986, 1987; there fi is incorporated
into ei).

The within-year dynamics of the resources are given by

dRit p b � d R � C N , i � {1, 2}, (5)i i it i tdt

where t denotes time within a foraging season. We assume
that the production of the resources is independent of their
abundance. This might be the case when prey population
size is more determined by migration (e.g., prey that is
leaving a refuge at a constant rate) or for seeds or fruits
produced by trees. The parameter bi denotes the constant
influx of a resource and di its death rate. Since we assume
consumer densities Nt to be constant within the foraging
season, we can give the following implicit description of

, the resource equilibria reached in year t, using equa-R̂it

tions (2) and (3):

biR̂ p , i � {1, 2}. (6)it d � se f Ni i i t

In order to calculate the equilibria of the consumer and
resource dynamics across years, we have to solve equations
(1) and (5) simultaneously, using equation (2). The
lengthy analytical expressions are not shown here.
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Figure 1: Trade-off curves for capture probability f (a) and manipulation time tm (b). The number next to each curve is the parameter z determining
the strength of the trade-off. Note that for capture probability, the phenotype set (i.e., the set of possible phenotypes) lies below the trade-off curve
and that the opposite holds true for manipulation time. The trade-off curve is parameterized in such a way that corresponds to a specialistv p 0
for resource 1 and corresponds to a specialist for resource 2. Therefore, the two trade-off curves are parameterized in opposite directions.v p 1
Circles halfway along the trade-off curves correspond to the generalist with . Other parameter values: , ,v p 0.5 t p (1, 1) t p (0.5, 0.5)mmax mmin

.f p (1,1)max

Trade-Offs

When a consumer feeds on two resources, trade-offs will
occur almost inevitably. We refer to the boundary of the
set of feasible phenotypes as the trade-off curve (see fig.
1). Beyond the trade-off curve, either no genetic variation
occurs or no viable offspring can be produced. Mutations
that lead to an increase in efficiency for both resources
are certainly favored by selection and cause the popula-
tion’s distribution of trait values to shift closer to the trade-
off curve. Once the trade-off curve is reached, a mutation
enhancing the consumer’s efficiency for resource 1 will
decrease its efficiency for resource 2. From then on, the
population’s distribution of trait values will stay close to
the trade-off curve relative to the size of the mutational
steps. We idealize this with the assumption that, after ap-
proaching it, the evolutionary dynamics proceeds along
the trade-off curve. We define the trade-off curve as a
function x2(x1) in the (x1, x2)-space, where x represents
any of the traits we consider evolvable (table 2). To simplify
the analysis, we parameterize the trade-off curve in one
parameter v, called the specialization coefficient, which
varies continuously between 0 and 1. Each v determines
a pair of trait values lying on the trade-offx p (x , x )1 2

curve in such a way that corresponds to a specialistv p 0
for resource 1 while corresponds to a specialist forv p 1
resource 2 (fig. 1).

We consider five different trade-offs (listed in table 2):

first, between the capture probabilities f1 and f2; second,
between the search efficiencies e1 and e2; third, between
the manipulation times tm1 and tm2; fourth, between the
pursuit times tp1 and tp2; and fifth, between conversion
efficiencies a1 and a2. Specialization for a certain resource
i corresponds to an increase in aiCi (see eq. [1]). This is
achieved when either tpi or tmi is decreasing or when fi , ei,
or ai is increasing. Therefore, we have to parameterize the
trade-off curve for tmi and tpi in the opposite direction to
that for fi , ei , and ai (see fig. 1).

The curvature of the trade-off curve is determined by
a parameter z in such a way that gives rise to a convexz 1 1
phenotype set (bounded by weak trade-off) while z ! 1
gives rise to a concave phenotype set (bounded by a strong
trade-off; fig. 1). For numerical calculations, we use one
of the following parameterizations resulting in the trade-
off curves of figure 1: for , we usex � {a, e, f } x(v) p

, while for we use1/z 1/z[x (1 � v) , x v ] x � {t , t }1 max 2 max p m

, where1/z 1/zx(v) p [x � x (1 � v) , x � x v ]1 max 1 min 2 max 2 min

, , , and are positive constants.x x x x1 max 1 min 2 max 2 min

Throughout the article, we use both vectors x p (x , x )1 2

and specialization coefficients v to characterize a pair of
trait values lying on the trade-off curve.

