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ABSTRACT

We study the genetic basis of adaptation in a moving optimum model, in which the optimal value for a
quantitative trait increases over time at a constant rate. We first analyze a one-locus two-allele model with
recurrent mutation, for which we derive accurate analytical approximations for (i) the time at which a
previously deleterious allele becomes beneficial, (ii) the waiting time for a successful new mutation, and (iii)
the time the mutant allele needs to reach fixation. On the basis of these results, we show that the shortest total
time to fixation is for alleles with intermediate phenotypic effect. We derive an approximation for this
‘‘optimal’’ effect, and we show that it depends in a simple way on a composite parameter, which integrates the
ecological parameters and the genetic architecture of the trait. In a second step, we use stochastic computer
simulations of a multilocus model to study the order in which mutant alleles with different effects go to
fixation. In agreement with the one-locus results, alleles with intermediate effect tend to become fixed
earlier than those with either small or large effects. However, the effect size of the fastest mutations differs
from the one predicted in the one-locus model. We show how these differences can be explained by two
specific effects of multilocus genetics. Finally, we discuss our results in the light of three relevant timescales
acting in the system—the environmental, mutation, and fixation timescales—which define three parameter
regimes leading to qualitative differences in the adaptive substitution pattern.

WHEN a population adapts to a changing environ-
ment, what is the genetic basis of this process? For

example, does adaptation occur in small or large steps?
These questions have been asked ever since the debate
on micro- vs. macromutationalism in the early days of
evolutionary theory (Provine 2001). Subsequently, the
genetics of adaptation have become the subject of differ-
ent modeling approaches (see Orr 2005a,b for review).
Considerable work exists, in particular, in the context of
Fisher’s geometric model (e.g., Fisher 1930; Kimura

1983; Orr 1998; Welch and Waxman 2005; Martin

and Lenormand 2006), Gillespie’s mutational land-
scape model (e.g., Gillespie 1983, 1984; Orr 2002), and
various models of so-called ‘‘adaptive walks’’ on rugged
fitness landscapes (e.g., Kauffman and Levin 1987;
Kauffman 1993). These approaches treat organismal
adaptation as a process in a high-dimensional phenotype
or genotype space characterized by pleiotropy and
epistasis. Another common feature is that all these
models assume a constant selection pressure. Yet, many
organisms live in environments that are continually
changing (e.g., Hairston et al. 2005; Thompson 2005;
Parmesan 2006; Perron et al. 2008). This fact is ac-
knowledged in the so-called moving optimum model,
which assumes that the selectively favored phenotype

changes over time and, hence, experiences a mixture of
stabilizing and directional selection.

The moving optimum model was originally devised in
the field of quantitative genetics, where its primary aim
was to study adaptation at the phenotypic level, without
an explicit focus on the underlying genetics. In this
context, the model has been used, for example, to study
the ability of populations to avoid extinction in the face
of global change (e.g., Lynch et al. 1991; Lynch and
Lande 1993; Bürger and Lynch 1995; Nunney 2003),
to study the role of temporal variation for the mainte-
nance of genetic variation (Bürger 2000; Bürger and
Gimelfarb 2002), and to understand the evolution of
sex and recombination (Bürger 1999; Waxman and
Peck 1999). Only recently, several studies have started to
investigate how a moving optimum affects the dynamics
of adaptive substitutions (Bello and Waxman 2006;
Collins et al. 2007; Kopp and Hermisson 2007; Sato

and Waxman 2008). A key result is that, under con-
ditions of slow environmental change, mutations with
small effect tend to become fixed earlier than those with
large effect (Bello and Waxman 2006; Collins et al.
2007; Kopp and Hermisson 2007). This is in direct
contrast to what is found under constant selection after
a sudden change in the environment (e.g., Orr 1998,
2002, 2005a; Kim and Orr 2005).

In a previous note (Kopp and Hermisson 2007), we
identified three parameter regimes in the moving opti-
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mum model that lead to qualitative differences in the
dynamics of adaptive substitutions. These regimes are
defined by three timescales that may dominate the
adaptive process: the ecological timescale, which is given
by the (inverse) speed of the optimum; the mutation
timescale, which determines the waiting time for a new
beneficial allele; and the time that it takes for this allele to
rise to fixation. In particular, we found that small-effect
mutations are fixed before large ones if the ecological
timescale is dominating, that is, if the speed of adaptation
is limited primarily by the speed of environmental change
(see also Collins et al. 2007 for similar findings). In Kopp

and Hermisson (2007), this result was obtained from an
approximate calculation in a minimal model with two
haploid biallelic loci. Here, we extend the previous
analysis in two main ways. First, we significantly improve
our approximation for the total fixation time of a given
allele under moving-optimum selection. Second, we ana-
lyze the order of adaptive substitutions in a full haploid or
diploid multilocus model. We confirm the preliminary
results from the two-locus study, but show that regime
boundaries depend on both the ecological parameters
and the genetic architecture of the trait. The current
article focuses on the order of substitutions over relatively
short timescales. The complementary question about
which mutations dominate long-term evolution will be
treated in a separate study.

THE MODEL

Assumptions on fitness: Consider the evolution of a
quantitative trait z that is under stabilizing selection with
respect to a moving optimum zopt ¼ zopt(t). We assume
that the optimum increases over time at a constant rate
v; that is,

zoptðtÞ ¼ vt: ð1Þ

Note that, unlike in Kopp and Hermisson (2007), the
optimum increases indefinitely. Assuming Gaussian
stabilizing selection, the fitness of an individual with
phenotype z at time t is given by

wðz; tÞ ¼ expð�sðz � zoptðtÞÞ2Þ; ð2Þ

where s . 0 determines the strength of selection. The
selection coefficient of a mutant with phenotype a in a
wild-type population with phenotype 0 at time t is

sðtÞ ¼ wða; tÞ
wð0; tÞ � 1 ¼ expð�saða� 2vtÞÞ � 1: ð3Þ

As long as selection is weak (s or jz � zoptj small),
Equation 3 can be approximated by

sðtÞ � lðt � a

2v
Þ; ð4aÞ

where

l ¼ 2sva: ð4bÞ
Thus, selection for a increases approximately linearly
over time.

Assumptions on genetics: The aim of this article is to
model the first steps of the adaptive process in the
moving optimum model. We assume that the trait z is
influenced by L additive, unlinked, haploid or diploid
loci. Each locus has two alleles, which we refer to as the
wild-type and the mutant allele, respectively. The con-
tribution of the wild-type allele to the phenotype z is 0,
and the contribution of the mutant allele is ai (i ¼
1; . . . ;L). The ai are referred to as (locus) mutational
effects. In the one-locus case, we suppress the index i and
simply write a1¼ a. Mutations from the wild-type to the
mutant allele (and vice versa) occur recurrently at rate
m per locus. In our calculations, we usually use the
population mutation parameter u ¼ 2Nm, where N is
the population size. Environmental variation is not
modeled explicitly, but is subsumed in the selection
parameter s (e.g., Bürger 2000). Our analytical results
are compared to and extended by stochastic computer
simulations, which are described in appendix a.

RESULTS

In the following, we first derive an approximation for
the expected time to fixation of a mutant allele at a
single haploid locus. Consequences of diploidy are
considered next. We then build on these results and
complement them with computer simulations to de-
termine the order of fixed substitutions in a model with
multiple loci of unequal effect.

