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ABSTRACT

We investigate adaptive evolution of a quantitative trait under stabilizing selection with a moving
optimum. We characterize three regimes, depending on whether (1) the beneficial mutation rate, (2) the
fixation time, or (3) the rate of environmental change is the limiting factor for adaptation. If the envir-
onment is rate limiting, mutations with a small phenotypic effect are prefered over large mutations, in
contrast to standard theory.

ADAPTATION is a key outcome of Darwinian evolu-
tion. However, only recently has adaptation become

a focus of population genetics theory (reviewed by Orr

2005a,b). A number of robust predictions about the
characteristics of ‘‘adaptive walks’’ (i.e., series of allelic
substitutions leading to a high-fitness genotype) have
been derived. Most studies (e.g., Gillespie 1983; Orr

1998, 2002) assume that selection is constant (arising
from a sudden change in the environment) and strong
relative to mutation (such that, most of the time, the
population is fixed for one genotype, and the ‘‘steps’’ of
the adaptive walk are well separated). Under these
conditions, the probability that any one beneficial mu-
tation is fixed during the next step of the adaptive walk
is proportional to its selection coefficient (Gillespie

1983). For example, if there are two potential beneficial
mutations with selection coefficients s1 and s2 (and equal
mutation rates), the probability that the first mutation
fixes in the next step is equal to s1/(s1 1 s2). As a con-
sequence, the average effect of mutations fixed during
subsequent steps decreases exponentially (i.e., early
steps are larger than later ones). This is true whether
mutations are characterized by their selection coef-
ficients (Orr 2002) or by their effects on the phenotype
(Orr 1998).

In contrast, very little is known about adaptation if
mutation is strong and the environmental change is
gradual rather than sudden. However, two recent arti-
cles suggest that these factors can have a marked effect
on the characteristics of adaptive walks. In a model of

DNA sequence evolution, Kim and Orr (2005) analyt-
ically showed that, if mutation is strong and selection
constant, the mutation with the largest selection co-
efficient will always fix first. In contrast, Bello and
Waxman (2006) used a quantitative genetic approach
to model adaptation of a polygenic trait under stabiliz-
ing selection with a moving optimum. These authors
observed that, in an infinite population, beneficial mu-
tations with small phenotypic effects tend to fix earlier
than those with large effects. However, they found no
such pattern for finite populations, and no explanation
for the phenomenon was given.

Although the models by Kim and Orr (2005) and
Bello and Waxman (2006) make rather different
assumptions, they are similar in at least one important
respect: Both assume that there is a small number of loci
where a beneficial mutation can happen. This makes it
possible to combine their two approaches. In this ar-
ticle, we analyze a two-locus version of the model by
Bello and Waxman (2006) and subject it to an analysis
similar to the one by Kim and Orr (2005). We investi-
gate the order of fixation of two beneficial mutations as
a function of the strength of mutation and the speed of
the environmental change. We recover all three regimes—
fixation probabilities proportional to the selection coeffi-
cients (Gillespie 1983), early fixation of large mutations
(Kim and Orr 2005), and early fixation of small muta-
tions (Bello and Waxman 2006)—in different areas of
parameter space. We are also able to explain the differ-
ent results by Bello and Waxman (2006) for finite vs.
infinite populations. We conclude that the mutation
rate and the speed of the environmental change are
important determinants for the genetics of adaptation.

The model: Following Bello and Waxman (2006),
we analyze the evolution of a quantitative trait z under
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Gaussian stabilizing selection with an optimal pheno-
type zopt(t) that changes over time (cf. Bürger 2000).
The fitness of an individual with phenotype z at time t
is given by

wðz; tÞ ¼ exp �s½z � zoptðtÞ�2
� �

; ð1Þ

where s . 0 determines the strength of selection. Due
to changes in the external environment, the optimal
phenotype zopt increases over time, according to

zoptðtÞ ¼
zmin for t , 0;
zmin 1 vt for 0 , t , t*ðvÞ;
zmax for t . t*ðvÞ;

8<
: ð2Þ

with t*(v) ¼ (zmax – zmin)/v. That is, between genera-
tions 0 and t*(v), zopt increases linearly from zmin to zmax

at speed v. The case t* ¼ 0 ( v/‘) corresponds to a
sudden jump in the optimal phenotype. In the follow-
ing, without loss of generality, we set zmin¼ 0 and zmax¼ 1.