Evolutionary Dynamics

A mutant differs from the resident in its position on the
trade-off curve. A mutant phenotype is indicated by v′,
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Table 2: Overview of traits considered evolvable

Trait dim (I)a Selection

Conversion efficiency, a 1 Frequency-independent
Search efficiency, e 2 Frequency-dependent
Capture probability, f 2 Frequency-dependent
Manipulation time, tm 1 Frequency-independent
Pursuit time, tp 1 Frequency-independent

a Dimensions of feedback environment I.

giving rise to . We assume that mutations are′ ′ ′x p (x , x )1 2

rare and of small effect. Because of the first assumption,
the ecological and evolutionary timescales are separated:
a population has reached its ecological equilibrium before
a new mutant arises. The fate of a mutant is determined
by its invasion fitness, that is, its per capita growth rate
when it is still rare in a population dominated by a resi-
dent. For , invasion fitness is given byx � {f, e, t , t }m p

′ ′ ′ˆ ˆ ˆ ˆw(v , v) p a C (v , R (v), R (v)) � a C (v , R (v), R (v)).1 1 1 2 2 2 1 2

(7)

If conversion efficiency a is evolving, the ai are a function
of v′ and not of the functional responses Ci. Initially, the
mutant has no influence on the two resource levels. There-
fore, the resource levels are a function of the resident’s
trait value v only. By , we denote resource equilibriaR̂ (v)i

across years set by a consumer with trait value v and equi-
librium population (eq. [6]). Mutants withN̂(v)

have a positive probability of invasion, while′w(v , v) 1 1
mutants with are doomed to extinction. By′w(v , v) ! 1
definition, for any resident at population dynamical equi-
librium, .w(v, v) p 1

The direction of evolutionary change is derived from
the fitness gradient, that is, the first derivative of the fitness
function (eq. [7]) with respect to the mutant’s trait (see,
e.g., Geritz et al. 1998). Trait values v∗ where the fitness
gradient equals 0 are of special interest:

′ ∗�w(v , v )
p 0. (8)′ F

′ ∗�v v pv

Following Metz et al. (1996a) and Geritz et al. (1998), we
call them “evolutionarily singular points.” Singular points
v∗ can be classified according to two independent prop-
erties, convergence stability and invadability (Geritz et al.
1998; Rueffler et al. 2004). The first property determines
whether a singular trait value is reachable from nearby
(Eshel 1983; Christiansen 1991; Abrams et al. 1993a; Geritz
et al. 1998), while the second property determines whether
any consumer with a trait value other than v∗ can increase
in frequency when initially rare (Maynard Smith 1982). A

singular trait value that is both convergence stable and
uninvadable is called a “continuously stable strategy” (CSS;
Eshel 1983). It is a final stop of evolution. A convergence-
stable and invadable trait value is called an “evolutionary
branching point” (Metz et al. 1996a; Geritz et al. 1998).
At these points, selection becomes disruptive and favors
increased genetic variation.

Note that traditional definitions of frequency-dependent
selection have little discriminating power when applied to
invasion fitness expressions such as equation (7). In pop-
ulation genetics, frequency dependence is defined as the
dependence of selection coefficients on allele frequencies.
Invasion fitness does not consider this dependence, since
mutants are assumed to be rare and the frequency of the
resident is always 1. Lande’s (1976) definition of frequency
dependence as a dependence of fitness on the population
mean trait value includes all cases of density-dependent
selection where a mutant’s fitness depends on the equi-
librium population size of the resident. In the next section,
we introduce the concept of the feedback environment
and its dimensionality. This provides us with a tool to
define frequency dependence for density-regulated pop-
ulations as a condition allowing for rarity advantage and
protected polymorphism.

Feedback Environment

Whether a certain mutation is beneficial or not depends
on the trait value of the mutant and on the environment
it experiences, which is set or influenced by the resident
population. For example, if the probability of invasion of
a mutant type is determined in direct contests with in-
dividuals of another common type, then those other in-
dividuals and their trait values can be viewed as the en-
vironment a mutant experiences. Fitness can be written
as a function of the trait values of the mutant and the
resident: . In the model studied here, the interaction′w(v , v)
between individuals is not direct but indirect via com-
petition for the same resources. In this case, fitness is
affected by the abundances of the resources (eq. [7]),
which in turn are determined by the trait value of the
resident type (eq. [6]). We refer to those components of
the environment that mediate the interaction between in-
dividuals as feedback environment and collect them in an
n-dimensional vector I (Heino et al. 1997, 1998; Diekmann
et al. 2003; Meszéna et al., forthcoming). With a slight
abuse of notation, we can rewrite invasion fitness as a
function of the mutant’s trait value and the feedback en-
vironment I as it is determined by the trait value of the
resident: . The dimension n of the feedback en-′w(v , I(v))
vironment indicates via how many different variables the
interaction between resident and mutant is mediated. In
the present case, it seems intuitive to equate I with the
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two-dimensional vector ( ). If, however, by someˆ ˆR , R1 2