Expected time to fixation of a single mutant allele:
Consider a monomorphic population with the wild-type
phenotype z¼ 0 and a mutant allele (arising by recurrent
mutation at rate m) that alters the phenotype to z¼ a. At
time t¼ 0, the frequency of the mutant allele is p¼ 0. Our
basic question is: How long does it take, on average, for
the mutant allele to go to fixation?

Some care is needed to formulate a meaningful
notion of ‘‘fixation.’’ Problems may arise, in particular,
from the final phase of the fixation process where
mutant frequencies are close to p¼ 1. In fact, a mutant
may never reach p ¼ 1 in models with back mutation
(and, of course, in natural populations). More gener-
ally, in the context of adaptation, the importance of the
accidental time point when a mutation finally reaches
full fixation at p ¼ 1 is questionable. To avoid these
problems, and following previous work (Bello and
Waxman 2006; Kopp and Hermisson 2007), we instead
calculate the time until the mutant allele reaches
majority status (p $ 1

2 ) and, thus, dominates the locus
genetics. For ease of terminology, we nevertheless refer
to this state as fixation. (Additional simulations with a
fixation criterion of p $ 0.9 yielded results that are
qualitatively and quantitatively similar to those re-
ported below.)

Denote the total time to fixation (i.e., to p ¼ 1
2 ) by T.

Following Kopp and Hermisson (2007), this time can
be subdivided into three periods,
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T ¼ T‘ 1 Tw 1 Tf ; ð5Þ

where

T‘ ¼
a

2v
ð6Þ

is the lag time until the mutant allele becomes beneficial
(i.e., has a positive selection coefficient, see Equation 4a).
Tw is the waiting time for a successful mutation (i.e., for
the appearance of a mutant allele that is not subsequently
lost due to drift). Finally, Tf is the (narrow-sense) fixation
time of this successful mutation (i.e., the time needed for
the frequency to increase from p ¼ 1/(2N) to p ¼ 1

2 ). To
calculate the waiting and fixation times, we need to
distinguish two different cases. In the first case, fixation
occurs from a mutant allele that appears after the end of
the lag time, so that the waiting time is positive. We refer
to this case as fixation from a ‘‘new’’ mutation. In the
second case, fixation occurs from a mutant allele that is
already segregating in the population at the end of the
lag time, and the waiting time is zero.

Case 1—fixation from a new mutation: In contrast to the
lag time (Equation 6), the waiting time Tw is a random
variable. It can be approximated as resulting from an
inhomogeneous Poisson process with time-dependent
rate us(t). The probability density function of Tw is

f ðTwÞ ¼ usðTw 1 T‘Þexp � u

2
sðTw 1 T‘Þ2

� �
ð7aÞ

(Kopp and Hermisson 2007), which has mean

�Tw ¼
ð‘

0
Twf ðTwÞdTw ¼

ffiffiffiffiffiffiffiffiffi
p

2ul

r
ð7bÞ

and variance

VarðTwÞ ¼
4� p

2ul
: ð7cÞ

(Note that, here, we use the symbol Tw for both the
random variable and its realization.) This approxima-
tion assumes that, during the short time period in which
the fate of a new mutation is determined, the selection
coefficient does not change significantly. This is the case
if s?

ffiffiffi
l
p

or, with s¼ lTw (see below) and Equation 7b, ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð2uÞ

p
?1 (from diffusion theory; J. Hermisson,

unpublished results). The approximation is best if
u>1, such that mutations appear so late that selection
is already strong. For u?1, adaptation occurs from an
already segregating allele, and Tw ¼ 0 anyway. The
approximation therefore performs reasonably well in
the whole parameter space.

The fixation time Tf also is a random variable, but its
variance is small relative to that of the waiting time (as is
well known for constant selection, cf. Etheridge et al.
2006). Therefore, we treat it as deterministic. However,
for fixation from a new mutation, Tf ¼: T n

f still depends
on the stochastic waiting time, because Tw determines

the selection pressure during the fixation phase. In
appendix b, we derive

T n
f ðTwÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs*Þ2 1 2l lnð2Ns*=ðu 1 1Þ � 1Þ

p
l

� Tw;

ð8aÞ
where

s* ¼ l

2
Tw 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2

w 1
4

l

r !
: ð8bÞ

The expected total time to fixation from a new muta-
tion, Tn, is given by

EðTnÞ ¼ T‘ 1

ð‘

Tw¼0
½Tw 1 T n

f ðTwÞ� f ðTwÞdTw: ð9Þ

Since T n
f (as a function of Tw) is approximately linear

around Tw ¼ �Tw (not shown), Equation 9 can be
approximated by

EðTnÞ � T‘ 1 �Tw 1 T n
f ð �TwÞ: ð10Þ

Inserting �Tw from (7b) into (8b), the value of s* becomes

s*ðTw ¼ �TwÞ ¼
ffiffiffi
l
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

8u
1 1

r
1

ffiffiffiffiffiffi
p

8u

r� �
; ð11Þ

which, for small u is approximately equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lp=2u

p
¼ l �Tw.

Case 2—fixation from an already segregating allele: If u is
large, there is a high probability that fixation occurs from
a mutant allele that has appeared already during the lag
time. In this case, Tw ¼ 0 and the fixation time Tf ¼: T s

f

is given by the same expression as T n
f (8a), but with

s* ¼
ffiffiffi
l
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

16
1 1

r
�

ffiffiffiffiffiffi
p

16

r� �
ð12Þ

(see appendix b). The expected total time to fixation
from an already segregating allele, Ts, is simply

EðTsÞ ¼ T‘ 1 T s
f : ð13Þ

In summary, combining Equations 8a, 10, 13, A7b, and
A9, the total time to fixation can be estimated as

EðTiÞ � a

2v
1

1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs*Þ2 1 2l ln

2Ns*

u 1 1
� 1

� �s
; ð14aÞ

where

s* ¼

ffiffiffi
l
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

p
8u

1 1
p

1
ffiffiffiffiffi
p
8u

p� �
for fixation from a new mutation ði ¼ nÞ;ffiffiffi

l
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

p
16 1 1

p
�

ffiffiffiffiffi
p
16

p� �
for fixation from a segregating allele ði ¼ sÞ:

8>>>><
>>>>:

ð14bÞ

A necessary condition for the validity of this approxima-
tion is s* . 2m 1 1/N. In appendix b, we show that the
probability of fixation from an already segregating allele is
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Ps ¼ 1� exp � uffiffiffi
2
p

� �
: ð15Þ

Thus, the expected total time to fixation from either a
new or a segregating allele is

EðTÞ ¼ ð1� PsÞEðTnÞ1PsEðTsÞ: ð16Þ

Numerical analysis of Equation 16 shows that the total
time to fixation for a mutant with a given effect decreases
with increasing v, s, and u. This means that adaptation is
fastest if the environment changes quickly, selection is
strong, and the populationwide mutation rate is high.
The predictions from Equation 16 are in excellent
agreement with results from stochastic simulations (Fig-
ure 1). Visible deviations occur only for the combination
of large v and small u (v ¼ 0.01, u ¼ 0.02 in Figure 1),

where the predicted time to fixation is slightly shorter
than the observed one. The reason is that, for these
parameters, the selection coefficient may become quite
strong before a beneficial allele arrives. In this case,
assuming a fixation probability of 2s(t) (as is done in the
derivation of Equation 7a) is an overestimation. The true
fixation probabilities are lower and, hence, the true
waiting times are longer. With the more accurate approx-
imation for the fixation probability, 1 � exp(�2s(Tw 1

T‘)), the waiting time distribution becomes

F ðTwÞ ¼ 1� exp � u

2
Tw �

1� expð�2lTwÞ
2l

� �� �
:

This equation provides a very good fit to the simulated
waiting time distribution, but cannot easily be used in
further analytical derivations.