We assume that the trait z is determined additively by
two unlinked haploid loci. At each locus i, there are two
alleles, a ‘‘wild-type’’ allele ai and a ‘‘mutant’’ allele Ai. ai

can mutate to Ai (and vice versa) at rate m. The con-
tribution of the wild-type allele to the phenotype is 0 and
the contribution of the mutant allele is ai. We assume
that a1 # a2, such that locus 1 is a ‘‘minor’’ locus and
locus 2 a ‘‘major’’ locus. The corresponding mutant al-
leles A1 and A2 are referred to as being ‘‘small’’ and
‘‘large,’’ respectively. The aim of this article is to deter-
mine the probability, termed psmall, that the small mu-
tant allele goes to fixation before the large one. Following
Bello and Waxman (2006), we define a mutant allele as
being ‘‘fixed’’ once its frequency exceeds one-half.

To analyze this model, we use analytical approxi-
mations and stochastic simulations. We assume that
individuals are hermaphroditic, generations are nonover-
lapping, and the population has a constant size N. Sim-
ulations start at time t ¼ 0, where the population is
assumed to be monomorphic for the wild-type alleles a1

and a2. Each generation is modeled in two steps. First,
we use deterministic equations to calculate the expected
genotype frequencies (as in an infinite population)
after selection (according to Equation 1), recombina-
tion (at rate 0.5 between loci), and mutation. Then, we
use stochastic multinomial sampling to obtain the actual
genotype frequencies in a finite population subject to
genetic drift (e.g., Gillespie 1993; Kim and Orr 2005).
This means that the next generation is obtained by
drawing N individuals (with replacement) from the
frequency distribution calculated in step 1. Simulations
were performed in Gnu Octave (Eaton 1997). For the
multinomial sampling, we used the gsl_rng_multinomial
function from the Gnu Scientific Library (Galassi et al.
2005).

Results and discussion: Figure 1 shows the probability
psmall that the mutant allele at the minor locus fixes first.
If the optimum moves fast (high v), psmall decreases if

the population-wide mutation rate Q ¼ 2Nm increases,
in accordance with the results from Kim and Orr (2005).
In sharp contrast, however, if the optimum moves slowly
(small v) psmall increases with increasing Q. For fixed Q,
psmall always increases with decreasing v and with in-
creasing s.

The essential parts of these results can be understood
in a simple heuristic model. For this purpose, consider a
typical simulation run, as in Figure 2. Three points are
noteworthy:

1. At the beginning of the simulation, the mutant alleles
are selected against, but as the optimal phenotype
increases, they become beneficial. In particular, al-
though the large mutant allele eventually reaches a
higher selection coefficient than the small one, its
initial selection coefficient is lower, and it becomes
beneficial at a later time. That is, initially, the moving
optimum favors small mutations over large ones.

2. At time t¼ 0, the population is fixed for the wild-type
alleles, but the mutant alleles arise recurrently by
mutation. Most of the new mutants are lost by drift
(even if they are beneficial). Eventually, however, one
successful allele is picked up by selection, sweeps
through the population, and goes to fixation.

3. The actual fixation time is shorter for the large
mutant allele because, once it has become beneficial,
its selection coefficient increases faster.

In summary, the time until a mutant allele (at a single
locus) becomes fixed can be subdivided into three pe-
riods: The lag time Tl during which the allele is dele-
terious, the waiting time Tw for a successful allele, and
the fixation time Tf. Ignoring interactions between loci
(which may arise due to linkage disequilibrium or epistasis
for fitness) the probability psmall can be expressed as

psmall ¼ PðTl;1 1 Tw;1 1 Tf ;1 , Tl;2 1 Tw;2 1 Tf ;2Þ; ð3Þ

where P stands for probability.
To leading order in our basic model parameters, Tl is

proportional to 1/v (i.e., the lag times are long if the
optimum moves slowly), Tw is proportional to 1/(Qs)
(the waiting times are long if mutation rates are low or
selection is weak), and Tf is approximately proportional
to 1/s (fixation times are long if selection is weak).
These terms define three different time scales, all of
which can potentially limit the rate of adaptation and
determine the order of fixations. By focusing on the
extreme cases where one time scale dominates the other
two, we can define three regimes, which, together, pro-
vide a qualitative explanation of the simulation results.
They are summarized in Figure 3.