mechanism always equals , then a scalar is sufficientˆ ˆR R1 2

to describe the feedback environment. The dimensionality
of the feedback environment has important evolutionary
consequences. Whenever the feedback environment can
be represented by a scalar, robust coexistence is impossible
(Metz et al. 1996b; Meszéna et al., forthcoming). If, ad-
ditionally, invasion fitness w is a monotone function in I,
then the evolutionary dynamics can be analyzed by max-
imizing an optimization criterion (Metz et al. 1996b). We
call selection in one-dimensional feedback environments
“frequency independent.” On the contrary, if two or more
variables are needed to describe the feedback environment,
that is, if I is a vector of dimension two or higher, fitness
depends on the relative values of the interaction variables
collected in I, and optimization is generally impossible.
We call selection in two-or-more-dimensional feedback
environments frequency dependent (cf. Heino et al. 1998).
We note that our definition differs from the classical def-
inition of frequency dependence as used in population
genetics. In the next paragraph, we show how a two-
dimensional feedback environment allows for a rarity ad-
vantage and coexistence in protected polymorphisms.

Results

One of our main results is that the dimension of the feed-
back environment I depends on the trait that is considered
to be evolvable. In order to illustrate the mechanism be-
hind this result, we derive it for the special (and easy) case
where all traits that are not considered evolvable are sym-
metric. In appendix B, we prove the result for the general
case without the symmetry assumption. Let us first assume
that genetic variation occurs for tm, tp, and a and not for
f and e. The symmetry assumption amounts to ,f p f1 2

, , and . Given this symmetry, wee p e b p b d p d1 2 1 2 1 2

immediately see from equation (6) that , inde-ˆ ˆR p R1 2

pendent of the amount of genetic variation and of the
degree of asymmetry in the traits tm, tp, and a. The reason
for this effect is that these traits influence both resource
equilibria in the same way via the consumer density N
and the search probability s. A population that is com-
pletely specialized on resource 1 in terms of these traits
(i.e., , , ) does not cause resourcet K t t K t a k am1 m2 p1 p2 1 2

1 to be more depleted than resource 2. Let us now in-
vestigate the case where evolution occurs for f or e and
not for the other variables. These traits do have a resource-
specific effect (see eq. [6]). If or , then willˆf 1 f e 1 e R1 2 1 2 1

be lower than and vice versa (see eq. [6]). Hence, inR̂2

this case we need two scalars in order to track changes in
the resource equilibria while the consumer population
evolves. We can now easily see how the dimension of the
feedback environment affects the possibility of frequency

dependence. If specialization in the consumer makes the
resource it preys on more effectively less abundant, then
a mutant that specializes on an underused resource will
enjoy a rarity advantage. This mechanism clearly does not
work in one-dimensional feedback environments where
specialization in the consumer has no resource-specific
effects.

Traits with Two-Dimensional Feedback Environment

We start with the traits of this category because they directly
correspond to the traits considered by Lawlor and Maynard
Smith (1976), Lundberg and Stenseth (1985), Abrams
(1986), and Wilson and Turelli (1986). Only the evolution
of capture probability f is described in detail, since the results
for search efficiency e are qualitatively identical.

Invasion fitness is given by equation (7) with

′ˆe R fi i iC p . (9)i ′ ′ˆ ˆ1 � e R (t � f t ) � e R (t � f t )1 1 p1 1 m1 2 2 p2 2 m2

Given some symmetry constraints, we can prove that the
evolutionary dynamics of capture probability f and search
efficiency e are driven by the effect of mutations on the
linear terms of the functional response (see app. A). This
result is confirmed numerically for cases where the sym-
metry constraints are not met. It is therefore sufficient to
study a fitness function derived from a linear functional
response,

′ ′ ′ˆ ˆw(f , f ) p a e R f � a e R f , (10)1 1 1 1 2 2 2 2

which is equivalent to the ones studied by the authors
referred to at the beginning of this section.

Figure 2a shows the evolutionary dynamics as a function
of the parameter z, the strength of the trade-off curve.
The figure is based on numerical calculations where all
parameters besides f are assumed to be equal for both
resources. In appendix A, we show that the qualitative
pattern can be derived partly analytically. Asymmetric pa-
rameter values do not change the results qualitatively but
merely lead to asymmetries in figure 2. Here we give a
verbal explanation of the results. When the trade-off is
weak ( ), the generalist’s trait is a global attractor ofz 1 1
the evolutionary dynamics, and once it is reached, it can-
not be invaded by any other mutant. Hence, it is a unique
CSS. The mechanism behind this dynamics is as follows.
Mutants that are more similar to the generalist than to
the resident in terms of their capture probabilities are able
to invade. Such mutants benefit in two ways. First, because
of the weak trade-off, mutants closer to the generalist have
a higher overall capture probability than the resident. By
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Figure 2: Bifurcation diagrams for capture probability f (a) and manipulation time tm (b). Different types of lines indicate the location and type
of evolutionarily singular values of the specialization coefficient v as a function of the bifurcation parameter z, the strength of the trade-off curve.
Arrows give the direction of evolutionary change. The hatched area indicates parameter combinations corresponding to nonviable populations.
Other parameter values for both plots: , , , , ; for (a) only: ,a p (1, 1) t p (0.1, 0.1) e p (0.05, 0.05) b p (5,000, 5,000) d p (0.1, 0.1) f p (1,1)p max