Figure 1.—The total time to fixation (i.e., time until frequency p . 1
2 ) of a mutant allele in the biallelic one-locus model as a

function of the mutational effect a. Each plot shows means and standard deviations from 1000 simulation runs, together with the
prediction from the analytical approximation in Equation 16 (solid line). The dotted line indicates a*, the value of a with the
shortest time to fixation (Equation C2). The area with dark shading indicates the lag time T‘ (Equation 6) and the area with light
shading the mean waiting time (i.e., �Tw from Equation 7b multiplied by the probability for fixation from a new mutation from
Equation 15). u ¼ 2Nm with m ¼ 10�5.
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For given, v, s, and u, the total time to fixation is a U-
shaped function of a (Figure 1). That is, mutations with
intermediate effect become fixed faster than mutations
with either small or large effects. The reason is that
mutations with small effects are only weakly selected for
and, thus, have long waiting times (due to a low fixation
probability) and long fixation times. In contrast, muta-
tions with large effects are deleterious for a long time
and, therefore, have long lag times.

The value of a that minimizes the total time to
fixation is denoted by a*. In appendix c, we derive an
analytical approximation (Equation C2), which eluci-
dates how a* depends on the model parameters (see
Figure 2). To a good approximation,

a* }

ffiffiffiffi
v

s

3

r
ð17aÞ

(where } denotes proportional) and, if u is small,

a* }

ffiffiffiffiffiffiffi
v

su

3

r
: ð17bÞ

Thus, fast environmental change favors relatively large
mutations, whereas a large populationwide mutation
rate and strong selection both favor relatively small
mutations. The reason is that fast environmental change
leads to the buildup of a large lag between the wild-type
phenotype and the optimal phenotype, which can then
be bridged by a large mutation. In contrast, high
mutation rates and strong selection lead to the fixation
of small mutations before the lag becomes large. For a
mutation of size a* we show in appendix c that the lag
time is approximately one-third of the total time to
fixation, suggesting that none of the three timescales is
dominating the other two.

The diploid case: So far, we have assumed that the locus
under study is haploid. Here, we show how the previous
analysis can be extended to the diploid case. We assume
that heterozygotes have phenotype a . 0 and that
mutant homozygotes have phenotype b $ a. This allows
for various degrees of (partial) dominance, but not for
over- or underdominance (nor for complete recessive-
ness). Furthermore, we define m as the diploid (twice the

haploid) mutation rate (such that the number of new
mutations per generation remains Nm). Since, initially,
the mutant allele occurs only in heterozygotes, the lag
time and the waiting time are identical to those in the
haploid case (i.e., Equations 6 and 7 remain valid). The
same is not true for the fixation time, however, because
the further spread of the mutant allele depends on both
the heterozygous and the homozygous fitnesses. Never-
theless, there is a simple argument that allows us to
derive a rough approximation based on the haploid result.

The mutant allele can invade the population once the
heterozygotes have higher fitness than the wild type,
which is the case for t . t1 ¼ a/(2v). However, the wild-
type allele can be replaced only once the mutant
homozygotes have higher fitness than the heterozygotes,
that is, for t . t2¼ (a 1 b)/(2v). For t between t1 and t2,
heterozygotes have the highest fitness, and selection
favors a stable polymorphism of the two alleles. During
this time, the frequency of the mutant allele cannot
exceed the equilibrium frequency of the polymorphism,
which increases from 0 at t1 to 1 at t2. At time t3¼b/(2v),
in particular, the equilibrium frequency reaches 1

2 (our
criterion for fixation). Therefore, the total time to
fixation can be estimated as the maximum of b/(2v)
and of the time predicted for the haploid model
(Equation 16). As seen in Figure 3, this approximation
works surprisingly well for most parameter values, and
also the minimum a* remains largely unchanged.
Visible deviations from simulation results occur only
for intermediate values of a that are close to the point
where the line b/(2v) intersects with the haploid
prediction. Note that for b ¼ 0 (full dominance) the
diploid and the haploid result coincide (confirmed by
simulations, not shown).

The order of fixations in the multilocus case: In the
single-locus model, we have seen that a moving optimum
favors fast fixation of mutations with an intermediate
phenotypic effect, and that the size of the fastest mutation
depends on the mutation rate and on the ratio of the
speed of environmental change to the strength of
selection. What does this result predict (qualitatively
and quantitatively) for the order of fixed mutations in a
full multilocus model, in which alleles with different

Figure 2.—a*, the allelic effect
of the mutant allele with the
shortest time to fixation in the
biallelic one-locus model, as a
function of the speed of the envi-
ronmental change v for various
values of the selection parameter
s and the mutation parameter
u ¼ 2Nm. Lines are numerically
calculated minima of Equation
16 (see Figure 1). Symbols show
the approximation (C2).
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effects ‘‘compete’’ against each other? Figure 4 shows
simulation results for a model with 40 biallelic loci and
uniformly distributed mutational effects ai. Details of two
example runs are shown in Figure 5. We see that the
characteristic U shape from Figure 1 is indeed preserved
(Figure 4, A–C). Mutant alleles with intermediate effects
are fixed earlier than those with either small or large
effects. Not surprisingly, the full pattern is seen only if the
range of mutational effects is sufficiently large (Figure 4,
D–F): If only small (large) alleles are available, then only
the left (right) branch of the U appears, leading to a
monotonic and almost linear decrease (increase) of fixed
effects over time.

Despite the qualitative agreement with the single-
locus results (Figure 1), there are two quantitative
differences that require explanation. First, the size of
the fastest alleles is shifted to the left, that is, to effects
less than a*. And second, the pattern assumes a Y shape,

rather than a U shape, if mutation rates are high (Figure
4C). These differences can be explained by two effects of
multilocus genetics: a ‘‘sampling effect’’ for small u and
an ‘‘interaction effect’’ for large u.

Sampling effect: The sampling effect arises from a
combination of two factors: For small u, the waiting time
has a large variance (Equation 7c), and small mutations
have a shorter lag time than large mutations. As a
consequence, even though small mutations might have
a high expected total time to fixation, their minimal
possible time is quite low. If the number of loci is large,
there is a high probability that one of the small mu-
tations will fix before the lag time of the larger mutations
has passed. Thus, the sampling effect leads to an ‘‘ad-
vantage’’ for small mutations, which is strongest if the
waiting time is the dominating timescale.