The mutation-limited regime: If the waiting time for a
successful mutation is much larger than both the lag
time and the fixation time (Tw ?Tl, Tf; Qs > s, v), we
recover Gillespie’s (1983) classical result that the
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order of fixation depends on the relative selection co-
efficients (see appendix).

The fixation time-limited regime: If, in contrast, the
dynamics of adaptation are dominated by the fixation
times (Tf?Tl;Tw; s>Qs; v), the mutant allele at the
major locus, whose fixation time is shorter, will always fix
first (see Kim and Orr 2005).

The environmentally limited regime: Finally, if the dynam-
ics are dominated by the lag time until a mutation be-
comes beneficial (Tl?Tw;Tf ; v>s;Qs)—that is, if the
rate of adaptation is limited by the rate of environmental

change—the small mutant allele at the minor locus al-
ways fixes first, because it is the first to become selected for.

To validate this qualitative picture, we have derived
a quantitative analytical approximation that is based
on the above arguments (see appendix). As shown in
Figure 1 (numbers in parentheses), the predictions from
this approximation are in good agreement with the
simulation results.

Bello and Waxman (2006), when analyzing a model
similar to ours (but with multiple loci), found that small
alleles tend to fix first in an infinite population but not

Figure 1.—The probability
psmall (in percentage) of simula-
tions where the mutant allele at
the minor locus fixes before the
mutant allele at the major locus,
as a function of the population-
wide mutation rate Q/2 ¼ Nm (as-
suming m ¼ 10�5), the speed of
the environmental change v, the
selection strength s, and the mu-
tational effects of the two loci,
a1 and a2. psmall is also indicated
by shades of gray, with black cor-
responding to 0% and white to
100%. The results are based on
1000 simulation for each parame-
ter combination. Numbers in pa-
rentheses show the prediction
from the analytical approximation
(Equation A7). Similar results
were obtained when N was fixed
at 106 and m varied between 10�8

to 10�5 (not shown).
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in a finite one. From our results and the parameters
used in their simulations, we conclude that the infinite
population (which has Tw ¼ 0) was in the environmen-
tally limited regime, whereas the finite population (with
Q ¼ 2 3 0.1) was in the transition zone between the
environmentally limited and the mutation-limited re-
gime, where the order of fixations already has a large
variance.

Conclusions: The aim of this short note was to un-
derstand the first steps of the adaptive process when
the selection pressure increases gradually over time. In
particular, we were interested in the order of fixation
of ‘‘major’’ and ‘‘minor’’ alleles that differ in their effect
on the phenotype. To this end, we have constructed a
minimal model that contains all essential ingredients,
but still allows for an analytical treatment. We find that

three time scales are relevant for the problem: the lag
time (defining the time for an allele to become bene-
ficial), the waiting time for a successful beneficial mu-
tation, and the fixation time. Depending on the biological
parameters, each of these time scales may dominate
and, thus, defines a dynamic regime with specific prop-
erties. So far, extensive theory exists only for one of these
regimes, where mutation is limiting. The common view
that major alleles predate minor alleles in the substi-
tution process is based on this assumption. Our results
show that the opposite is true if the rate of adaptive evo-
lution is limited by the rate of environmental change.

Our model can—and should—be extended in many
ways. In particular, it will be interesting to see quantita-
tive predictions for traits with multiple loci, diploid
genetics, and different patterns of linkage and epistasis.
We expect, however, that the main qualitative result of
this study, the existence of the three regimes, will re-
main robust. The important empirical question then is
to determine the adaptive regime for the response to a
specific selection pressure. Given the huge variances in
natural population sizes, selection pressures, and envi-
ronmental rates of change, it seems likely that examples
in all three regimes will be found.

We thank C. Dillmann, P. Pennings, P. Pfaffelhuber, and an anon-
ymous reviewer for helpful comments on the manuscript. This study
was supported by an Emmy-Noether grant from the Deutsche
Forschungsgemeinschaft to J.H.