; for (b) only: , , . See text for further explanation.t p (0.1, 0.1) f p (1, 1) t p (0.5, 0.5) t p (1, 1)m mmin mmax

overall capture probability we mean the sum of the
resource-specific capture probabilities weighted by the
traits assumed to be constant; hence, ′ ′a e f � a e f 11 1 1 2 2 2

. When ai and ei are equal for both re-a e f � a e f1 1 1 2 2 2

sources, this sum has a maximum at the generalist’s trait
value with . Second, as explained in the previousf p f1 2

section, a resident that is specialized in terms of its capture
probability on one resource causes that resource to be
relatively rare compared to the resource it is not specialized
on. Mutants that are more similar to the generalist benefit
in such a situation because they make better use of the
less exploited resource while decreasing their success on
the more exploited resource. We want to emphasize that
it is this second feature that introduces frequency depen-

dence into the fitness of the mutant. Once the generalist
is predominant, it cannot be invaded anymore, because
any possible mutant would have a lower overall capture
probability, while no rarity advantage exists because both
resources are equally abundant.

When the trade-off is strong ( ), the trait value ofz ! 1
the generalist is still convergence stable; however, in con-
trast to the preceding scenario, it loses its uninvadability
when predominant and therefore turns into a branching
point. With a strong trade-off, a mutant that is more sim-
ilar to the generalist suffers a loss in its overall capture
probability because this sum now has a minimum at the
trait value of the generalist. This imposes a selection com-
ponent toward further specialization. However, overall, the
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generalist remains attracting as long as the gain from be-
coming more specialized on the underused resource more
than outweighs the loss from a decrease in overall capture
probability. Once the generalist is predominant, any mu-
tant can invade. In this situation, a mutant that is deviating
from the generalist benefits from an increase in its overall
capture probability on resources that are equally abundant.
However, when the mutant increases in frequency, the
resource that it captures more efficiently becomes less
common. This gives a benefit to the generalist again. The
mutant does not go to fixation, and the two types can
coexist in a protected polymorphism. Subsequently, only
mutants that are more specialized than either of the two
residents are able to invade. This is a phase of character
displacement driven by resource competition. In case of
haploid organisms, the dimorphic evolution results in a
pair of two resident types, each completely specialized on
one resource. This can be derived from the geometrical
argument presented by Rueffler et al. (2004) and is also
described by Lawlor and Maynard Smith (1976).

The basin of attraction of the generalist, that is, the
range of initial trait values from which populations con-
verge toward the generalist’s trait over evolutionary time,
decreases with increasing strength of the trade-off (i.e.,
with lower values of z). For very strong trade-offs, only
populations that already perform reasonably well on both
resources will evolve toward the generalist (fig. 2a). When
the initial population is relatively specialized on one re-
source, selection will drive it toward further specialization.
In this situation, the gain of further specialization due to
an increase in overall capture probability more than com-
pensates for the detrimental effect of improving on an
already overexploited resource. Although in this case a
polymorphism cannot emerge by small mutational steps
at a branching point, coexistence is possible for types that
are sufficiently different from each other. This can, for
instance, be the case when immigrants specialized for one
resource enter a population of specialists for the other
resource. For very strong trade-offs ( ), the generalistz K 1
may even turn into an evolutionary repeller. However, for
parameters we checked, the repeller lies in a parameter
region where the population is not viable (see fig. 2a).

Invasion fitness for search efficiency e is given by equa-
tions (7) and (9), where the ei are labeled by a prime
instead of the fi . Obviously, the structure of the fitness
function does not change, and therefore it results in the
same bifurcation diagram (fig. 2a).

Traits with One-Dimensional Feedback Environment

As in the previous section, we will describe the dynamics
of one trait, manipulation time tm, in detail. The other
two traits belonging to the same category, pursuit time tp

and conversion efficiency a, show qualitatively identical
evolutionary dynamics.