Since the sampling effect is a purely statistical phe-
nomenon, it can still be estimated within a single-locus

Figure 3.—The total time to fixation of a single mutant allele in the diploid model. The additive case is shown. Heterozygotes
have phenotype a, and mutant homozygotes have phenotype b ¼ 2a. The diagonal dashed line is a/v, the time at which the
mutant homozygote has the same fitness as the wild type. The solid line is the maximum of the predicted time to fixation in
the haploid model (Equation 16) and a/v. The vertical dotted line is a*, the effect of the fastest mutation in the haploid model
(Equation C2). m is the diploid mutation rate. For further details, see Figure 1.
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framework. In appendix d, we use our results from the
one-locus model to derive an approximation for the
distribution of the first fixation in the multilocus model.
This approximation neglects epistatic interactions be-
tween mutant alleles at different loci (see below). Never-
theless, it is in good agreement with simulation results,
as long as u is not too large (compare dashed lines and
shaded histograms in Figure 4, A–C). The reason is that,
for small u, narrow sense fixation times are small, and
different alleles rarely segregate simultaneously (see
Figure 5A). Note also that the mode of the distribution
of the first fixation coincides well with the base of the U

in Figure 4, A and B.
Interaction effect: If u is large, the probability of mutant

alleles segregating simultaneously is high (see Figure
5B). These alleles interact with each other, because
stabilizing selection entails epistasis for fitness: Each
mutant allele that increases in frequency brings the
population mean closer to the optimum and, thereby,
decreases the selection coefficient of the other alleles.
In particular, segregating small mutations can delay the
fixation of large mutations by effectively prolonging
their lag time.

The interaction effect has two main consequences:
First, the size of the first fixation is smaller than
predicted from the one-locus model, even if the sam-
pling effect is negligible. This can be seen from Figure
4C, where the prediction for the first step according to
Equation D5 (dashed line) is close to a*, but the

observed distribution (shaded bars) is considerably
smaller. Second, the interaction effect causes a delay in
the fixation of some intermediate and all large muta-
tions, thus transforming the U-shaped into a Y-shaped
pattern (Figure 4, C and E). Figure 5B gives a more
detailed view of this process. The initial decrease in
effect sizes (the stem of the Y) arises because, at the
beginning of the simulation, several alleles with small
and intermediate effect start to increase in frequency
more or less simultaneously. During their increase, these
alleles suppress other mutant alleles, since their com-
bined effect keeps the population mean close to the
optimum. At about the ‘‘branching point,’’ the bulk of
the initial alleles have become fixed, and only two classes
of alleles remain: those with very small effect, which have
a very long fixation time and slowly increase in frequency
‘‘in the background,’’ and those with large effects and a
long lag time, whose frequency up to this point was
almost zero and who now, one by one, quickly go to
fixation.

The interaction effect depends on the cosegregation
of beneficial alleles at multiple loci and is strongest if
both small and large mutations are competing for
fixation. This is demonstrated in Figure 4, C–F. The Y-
shaped pattern is seen only if the effects of available
mutations cover a large range (Figure 4, C and E). In
contrast, if all mutations are large, they rarely cosegre-
gate at higher frequencies. No delay in fixation is ob-
served, and the size of fixed mutations increases almost

Figure 4.—The order of fixations in the multilocus model. Symbols show the time to fixation of mutant alleles as a function of
their effect a. Different symbols represent results from five replicated simulations with mutational effects drawn from a uniform
distribution with a given range (between 0 and 2a* in A–C, between 0 and a*/2 in D, between 0 and a* in E, and between a*/2
and 2a* in F). The vertical dashed line marks a*, the effect of the mutant allele with the smallest expected time to fixation in the
one-locus model (Equation C2). In A–C, shaded bars show the distribution of the effect of the first fixation as obtained from 1000
replicated simulations with fixed and evenly spaced a-values. The dashed line shows the predicted distribution of the first fixation
according to Equation D5. Parameters: L ¼ 40, m ¼ 10�5, s ¼ 0.1, u ¼ 2Nm, v ¼ 0.001.
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linearly over time (Figure 4F). Finally, if all mutations
are small, epistatic interactions between them are even
smaller. Cosegregating alleles hardly interfere, and the
size of fixed mutations decreases linearly over time
(Figure 4D).

Robustness of results: To test the robustness of the above
results, we conducted a large number of supplementary
simulations that consider additional factors (Figure 6).

i. Distribution of locus effects: Both theoretical and
empirical evidence suggests that small beneficial
mutations are more common than large ones (e.g.,
Bürger 2000; Barton and Keightly 2002; Orr

2005a; Eyre-Walker and Keightley 2007). As seen
in Figure 4, a limited range of mutational effects can
have a large influence on the order of fixations.
However, if the range is sufficiently large, the exact
shape of the distribution from which mutational
effects are drawn seems to matter little. For exam-
ple, results qualitatively similar to those in Figure 4
are obtained if the distribution of mutational effects
is exponential instead of uniform (Figure 6A).

ii. Diploidy: As in the single-locus case, haploid and
diploid genetics lead to qualitatively identical results
(Figure 6B).

iii. Variable mutation rate: So far, we have assumed that
the per-locus mutation rate m ¼ 10�5, and we have
varied the population size N to obtain various values
of u¼ 2Nm. Choosing a different value for m has little
effect in most cases (Figure 6C), showing that the
crucial parameter is u, not N or m individually.
Substantial differences occur only if m is extremely
high ($10�3 in Figure 6C). In this case, recurrent

mutation may become more important than selec-
tion in determining the dynamics of allele frequen-
cies (m . s*/2, see remarks regarding Equations 14
and B5). This leads to a ‘‘boost’’ for small mutations,
which are under the weakest selection and have the
shortest lag times. As a consequence, the U shape
disappears, and the size of fixed mutations increases
monotonically over time (Figure 6C3).

iv. Linkage: The multilocus simulations presented
above assume linkage equilibrium (see appendix

a). However, additional simulations using individ-
ual-based modeling (Figure 6D; M. Kopp and
J. Hermisson, unpublished results) show that the
results are robust in the presence of moderate
linkage (recombination rates $0.01, Figure 6D1).
Strong linkage in combination with large u, in
contrast, leads to an increase in stochasticity and
an increase in the size of the first fixation (Figure 6,
D2 and D3). Such a shift is also known from other
models of adaptation and has been described in the
context of clonal interference (e.g., Gerrish and
Lenski 1998; Park and Krug 2007) and the Hill–
Robertson effect (Hill and Robertson 1966;
Barton 1995). Individual-based simulations also
show that our results are not biased by the quadratic
approximation (A2).

v. Standing genetic variation: The simulations above
were started with frequency p ¼ 0 for all mutant
alleles at time t¼ 0, but genetic variation was allowed
to accumulate during the lag time (see fixation from
‘‘already segregating alleles’’ above). In another set
of simulations, we let the population equilibrate to

Figure 5.—Adaptation in the
multilocus model. A1 is an exam-
ple of a single simulation run with
20 loci (ai¼ 0.02, 0.04, 0.06, 0.08,
0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,
0.5, 0.6, 0.7, 0.8, 1, 1.2, 1.4, 1.6,
1.8) in a small population (param-
eters as in Figure 4A). Each symbol
shows the time to fixation of the al-
lelewith therespective phenotypic
effect. Note that, in contrast to Fig-
ure 4, time is on the x-axis and a on
the y-axis. (This is to allow for com-
parison with A2, see below.) The
dotted line marks a*, the effect
of the mutant allele with smallest
expected time to fixation in the
one-locus model (Equation C2).
A2 shows the corresponding allele
frequency dynamics. Colors indi-
cate the allelic effects size ai (light
red, small effect; dark blue, large
effect). Each symbol in A1 corre-
sponds to the line in A2 with the

same color, and the time coordinate at which the symbol is placed in A1 equals the time the corresponding line in A2 crosses fre-
quency 0.5 (dotted line). B1 and B2 show a similar example for a large u (parameters as in Figure 4C) and ai-values half the size
of those in A. Populations were sampled every 100 generations.
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the initial conditions before starting to move the
optimum. This allows for the buildup of standing
genetic variation (Hermisson and Pennings 2005;
Barrett and Schluter 2008). It turns out that the

order of fixations is only slightly affected, with small
loci benefiting more from standing variation than
large ones (which are more deleterious initially).
The reason for the small effect is that, for large Q,