Note added in proof: A shift of adaptive substitutions toward smaller
step sizes for slow rates of environmental change is also found in a
recent simulation study on the evolution of RNA secondary structure
by Collins et al. [S. Collins, J. de Meaux and C. Acquisti, 2007,
Adaptive walks toward a moving optimum, Genetics 176 (in press)].
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APPENDIX: THE ANALYTICAL APPROXIMATION
FOR psmall

In this Appendix, we show how to calculate the right-
hand side of Equation 3. In a wild-type background, the
selection coefficients for the mutant alleles are

siðtÞ ¼
exp �sðai � zoptðtÞÞ2

� �
exp �szoptðtÞ2

� � � 1: ðA1Þ

With zopt(t) ¼ vt (t , t*), it follows that the lag time
during which the mutant is deleterious (si , 0) is

Tl;i ¼
ai

2v
: ðA2Þ

For the fixation time Tf,i of a beneficial mutant allele,
we ignore the variance and assume a constant maximal
selection pressure si*¼ si(t*). We can then use the result
for the average fixation time from Hermisson and
Pennings (2005) (with an extra factor one-half, since
we census at 50% allele frequency),

Tf ;i �
lnð2Nsi*Þ1 0:577� ð2Nsi*Þ�1

si*
: ðA3Þ

The variation in the total time to fixation (Tl 1 Tw 1

Tf) for a beneficial allele comes from the waiting time
for a successful mutation, Tw,i. We therefore need a
stochastic approach for this component. Mutant alleles
Ai arise recurrently at rate Q/2. We use the simplifying
assumption that the fate of each new mutation—fix-
ation or loss—is decided in a short time period during
which we can assume a constant selection pressure. The

fixation probability is almost zero as long as the allele is
deleterious and approximately 2si(t) as soon as it be-
comes beneficial (Haldane 1927; Crow and Kimura

1970). Successful mutations then appear according to an
inhomogeneous Poisson process with time-dependent
rate Qsi(t). In particular, the probability that a successful
mutation has not yet appeared at time t, 1 – Fi, follows the
differential equation

dð1� FiÞ
dt

¼ �QsiðtÞð1� FiÞ; ðA4Þ

with si(t) [ 0 for t , Tl,i. Note that the cumulative dis-
tribution function of Tw,i is given by PðTw;i # tÞ ¼
FiðTl;i 1 tÞ. For t ¼ t – Tl,i . 0 and weak selection, we
can approximate the selection coefficient as

siðTl;i 1 tÞ ¼ 2saiv minðt; t*Þ; ðA5Þ

where t* ¼ t* – T l,i. The differential equation (A4) can
then be solved (with the initial condition Fi(T‘,i)¼ 0) to
yield

FiðTl;i 1 tÞ ¼ 1� exp �Q

2
siðtÞt

� �
ðA6aÞ

for 0 , t # t* and

FiðTl;i 1 tÞ ¼ 1� exp �Qsi* t� 1

2
t*

� 	#"
ðA6bÞ

for t . t*. Finally, psmall can be calculated (by numerical
integration) as

psmall ¼ PðTw;1 1 df , Tw;2 1 dlÞ

¼
ð‘

0
f1ðtÞ½1� F2ðt 1 df � dlÞ�dt; ðA7Þ

where f1ðtÞ ¼ F 91ðtÞ is the probability density function of
Tw,1, and df ¼ Tf,1 – Tf,2 and dl ¼ T l,2 – Tl,1 are the dif-
ferences in fixation time and lag time between the two
loci. Note that df acts as a ‘‘penalty’’ for the A1 allele and
dl as a penalty for the A2 allele.

If the environmental change is very fast (v/‘, also
implying dl/0), Equation A6b reduces to Fi(Tl,i 1 t)¼
1 – exp(– Q si*t) and Equation A7 can be evaluated to

psmall ¼
s1*

s1* 1 s2*
expð�Qs2*dfÞ ðA8Þ

(cf. Kim and Orr 2005, Equation 8). As pointed out by
Kim and Orr (2005), in this case, psmall approaches
s1*=ðs1* 1 s2*) for Q/0 (mutation-limited regime; see
Gillespie 1983) and 0 for Q/‘ (fixation time-limited
regime).

The approximations we have used in the above cal-
culations lead to small or moderate deviations from the
simulation results. In particular, our use of the maximal
selection coefficient si* in Equation A3 leads to a con-
sistent underestimate of the fixation times Tf,i and to a
slight shift of the boundary between the fixation time-
limited and environmentally limited regimes toward
higher values of v.
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