In contrast to the traits in the previous section, a mu-
tation in tm affects only the denominator of the functional
response Ci and hence search probability s (see eq. [3]).
Invasion fitness is given by

′ ′ ˆ ˆw(t , t ) p s (a e R (t )f � a e R (t )f ), (11)m m 1 1 1 m 1 2 1 2 m 2

where

1′s p . (12)′ ′ˆ ˆ1 � e R (t � f t ) � e R (t � f t )1 1 p1 1 m1 2 2 p2 2 m2

The evolutionary dynamics for manipulation time is
shown in figure 2b. For weak trade-offs ( ), the gen-z 1 1
eralist with is again a unique CSS, while fort p tm1 m2

strong trade-offs ( ), the generalist turns into an evo-z ! 1
lutionary repeller. In this case, the degree of specialization
of the initial population decides whether selection leads
to complete specialization on resource 1 or resource 2.
The mechanism behind these results is simple. Any mutant
with (eq. [3]) has and is therefore able′ ′s 1 s w(t , t ) 1 1m m

to invade. This is equivalent to demanding ′ˆe R f t �1 1 1 m1

. Given that the two re-′ˆ ˆ ˆe R f t ! e R f t � e R f t2 2 2 m2 1 1 1 m1 2 2 2 m2

source equilibria and are equal (as is the case whenˆ ˆR R1 2

all fixed parameters are symmetric), evolution minimizes
. For weak trade-offs, the generalist mini-′ ′e f t � e f t1 1 m1 2 2 m2

mizes this weighted sum, while for strong trade-offs, the
two specialists correspond to minima. A mutant can enjoy
an advantage when it has increased its search probability s
and therefore can live on fewer resources than the resident,
but not because it is rare. At the bifurcation point ( ),z p 1
the fitness landscape is completely flat and all traits are
selectively neutral, indicated by a vertical line in figure 2b.
However, this degeneracy occurs only when symmetric pa-
rameter values are assumed. The fact that at the bifurcation
of a CSS into a repeller two independent properties, con-
vergence stability and invadability, change simultaneously,
is due to the absence of frequency dependence.

Although these results are in accordance with the pre-
dictions based on Levins’s fitness set approach, we cannot,
in general, use his methodology to achieve them. Only under
the assumption of symmetry in certain parameters are we
able to derive an optimization principle (see app. B) that
is equivalent to what Levins called the adaptive function.

The fitness function for pursuit time is structurally iden-
tical to equations (11) and (12) and therefore shows a
qualitatively identical bifurcation pattern (fig. 2b). When
mutations affect a, invasion fitness is given by

, with Ci as in equation (2). Al-′ ′ ′w(a , a) p a C � a C1 1 2 2

though the fitness function is structurally different, it results
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in the same bifurcation pattern as in the preceding cases,
and we are again able to derive an optimization principle
when certain parameters are symmetric (see app. B).

Discussion

In this article, we analyzed a model for the evolutionary
dynamics of five different foraging-related traits of a con-
sumer feeding on two resources. Similar models have been
used extensively in the study of character displacement
between two competing consumer types (MacArthur and
Levins 1964; Lawlor and Maynard Smith 1976; Lundberg
and Stenseth 1985; Abrams 1986). Here we concentrate
on the evolution of a consumer population consisting of
only one type. Our main results are that the evolutionary
dynamics of such a monomorphic population can differ
strongly for different traits (fig. 2; table 2) and that for
some traits polymorphisms can emerge through a series
of mutations of small effect, while for others coexistence
of different types is generically impossible.

At first glance, the different traits considered to be sub-
ject to evolutionary change seem to be mechanistically
similar, and the discovered dichotomy in the evolutionary
dynamics was, to our knowledge, not recognized previ-
ously. However, there seems to have been a certain aware-
ness, at least since the early 1970s, that coexistence cannot
be mediated by just any trait. For instance, from Mac-
Arthur’s competition coefficient (e.g., MacArthur 1972;
Schoener 1974), one can infer that for a model with linear
functional response, coexistence is possible only if con-
sumers differ in their search efficiencies and that differ-
ences in conversion efficiency are not sufficient. Vincent
et al. (1996) found similar results for a model with Type
II functional response: types that differ only in either han-
dling time or conversion efficiency cannot coexist on an
ecological timescale, while differences in search efficiency
do suffice to mediate coexistence. Whether a trait can
mediate coexistence or not reflects whether it causes in-
teractions to be frequency dependent or not. It is this
perspective that allows us to gain insight into the mech-
anism of how different traits affect coexistence.