Figure 6.—The order of fixations in variants of the multilocus model. (A) Mutational effects were drawn from an exponential
distribution with mean a*. (B) The diploid case (no dominance). Here, a is the effect of a single mutant allele. (C) Various combi-
nations of N and m leading to the same value of u. (D) Various degrees of linkage. r is the recombination rate between adjacent loci.
Symbols show the time of fixation of mutant alleles as a function of their effect a. Different symbols represent results from five rep-
licated simulations with randomly drawn mutational effects. The vertical dashed line marks a*, the effect of the mutant allele with the
smallest expected time to fixation in the one-locus model (Equation C2). In C3, a* could not be calculated because, for small a, the
approximation (14a) failed(m. s*/2). InB–D,mutationaleffectsweredrawn fromauniformdistributionwith mean a*. See Figure4
for more details. Parameters: L ¼ 40, s ¼ 0.1, v ¼ 0.001, and u ¼ 2Nm ¼ 2 (B and C), and m ¼ 10�5 (A, B, and D).
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most fixations occur from mutations that arise during
the lag time. However, this is already accounted for
in our model (Equation 15), and adding genetic
variation that is present even before the lag time
does not change the qualitative picture.

vi. Speed of environmental change: As in the one-locus
case, we performed simulations with v ¼ 0.01 and
v ¼ 0.0001 and obtained qualitatively identical
results (not shown). For v . 0.01, small populations
sometimes are unable to follow the moving opti-
mum and, instead, go to extinction (Bürger and
Lynch 1995). While the persistence or extinction of
populations in the face of environmental change is
an important topic (Lynch et al. 1991; Lynch and
Lande 1993; Bürger and Lynch 1995; Nunney

2003) with obvious implications for conservation, it
is not the focus of this study.

DISCUSSION

The speed and pattern of phenotypic adaptation
depend on a combination of factors that are external
or internal to an organism. While new selection pres-
sures on a phenotypic trait result from changes in the
external environment, the response to selection de-
pends on the details of the internal genetics, that is, on
the rates and effects of new mutations. The moving
optimum model with an explicit genetics is a first
attempt to combine these various factors in a single
modeling framework and to analyze their relative roles
in the adaptive process.

In this article, we have focused on a specific issue:
Assume that mutations with various effects on the trait
compete to be recruited in the adaptive process: What is
the expected order of adaptive fixations? Which size of
mutations—small, intermediate, or large—is fixed first
under the given environmental and genetic conditions?
We have taken a two-step approach to address this
question. In the first step, we consider a single mutant
allele. We have derived a highly accurate approximation
for how the expected total time to fixation of this allele
depends on the internal (genetic) and external (envi-
ronmental) factors. In the second step, we examine how
these results are altered by multilocus effects in the
context of a polygenic trait.

In both cases, we find that the fastest mutations are
those with intermediate size. They have the shortest
time to fixation in the one-locus model (Figures 1 and
3), and they are the first ones to reach fixation in the
multilocus case (Figures 4 and 5). But what exactly does
‘‘intermediate’’ mean in this context? In the following,
we give a qualitative and quantitative answer to this
question by applying the notion of timescales and
evolutionary regimes.

Fixation of a single mutation: Our analysis for the
total time to fixation of a single allele is based on the

insight that fixation in the moving optimum model is
controlled by three different timescales (Kopp and
Hermisson 2007). The first timescale is ecological. It
is given by the (inverse) speed of the trait optimum and
governs the strength of selection. The other two time-
scales are genetic and measure the waiting time for a
successful beneficial mutation and the time for the
mutant allele to rise to fixation. Accordingly, the total
time to fixation can be subdivided into three compo-
nents that correspond to these timescales: The lag time
until the allele becomes beneficial as a result of envi-
ronmental change, the waiting time for a successful muta-
tion (which may be zero if fixation occurs from an already
segregating allele), and the (narrow-sense) fixation time.

The three timescales partition the genetic and envi-
ronmental parameter space into three evolutionary
regimes (Kopp and Hermisson 2007): In the environ-
mentally limited regime, the total time to fixation of an
allele is dominated by the lag time; in the mutation-
limited regime, it is dominated by the waiting time; and in
the fixation time-limited regime, it is dominated by the
fixation time. The latter two regimes may be summa-
rized as genetically limited. The principal distinction
between them is the degree to which adaptation is
rather stochastic (mutation-limited regime, population-
wide mutation rate u & 1) or rather deterministic
(fixation time-limited regime, u * 1). For our present
issue, however (that is, the order of adaptive substitu-
tions), what matters most is the distinction between the
two genetically limited regimes and the environmentally
limited regime.

As seen in Figure 1, the total time to fixation is
shortest for mutations with intermediate effect a ¼ a*.
It increases with a for a . a* and decreases with a for
a , a*. The limiting factor is different for small and large
mutations, respectively. Mutations with small effects are
under weak selection and, therefore, have low fixation
probabilities and long fixation times. They are thus
genetically limited (either by mutation or by fixation
time, depending on u). In contrast, mutations with large
effects have increasingly long lag times before they
become beneficial and are environmentally limited. For
mutations of size a*, the lag time is approximately one-
third of the total time to fixation (i.e., it is equal to the
mean of the waiting time and the fixation time),
suggesting that fixation is fast because the genetic and
environmental timescales are balanced. Because of all
this, it makes sense to say that a* parameterizes the
boundary between the two genetically limited regimes
and the environmentally limited regime. The fastest
mutations are located at this boundary.

In consequence, a* provides a natural scale for
measuring allelic effects (see appendix c). Its numerical
value decides which effect sizes are ‘‘small’’ or ‘‘large’’ in
the context of the adaptive process. Of course, this
classification is a purely relative one. Whether a muta-
tion of a given absolute effect will be counted as small or
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large depends on the value of a* and, hence, on the
ecological and genetic parameters.

Indeed, the relationship between a* and the model
parameters is very simple (Equation 17). To a good
approximation, a* depends on the speed of environ-
mental change relative to the strength of selection, v/s,
and on the populationwide mutation rate u. If u is small,
a* depends only on a single composite parameter

g ¼ v

su
ð18Þ

(see Equation 17b), which summarizes the genetic and
ecological factors and should be amenable to empirical
study. In nature, g is expected to vary over several orders
of magnitude. The speed of environmental change v
experienced by a population depends on the ecological
scenario and on the generation time, and it may vary
from virtually imperceptible to extremely rapid. Simi-
larly, the effective population size (and hence u) differs
greatly among species. Thus, for a given ecological
change, a* will usually be larger for microbes (with large
populations and short generation times) than, for
example, mammals. On the other hand, the depen-
dence of a* on g as a third root is rather weak (Equation
17). For example, a 10-fold increase in the speed of
environmental change leads to only a 2.14-fold increase
in a*. For the parameter values covered in Figure 2, a*
is on the order of 0.1 or 1. If all phenotype-related
variables (a, s, v) are measured in units of the
environmental standard deviation, this is well within
the range of mutational effects estimated from empir-
ical data, which vary between 10�2 and 1 (Bürger 2000,
p. 264). In addition, the distribution of mutational
effects is thought to be highly leptokurtic; that is,
mutations with large effects are overrepresented relative
to a Gaussian distribution (Bürger 2000, p. 264).
Therefore, it is likely that the majority of mutations will
be smaller than a*, but a nonnegligible part is bound to
be larger. This means, in particular, that the fastest
mutations are likely to be available in the population.

The order of fixations at multiple loci: In the single-
locus model, we have argued that the fastest mutations
are those at the boundary of the environmentally
limited regime. A similar analysis can also be applied
to the order of fixations in the multilocus model.
However, to do so, we first need to define the notion
of evolutionary regimes in a multilocus context. We will
do so on a per-locus basis. Thus, in a multilocus model
with unequal locus effects, one part of the loci may
belong to one regime (e.g., environmentally limited),
whereas others fall into a different regime (e.g., muta-
tion limited). Note that this definition deviates slightly
from the one used in Kopp and Hermisson (2007),
where regimes were defined for the whole model, not
for single loci.

Using only the timescale arguments from the single-
locus case, the results shown in Figure 4 can be
interpreted in the following way:

i. If all loci are in one of the genetically limited
regimes, large-effect loci adapt before small-effect
loci. This corresponds to the classical pattern known
for adaptation under constant selection (e.g., Orr

1998, 2002; Kim and Orr 2005).
ii. If all loci are in the environmentally limited regime,

loci with small effect are favored over ones with
larger effect. This confirms the pattern described by
Bello and Waxman (2006), Kopp and Hermisson

(2007), and Collins et al. (2007).
iii. In a general model with loci in both regimes, we see

a branching pattern in the order of fixations, where
loci with an intermediate effect fix first and muta-
tions with either small or large effects follow up later.
Thus, the linear patterns described under i and ii
can be seen as special cases, which only arise if the
trait has a genetic architecture with a restricted
range.

Despite the qualitative agreement with the single-locus
results, however, Figure 4 suggests that the boundary
between the genetically limited and the environmentally
limited regimes is shifted to the left, that is, to locus
effects less than a*. This can be explained by two genuine
multilocus effects that are acting at small or large mu-
tation rates, respectively:

1. For small u, a sampling effect causes the average size of
the first fixations to be smaller than a* (the fastest
mutation in the one-locus model). The reason is that
the waiting time for the first successful mutation in a
‘‘race’’ at multiple loci is shorter than the average
waiting time at a single locus. This advantage is larger
for loci with small effect, for which the waiting time is
the dominating timescale. The sampling effect can
still be captured analytically by using results from the
one-locus model and ignoring interactions between
loci (appendix d).

2. For large mutation rates (u * 1), the fixation pattern
is affected by interactions between cosegregating
alleles. Figure 4, C and E, shows that the split into
two branches is again shifted to smaller locus effects
and sets in only after an initial phase (Y shape). The
reason is epistatic interactions: For large u, mutations
with small effect are dominated by the (narrow sense)
fixation time. At any given time, therefore, there will
be multiple segregating mutations that have not yet
reached fixation. These mutations contribute to a
narrowing of the gap between the mean phenotype
and the optimum phenotype and reduce the selection
pressure on mutations at other loci. In particular, they
increase the lag time for mutations with larger effect,
which leads to a shift in the pattern of early fixations
toward smaller loci.
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Discussion of the modeling approach: Previous
modelers have used different approaches for studying
the genetics of adaptation (Orr 2005a). Given the
complex nature of the adaptive process, it is not
surprising that different models have focused on differ-
ent aspects. The adaptive walk and mutational land-
scape models view evolution as a search process on a
high-dimensional fitness surface (Gillespie 1983, 1984;
Kauffman and Levin 1987; Kauffman 1993; Orr

2002). Here, the key factor is epistasis, which makes
the landscape rugged. Models of clonal interference
focus on the effects of linkage and recombination on
the fixation process (Barton 1995; Gerrish and
Lenski 1998; Kim and Orr 2005; Park and Krug

2007). None of the above models contains an explicit
phenotype. In contrast, Fisher’s geometric model ex-
plores the consequences of pleiotropy in a high-di-
mensional genotype–phenotype map (Fisher 1930;
Orr 1998; Welch and Waxman 2005; Martin and
Lenormand 2006). In our moving optimum model,
finally, the key point is the inclusion of a changing
environment, that is, of ecology.

So far, the specifics of the alternative approaches—
epistasis, pleiotropy, and linkage—are largely ignored in
our model. However, all these factors are potentially
important for a full understanding of the genetic basis
of adaptation. Since the moving optimum model can be
readily extended to include all these aspects, it provides
a natural basis for an integrative approach toward the
genetics of phenotypic adaptation.

Extending our model in this way might well lead to
changes in some of our predictions. For example, many
of our results depend on the fact that large mutations
initially overshoot the optimum and only have a chance
at fixation after a certain amount of time. This conclu-
sion is inevitable in our model, where the phenotype
space has only a single dimension. However, starting
with Fisher (1930), many authors have stressed the
necessity to view adaptation as an inherently multidi-
mensional problem. In a high-dimensional phenotype
space, it is conceivable that a mutation overshooting the
optimum in a particular dimension is nevertheless
selected for due to beneficial effects in other dimen-
sions (i.e., due to pleiotropic side effects). Thus, large
mutations might become fixed earlier than it is possible
in the present model.

Another way to compare the various models is with
respect to the included timescales. In the models of
Kauffman, Gillespie, and Orr, only the mutation time-
scale is relevant. Kim and Orr (2005) allow for an
increased mutation rate, which introduces the fixation
time as a second important scale. The interaction of the
mutation and fixation timescales also determines the
outcome of clonal interference models. Our approach
adds as a third component the ecological timescale. As
we have shown, the inclusion of this scale can change
the predicted pattern of fixations substantially.

Models of constant selection predict that large
mutations fix before small mutations (regardless of
whether mutational effects are measured in terms of
phenotype or fitness; Orr 2005a,b). Our model con-
tains this result as a special case if all alleles are in the
mutation-limited regime (i.e., if their effects are suffi-
ciently small). However, in the general case, it is
mutations of intermediate size that fix first. If all
mutations are in the environmentally limited regime,
we can even observe a complete reversal of the pattern,
with small mutations fixing before large ones.

So far, the classical prediction of large mutations
fixing first has largely been confirmed by studies of
microbial experimental evolution (Elena and Lenski

2003). However, almost all of these studies have sub-
jected microbes to selection toward a fixed new opti-
mum. One exception is the recent work by Perron et al.
(2008), who exposed bacteria to increasing concentra-
tions of an antibiotic. However, these authors did not
resolve the size and order of individual substitutions.
Also, even though the selection pressure increased over
time, the selection target itself (resistance) was fixed. In
other words, selection was directional with increasing
intensity, not stabilizing with a moving optimum,
as assumed in our study. This probably leads to pre-
dictions different from the ones derived here, as large
mutations (conferring a high degree of resistance) are
likely to be selected for from the very beginning (unless
there are strong trade-offs involved). The above exam-
ple shows that gradual environmental change can imply
different scenarios, which call for different modeling
approaches.