If selection is frequency dependent, that is, for capture
probability f and search efficiency e, polymorphisms can
emerge from a monomorphic population at an evolution-
ary branching point. This happens for moderately strong
trade-offs. In this case, a mutant that is approaching the
generalist’s trait value is able to invade. Such a mutant
gains from improving on the underused resource, and this
directional force toward the generalist is stronger than the
disruptive force stemming from the strong trade-off. This
is the mechanism discovered by Wilson and Turelli (1986)
in the case of marginal underdominance, where a rare
heterozygote corresponding to a generalist invades a res-

ident homozygote corresponding to a specialist. We
showed that evolution toward the generalist can occur
through a series of small mutational steps. Convergence
toward the generalist with subsequent disruptive selection
was not recognized by Lawlor and Maynard Smith (1976)
and Abrams (1986) because strong trade-offs were a priori
identified with immediate specialization. Lundberg and
Stenseth (1985) formulated a population genetics version
of the model of Lawlor and Maynard Smith where they
explicitly considered the evolution of a single consumer.
They also postulated immediate specialization in connec-
tion with strong trade-offs because they overlooked the
variable character of the fitness landscape with changing
gene frequencies. Following the classical tradition, they
envisaged evolution on a fitness landscape that corre-
sponds to equilibrium gene frequencies and not to the
present gene frequency (in the adaptive function [eq. (14)
of Lundberg and Stenseth 1985], the resource levels cor-
responding to the gene frequency of the resident popu-
lation have to be inserted instead of the resource levels
corresponding to the equilibrium gene frequency). Diek-
mann et al. (2005) investigate a very similar model where
the trade-off is in the uptake coefficients for two different
resources. Their model assumes clonal reproduction as
well, but it leaves out the assumption that mutations are
necessarily rare, with a narrow, continuous distribution of
trait values as a result. They also find that evolutionary
branching occurs for strong trade-offs.

Evolutionary change in the other three traits, pursuit
time tp, manipulation time tm, and conversion efficiency
of resources into offspring a, is not subject to frequency-
dependent selection. In these cases, an optimal consumer
exists that is favored by selection over all other possible
types, and generically only one consumer can exist on two
different resources. If the trade-off is weak, the optimal
trait value corresponds to a generalist, and if the trade-
off is strong, the optimal trait value corresponds to either
of the two specialists, with the outcome depending on
initial conditions. Although these predictions are in ac-
cordance with those derived by Levins (1962), we want to
emphasize that we could generally not fall back on Levins’s
approach. Only under some symmetry assumptions did
we succeed in deriving optimization principles that are
essential elements of Levins’s methodology.

Our results show that two aspects are decisive for the
evolutionary dynamics of foraging traits: the shape of the
trade-off and the dimension of the feedback environment.
If one wants to relate our results to real organisms, these
features have to be studied. Considerable effort has been
made with respect to the shape of the trade-off (Benkman
1993; Schluter 1993, 1995; Robinson 2000), although it is
only recently that more powerful methods have been de-
veloped to infer the shape from empirical data (Hatfield
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and Schluter 1999; O’Hara Hines et al. 2004). The ten-
dency in the cited studies is that trade-offs are indeed
strong rather than weak, which fulfills a necessary require-
ment for diversification in our theory.

Two extensions of the model presented here seem ob-
vious. First, foraging-related traits without doubt evolve
not separately, as envisaged in our model, but simulta-
neously. Simultaneous evolution of several traits will alter
the results, at least quantitatively. For instance, a decrease
in handling time for a certain resource will be accompa-
nied by an increase in search efficiency and capture prob-
ability. We can therefore expect that the feedback envi-
ronment generally is not one-dimensional. Second, like all
our predecessors, we assumed that the consumer does not
choose between different prey. Upon encounter, the con-
sumer always attacks both types of prey, regardless of its
degree of specialization for one prey or the other. Abrams
(1986) remarks that strongly asymmetric handling times
are expected to cause exclusion of one resource from the
diet, with specialization for the remaining one as a con-
sequence. Hence, strong interactions result between the
evolutionary dynamics of morphological and physiological
traits on the one hand and behavioral traits, such as diet
choice, that can change on an ecological timescale on the
other hand. These interactions will be the subject of a
follow-up article.