In this article, we have focused on the order of
adaptive substitutions. Another important question is
the distribution of fixed mutations over a longer bout of
adaptation (Orr 1998, 2002, 2005a,b). However, while
the present biallelic model can successfully predict the
size of the first fixation (Equation D5), it is less suited for
studying the distribution of subsequent adaptive steps.
The reason is that we assume only a limited number of
mutant alleles, all of which eventually go to fixation. As a
consequence, these mutations are no longer available
for future steps. For long-term adaptation, a more
realistic approach is to use a continuum-of-alleles model
(e.g., Bürger 1999), in which the effects of new muta-
tions at each step are picked from a (fixed) distribution.
The main question in such a model is how the (long-
term) distribution of fixed substitutions is related to the
distribution of new mutations. This will be the subject of
a separate study.

Key concepts and findings of the present study
include the role of timescales and evolutionary regimes
and the dependence of regime boundaries on the
ecological parameters and the genetic architecture.
They are not the results of specific model assumptions,
but were developed and refined in a stepwise process
from a single haploid locus to the full diploid multilocus
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case. We therefore expect that these findings also
remain valid in a general context and can serve as guide
for future model extensions.
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APPENDIX A: SIMULATION METHODS

Here, we describe the computer simulations. We assume that the population has a constant size N, individuals are
hermaphroditic, and generations are nonoverlapping. Simulations start at time t ¼ 0, where the population is
assumed to be monomorphic for the wild-type alleles at each locus. Each generation is modeled in two steps (see
Kopp and Hermisson 2007). First, we use deterministic equations to calculate the expected genotype frequencies
after selection, (free) recombination, and mutation. Then, we use stochastic multinomial sampling to obtain the
actual genotype frequencies in a finite population subject to genetic drift (e.g., Gillespie 1993). This means that
the next generation is obtained by drawing N individuals (with replacement) from the frequency distribution
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calculated in step one. (In the diploid case, 2N haplotypes are drawn, assuming Hardy–Weinberg proportions
before selection.)

As the number of loci (and hence the number of genotypes) increases, this model rapidly becomes computationally
intractable. For the multilocus case, we therefore used a weak-selection approximation: As long as the population
mean phenotype is sufficiently close to the optimum, linkage disequilibria can be neglected, and fitness can be
approximated by the quadratic function

wðz; tÞ � 1� s½z � zoptðtÞ�2: ðA1Þ

This makes it possible to model the evolution of allele frequencies (instead of genotype frequencies) directly, using
the equations

Dpi ¼ pi 1 pið1� piÞsa2 2pi � 1� 2
�xt � zoptðtÞ

ai

� �
ðA2Þ

(e.g., Bürger 2005), where pi is the frequency of the mutant allele at locus i, Dpi is the change in pi from one
generation to the next, and �xt ¼

PL
i¼1 piai is the population mean phenotype. When using this approximation,

sampling is performed on alleles instead of genotypes.

APPENDIX B: DERIVATION OF THE FIXATION TIME Tf

Here, we derive the narrow-sense fixation time Tf. For ease of notation, we define an alternative timescale t̃, which
measures time since the start of the fixation process (so that t̃ ¼ t � T‘ � Tw). The selection coefficient on this
timescale is given by

sðt̃ Þ ¼ lðTw 1 t̃ Þ: ðB1Þ

Because sðt̃ Þ depends on the waiting time, so does Tf. Once the fixation process has started (at t̃ ¼ 0), the dynamics of
the mutant allele frequency p can be approximated deterministically by the differential equation

_p ¼ sðt̃ Þpð1� pÞ1 mð1� 2pÞ1 1

2N
: ðB2Þ

Here, the first term on the right-hand side describes logistic growth due to selection, the second term describes the
input from mutation (both forward and backward), and the third term describes the contribution of genetic drift to
the frequency increase of a mutation that is conditioned to go to fixation (Ewens 2004). Numerical solutions of this
equation are in excellent agreement with simulation results (not shown). Unfortunately, Equation B2 does not have a
closed analytical solution. To derive a tractable approximation, we neglect selection as long as it is weaker than
mutation and drift, and we neglect mutation and drift when, together, they are weaker than selection. As a
consequence, the fixation time is subdivided into two components,

Tf ¼ Tf ;1 1 Tf ;2; ðB3Þ

where Tf,1 is the time span dominated by mutation and drift, and Tf,2 is the time span dominated by selection. In the
following, we need to distinguish between fixation from a new mutation and fixation from an already segregating
allele.

Fixation from a new mutation: For t̃ , Tf ;1, we neglect selection (and back mutations) and assume that p initially
increases due to mutation and drift alone, yielding pðt̃ Þ � ððu 1 1Þ=2N Þt̃. Mutation and drift remain dominant
until sðt̃ Þpð1� pÞ � sðt̃ Þp . ðu 1 1Þ=2N . Using (B1), this yields

T n
f ;1 ¼

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2

w 1 4=l

q
� Tw

�
: ðB4Þ

At this time, the frequency of the mutant allele is

pðT n
f ;1Þ ¼ p* ¼ u 1 1

2Ns*
ðB5aÞ

with
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s* ¼ lðTw 1 T n
f ;1Þ: ðB5bÞ

This approximation is valid as long as p* is small. At the very least, it must be ,0.5, which is true if s* . 2m 1 1/N.
For t̃ . T n

f ;1, we neglect drift and mutation, such that Equation B2 becomes _p ¼ sðt̃ Þpð1� pÞ. With the initial
condition pðT n

f ;1Þ ¼ p*, this can be solved to yield

pðt̃ Þ ¼ p*exp½Sðt̃ Þ�
1 1 p*ðexp½Sðt̃ Þ� � 1Þ ; ðB6aÞ

where

Sðt̃ Þ ¼
ð t̃

Tf;1

sðxÞdx ¼ s*Dt̃ 1
l

2
ðDt̃ Þ2 ðB6bÞ

and

Dt̃ ¼ t̃� T n
f ;1; ðB6cÞ

and the condition pðT n
f ;2Þ ¼ 1

2 (our criterion for fixation) leads to

T n
f ;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs*Þ2 1 2l lnð2Ns*=ðu 1 1Þ � 1Þ

p
� s*

l
: ðB7Þ

Equation 8a follows from (B5b) and (B3).
Fixation from an already segregating allele: If fixation occurs from an already segregating allele, Tw ¼ 0 and thus

t̃ ¼ t � T‘ and s ¼ lt̃. The expected frequency of the mutant allele at the end of the lag time, p(0), can be calculated as
follows: During the lag time (i.e., for t̃ , 0), p is small, and Equation B2 can be approximated by _p ¼ m 1 lt̃p. [Note
that, here, the drift term 1/(2N) is omitted, because we are not conditioning on eventual fixation.] This can be solved
to yield

pðt̃ Þ ¼ expð1
2

lt̃ 2Þ C 1
mffiffiffi
l
p

ð ffiffiffiffiffiffi
l=2
p

t̃

0
expð�x2Þdx

 !
: ðB8Þ

With the initial condition p(�‘) ¼ 0, we find

pð0Þ ¼ C ¼ m

2

ffiffiffiffi
p

l

r
: ðB9Þ

For t̃ . 0, we follow the same approach as for fixation from a new mutation. For t̃ , T s
f ;1, p increases linearly

according to pðt̃ Þ ¼ pð0Þ1 mt̃ until p ¼ p* (Equation B5a), leading to

T s
f ;1 ¼

1ffiffiffi
l
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

16
1 1

r
�

ffiffiffiffiffiffi
p

16

r� �
� 0:65ffiffiffi

l
p : ðB10Þ

T s
f ;2 is again given by (B7), but with s* ¼ lT s

f ;1. Finally, the probability of fixation from an already segregating allele can
be estimated as

Ps ¼ 1� exp �pð0ÞN
ffiffiffiffiffiffi
8l

p

r !
ðB11Þ

( J. Hermisson, unpublished data), where p(0) is the expected frequency of the mutant allele at the end of the lag
time. Inserting (B9) into (B11) directly leads to (15).
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APPENDIX C: ANALYTICAL APPROXIMATION FOR a*

Here, we derive an analytical approximation for a*, the value of a that minimizes the total time to fixation in the
one-locus model. Ignoring the dependence on a in the logarithmic term in Equation 14a (e.g., by setting a¼ 1 in this
term only), the total time to fixation can be written as

T � a

2v
1

Cðs; u; v;N Þffiffiffi
a
p ; ðC1aÞ

where the constant C is given by

Cðs; u; v;N Þ ¼ ð1� PSÞC1ðs; u; v;N Þ1PSC2ðs; u; v;N Þ ðC1bÞ

with

C1ðs; u; v;N Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 8u=p

p
1 1Þ2

16usv
1

lnð2N
ffiffiffiffiffiffiffiffi
2sv
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=8u 1 1

p
1

ffiffiffiffiffiffiffiffiffiffiffi
p=8u

p
Þ=ðu 1 1Þ � 1Þ

sv

s
; ðC1cÞ

C2ðs; u; v;N Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 16=p

p
� 1Þ2

32sv
1

lnð2N
ffiffiffiffiffiffiffiffi
2sv
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=16 1 1

p
�

ffiffiffiffiffiffiffiffiffiffiffi
p=16

p
Þ=ðu 1 1Þ � 1Þ

sv

s
: ðC1dÞ

In the following, we suppress the dependence on parameters in our notation. T has a minimum at

a* ¼ ðvCÞ2=3: ðC2Þ

This approximation for a* is very accurate for small u, but shows small deviations from the true value if u is large (see
Figure 2). Furthermore, plugging (C2) into (C1a) shows that, for a mutation of size a*, the total time to fixation, T*, is
given by

T* ¼ ðvCÞ2=3

2v
1

C

ðvCÞ1=3
¼ 1

2

C2

v

� �1=3

1
C2

v

� �1=3

; ðC3Þ

where the first term corresponds to the lag time and the second term to the sum of waiting time and fixation time.
Therefore, within the limits of the approximation, the lag time of the fastest mutation is exactly one-third of the total
time to fixation.

Scaling relationships: We can use the above results to derive several useful scaling relationships. First, plugging
(C1b) to (C1d) into (C1a) and ignoring the logarithmic term shows that a* is proportional to

ffiffiffiffiffiffiffiffi
v=s3

p
. For small

u, PS � 0, and Equation C2 reduces to a* ¼ vC1ð Þ2=3, which, if we again ignore the logarithmic term, is proportional
to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v=ðsuÞ3

p
.

If we continue to focus on the case with small u, we further see from (11) that s* �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lp=2u

p
¼ l �Tw. Thus, using (7b)

and (8a), Tw 1 Tf �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�T 2

w 1 2 lnð . . . Þ=l
p

� �Tw 1 lnð . . . Þ=ðl �TwÞ. For small u, this sum is dominated by �Tw; that is, Tf is
small relative to Tw (and negatively correlated with it). Thus, the total time to fixation is determined by two
components: the lag time T‘, which is proportional to a/v, and the waiting time Tw (or rather, the sum of Tw 1 Tf),
which is proportional to 1=

ffiffiffiffiffiffiffiffiffiffiffi
svua
p

. However, if we choose to measure mutational effects in units of v/(su)—that is,
we measure them relative to a*—we find that both T‘and Tw 1 Tf can be measured in units of 1=

ffiffiffiffiffiffiffiffiffiffi
v2su

3
p

. At this scale,
T‘ is proportional to a, and Tw 1 Tf is proportional to 1=

ffiffiffi
a
p

, but both are independent of the other parameters.
In other words, a* defines a characteristic mutational step size and a characteristic time for adaptation.

APPENDIX D: THE DISTRIBUTION OF THE FIRST FIXATION IN THE MULTILOCUS MODEL

Here, we derive the predicted distribution of the first fixation in the multilocus model. Assume that there are L
loci with two alleles each. What is the probability that the mutant allele at locus i is the first to reach fixation? In the
following, we present an approximation that is an extension of the two-locus approach by Kopp and Hermisson

(2007). The key simplification is that allele frequency changes at different loci are assumed to be independent
(neglecting epistatic interactions for fitness).
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We first need to combine the cases of fixation from a new mutation and from an already segregating allele. By a slight
abuse of notation, we use Tw¼ 0 to indicate fixation from a segregating allele. We also introduce additional indexes for
the focal locus. Using (4b), (7a), and (15), the waiting time distribution (7a) at locus i then becomes

giðTwi
Þ ¼

0 for Tw;i , 0

1� exp � uffiffi
2
p

� �
for Tw;i ¼ 0

ulTw;i exp � uffiffi
2
p � ul

2 T 2
w;i

� �
for Tw;i . 0:

8>><
>>: ðD1Þ

Note that gi has a discontinuity at Tw,i ¼ 0. In particular, gið0Þ 6¼ limTw;i/01 giðTw;iÞ. The corresponding cumulative
distribution function is

GiðTw;iÞ ¼
ðTw;i

t¼0
f̃iðtÞdt ¼

0 for Tw;i , 0

1� exp � uffiffi
2
p

� �
for Tw;i ¼ 0

1� exp � uffiffi
2
p � uli

2 T 2
w

� �
for Tw;i . 0:

8>><
>>: ðD2Þ

For a given waiting time Tw,i, the total time to fixation is

TiðTw;iÞ ¼
ai

2v
1

1

li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
si*ðTw;iÞ2 1 2li ln

2Nsi*ðTw;iÞ
u 1 1

� 1

� �s
; ðD3Þ

where

si*ðTw;iÞ ¼
ffiffiffiffiffi
li

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
p
16 1 1

p
�

ffiffiffiffiffi
p
16

p� �
for Tw;i ¼ 0;

li

2 Tw 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2

w 1 4
li

q� �
for Tw;i . 0:

8<
: ðD4Þ

Assume the mutant allele at locus i has waiting time Tw,i. Then a mutant allele at another locus j will fix first only if
its waiting time is less than Tw;j* (Tw,i), which can be obtained by numerically solving the equation Ti(Tw,i) ¼ Tj(Tw,j)
for Tw,j. [More precisely, we need to distinguish three cases: If Ti(Tw,i) , Tj(0), then the allele at locus j can never fix
before the one at locus i, even if it starts from an already segregating allele. Thus, Tw;j* can be set to a negative value
(which has zero probability). If Tjð0Þ# TiðTw;iÞ, limTw;j /01 TjðTw;jÞ, then the allele at locus j needs to start from a
segregating allele and thus Tw;j* ¼ 0. Finally, if limTw;j /01 TjðTw;jÞ# TiðTw;iÞ, then the allele at locus j can start from a
new mutation, and Tw;j* is the solution to the above equation.] Finally, the probability pi that the mutant allele at
locus i fixes before all other mutant alleles is given by

pi ¼
ð‘

0
giðTw;iÞ

Y
j 6¼i

ð1� GjðTw;j* ðTw;iÞÞdTw;i : ðD5Þ
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