To summarize, our results show that, depending on the

trait that is considered to evolve, selection is either fre-
quency dependent or frequency independent in the same
ecological system. For these two cases, the evolutionary
dynamics of specialization can be in opposite directions.
While a monomorphic population subject to frequency-
dependent selection and with a strong trade-off evolves to-
ward the generalist’s trait value, the same population will
evolve toward a specialist for a trait not subject to frequency-
dependent selection. Under frequency-dependent selection,
a monomorphic population can split at an evolutionary
branching point. If the genetic system and/or mating system
does not favor the production of intermediate phenotypes,
or if a mechanism evolves that disfavors the production of
such types, subsequent evolution will lead to a dimorphic
population consisting exclusively of two specialists.
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APPENDIX A

Analytical Results

Given the symmetries and , we can prove that the evolutionary dynamics of capturea p a p a t p t p t1 2 m1 m m2

probability f is driven by the effects of mutations on the linear terms of the functional response. To show this, we
take the derivative of equation (7) with respect to :′f1

′ ′ ′ˆ ˆ ˆ ˆ�w(f , f ) a[e R � e R (d f /d f )](1 � e R t � e R t )1 1 2 2 2 1 1 1 p1 2 2 p2p . (A1)2′ ˆ ˆ�f 1 � e R (t � f t ) � e R (t � f t )[ ]1 1 1 p1 1 m 2 2 p2 2 m

The sign of this derivative is determined solely by the first term in brackets in the numerator. This is exactly the
derivative of the fitness function with linear functional response. Numerical explorations show that the qualitative
behavior of the model, that is, the number and type of singular points, does not change if we break the above symmetry
constraints. A similar argument holds for search efficiency e.

The bifurcations shown in figure 2 are calculated numerically. Here we derive analytical results to underpin the
robustness of the numerical results. From a geometrical argument presented in Rueffler et al. (2004), we can derive
that weak trade-offs allow for only uninvadable singular points (CSSs and Garden of Eden points), while strong trade-
offs allow for only invadable singular points (repellers and branching points). The prerequisite for this conclusion is
that those trait combinations (x, y) that are initially selectively neutral with respect to a given resident trait value lie
on a straight line in the (f1, f2) plane. We call such lines invasion boundaries. They are implicitly given by the fitness
function (eq. [7]) set equal to 1, that is,



Evolution of Resource Specialization 91

ˆ ˆae R x � ae R y1 1 2 21 p , (A2)ˆ ˆ1 � e R (t � xt ) � e R (t � yt )1 1 p1 m 2 2 p2 m

which after rearranging becomes a linear equation in x with a negative slope:

ˆ ˆ ˆ1 � e R t � e R t e R1 1 p1 2 2 p2 1 1y p � x . (A3)ˆ ˆe R (a � t ) e R2 2 m 2 2

It is easy to show that is a necessary prerequisite for a viable population. Hence, equation (A3) has a(a � t ) 1 0m

positive intercept. Setting equation (A1) equal to 0 gives us a characterization of singular points f ∗:

ˆd f e R2 1 1p � . (A4)ˆd f e R1 2 2

Under the additional symmetry constraints that for and the assumption that impliesx p x p x x � {e, b, d} f p f1 2 1 2

, this is fulfilled for ( ) with . In a next step, we show that such an intermediate singular∗ ∗ ∗ ∗d f /d f p �1 f , f f p f2 1 1 2 1 2

point is a unique CSS for weak trade-offs. From and follows∗ ∗ ˆ ˆ(f � f ) ⇒ (d f /d f � �1) (f � f ) ⇒ (R � R )1 1 2 1 1 1 1 2

. Hence, the fitness gradient is positive when and negative when . This∗ ∗ ∗ˆ ˆ(f � f ) ⇒ (R � d f /d f R � 0) f ! f f 1 f1 1 1 2 1 2 1 1 1 1

means that f ∗ is a globally attracting and unique CSS.
As mentioned above, the CSS loses its uninvadability when the trade-off becomes strong. Generically, a CSS becoming

invadable turns into a branching point (Metz et al. 1996a; Geritz et al. 1998; Rueffler et al. 2004). For our trade-off
parameterization, it is easy to show that the boundaries of the trait space are attracting in case of strong trade-offs.
Consequently, a repeller has to exist between the boundaries and the intermediate branching point. Numerical cal-
culations reveal a pitchfork bifurcation. It follows from standard bifurcation theory that a pitchfork bifurcation unfolds
into a fold bifurcation when asymmetries in the parameters are introduced.

APPENDIX B

Dimension of the Feedback Environment and Optimization

Fitness is a function of both a specific phenotype and its environment. In order to make this point operational, the
term “environment” has to be defined formally. The feedback environment I is an n-dimensional vector that contains
information on those aspects of the environment that are affected by a focal population and simultaneously feed back
by determining the current selection pressure that is acting on the population. Because of this eco-evolutionary feedback
loop, the environment, in a sense, coevolves with the traits in the population. On an ecological timescale, the defining
property of the feedback environment is that individuals become independent of each other when the feedback is
given as a function of time (Diekmann et al. 2003; Meszéna et al., forthcoming). On an evolutionary timescale, I
depends on the types present in the population and on a population dynamical attractor of that population. I then
contains the minimum number of scalars that is needed to make the growth rate of a focal individual independent
of the resident population. The dimension of I indicates via how many different environmental components the
interaction between individuals is mediated, and constitutes an upper limit for the number of potentiallydim (I)
coexisting types (e.g., Meszéna et al., forthcoming).

In our model, the interactions between individuals are mediated by the densities of the two resources and .ˆ ˆR R1 2

The upper limit for I and for the number of possibly coexisting types is therefore 2. Here we show that the dimension
of I reduces to 1 when individuals are allowed to differ only in tp, tm, and a, as is the case when we consider evolution
in these traits in populations monomorphic in e and f. To see this, let us consider a mutant v ′ with manipulation time

that is invading a resident community consisting of the two phenotypes v1 and v2 (the maximum number that can′tm

possibly coexist) with manipulation times and , resulting in the search probabilities s11 1 1 2 2 2t p (t , t ) t p (t , t )m m1 m2 m m1 m2

and s2 and equilibrium consumer densities and , respectively. Superscripts refer to consumer types, while subscripts1 2ˆ ˆN N
refer to resource-specific traits. We can derive I from the fitness function of the mutant, w(v ′, I(v1, v2)). This function
is given by equation (7), with the difference that the resource equilibria are determined by the two resident phenotypes
simultaneously (eq. [6]):
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bi1 2R̂ (v , v ) p , i � {1, 2}. (B1)i 1 1 2 2ˆ ˆd � e f (s N � s N )i i i

Note that the different traits influence the resource equilibria only through the search probabilities si and the consumeritmj

densities . From equation (B1), we can see that it is sufficient to consider as a function of time in order to
2i i iˆ ˆN � s Nip1

achieve independence between the growth rate of an individual and the resident community. This is a scalar, and hence
I is one-dimensional. The same holds true if the population is polymorphic in either tp or a. Note that populations
that are polymorphic in all three of these traits simultaneously still correspond to a one-dimensional I.

If the resident population is polymorphic in the capture probabilities, say, and , then the1 1 1 2 2 2f p (f , f ) f p (f , f )1 2 1 2

resource equilibria are given by

b b1 21 2 1 2ˆ ˆR (v , v ) p , R (v , v ) p .1 21 1 1 2 2 2 1 1 1 2 2 2ˆ ˆ ˆ ˆd � e (f s N � f s N ) d � e (f s N � f s N )1 1 1 1 2 2 2 2

Since the capture probabilities do have a resource-specific effect, we need to specify two numbers in order to achieve
independence between individuals: . Hence, the vector I does not reduce to a scalar but

2 2i i i i i iˆ ˆI p (� f s N , � f s N )1 2ip1 ip1

remains two-dimensional. The same result holds for search efficiency e.
A consequence of a one-dimensional vector I is that coexistence of two types is impossible. This can be seen from

the following argument (see also Meszéna et al., forthcoming). At population dynamical equilibrium of two species
with trait values v1 and v2,

i 1 21 p w(v , I(v , v )), i � {1, 2}. (B2)

For an arbitrary combination of two trait values, solving the system of equations (B2) for a one-dimensional I amounts
to solving a system of two equations in one unknown. Hence, no generic solution exists. By contrast, in case of two
dimensions, equation (B2) is a system of two equations in two unknowns, which can have a robust solution.

A one-dimensional feedback loop is a necessary prerequisite for the existence of an optimization criterion (Metz et
al. 1996b). However, we are able to find explicit optimization criteria only when some symmetry constraints are met.
When it is possible to collect those parameters of the fitness function that are determined by the resident and by the
mutant in different factors, we can obtain an optimization principle. Let us consider the case of manipulation time
tm. A mutation affects only search probability s. If , , and , we can rewrite equatione p e p e f p f p f d p d p d1 2 1 2 1 2

(12), after some rearrangement, as

1′s p . (B3)′ ′ˆ1 � {e/[d � sef N(t )]}[f(b t � b t ) � (b t � b t )]m 1 m1 2 m2 1 p1 2 p2

Any mutant with smaller than the resident’s is able to invade, and a value of v that minimizes this sum′ ′b t � b t1 m1 2 m2

cannot be invaded by any mutant and therefore corresponds to a CSS. Note that in deriving the optimization criterion
in this way, we do not need symmetry in b (“Traits with One-Dimensional Feedback Environment”). From the same
equation, we see that in the case of pursuit time tp, we have to minimize in order to find CSSs.′ ′b t � b t1 p1 2 p2

With the same symmetry constraint, we can rewrite the invasion fitness for a as

ef′ ′ ′w(a , a) p s (a b � a b ). (B4)1 1 2 2ˆd � sef N(a)

It follows that acts as an optimization criterion.a b � a b1 1 2 2
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