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abstract: Several recent models have shown that frequency-depen-
dent disruptive selection created by intraspecific competition can lead
to the evolution of assortative mating and, thus, to competitive sym-
patric speciation. However, since most of these results rely on limited
numerical analyses, their generality has been debated. Here, we consider
one of the standard models (the so-called Roughgarden model) with
a simplified genetics where the selected trait is determined by a single
diallelic locus. This model is sufficiently complex to maintain key prop-
erties of the general multilocus case but simple enough to allow for
comprehensive analytical treatment by means of invasion fitness ar-
guments. Depending on (1) the strength and (2) the shape of stabilizing
selection, (3) the strength and (4) the shape of pairwise competition,
(5) the shape of the mating function, and (6) whether assortative
mating leads to sexual selection, we find five different evolutionary
regimes. In one of these regimes, complete reproductive isolation can
evolve through arbitrarily small steps in the strength of assortative
mating. Our approach provides a mechanistic understanding of several
phenomena that have been found in previous models. The results
demonstrate how even in a simple model, the evolutionary outcome
depends in a complex way on ecological and genetic parameters.
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Interest in sympatric speciation has strongly increased in
recent years. Empiricists have uncovered several likely ex-
amples of this mode of speciation in nature (Schliewen et
al. 1994; Gı́slason et al. 1999; Savolainen et al. 2006). At
the same time, theoreticians have made substantial prog-
ress in understanding the potential mechanisms leading
to sympatric lineage splitting (Dieckmann et al. 2004). One
of these mechanisms is intraspecific competition. The idea
of competitive speciation (Rosenzweig 1978) goes back to
Darwin (1859, pp. 113–114) and has recently been studied
in a series of models (e.g., Doebeli 1996; Dieckmann and
Doebeli 1999; Matessi et al. 2001; Gavrilets 2004; Bürger
and Schneider 2006; Bürger et al. 2006; Doebeli et al.
2007). In particular, Dieckmann and Doebeli (1999) used
individual-based simulations of a competition model that
goes back to MacArthur (1969, 1972) and Roughgarden
(1972) to demonstrate that frequency-dependent disrup-
tive selection on an ecological trait affecting resource com-
petition can promote the evolution of assortative mating
in a process similar to reinforcement. Sufficiently strong
assortative mating then leads to reproductive isolation and
speciation.

The fact that differential competition between pheno-
types can induce frequency-dependent disruptive selection
is commonly accepted (e.g., Seger 1985; Bolnick 2004a;
Rueffler et al. 2006). What is controversial, however, is
under exactly what circumstances such selection leads to
the evolution of strong assortative mating. In particular,
it has been questioned how much of the results from
Dieckmann and Doebeli (1999) depend on model details,
and this question has led to intense debate (Doebeli and
Dieckmann 2005; Doebeli et al. 2005; Gavrilets 2005;
Polechová and Barton 2005; Waxman and Gavrilets
2005b). The reason for the continuing disagreement
among evolutionary biologists lies in the unintuitive na-
ture of frequency-dependent selection and in the com-
plexity of the models, which often allow for only a limited
analysis based on computer simulations. For example, in
the model by Dieckmann and Doebeli (1999), populations
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are subject to three different selective forces: stabilizing
selection, frequency-dependent selection due to compe-
tition, and sexual selection due to assortative mating. In
the genetically explicit version of the model, these forces
act on two or three different traits, each of which is in-
fluenced by multiple loci.

Our aim in this study is to gain a more thorough un-
derstanding of the phenomena in competitive speciation
models by a systematic analytical treatment. To this end,
we discuss the evolution of assortative mating in a Rough-
garden model with a simple genetic architecture, in which
the ecological trait is determined by a single locus with
two alleles. The same trait (or a pleiotropically related trait)
serves as a marker for assortment. This corresponds to the
first model of Dieckmann and Doebeli (1999), in which
there is no separate marker trait for assortative mating.
We thus concentrate on a “one-trait model” sensu Fry
(2003) akin to the “one-allele model” in the original clas-
sification by Felsenstein (1981). Our approach extends a
study by Matessi et al. (2001), who also investigated the
evolution of assortative mating due to frequency-depen-
dent disruptive selection acting on a single diallelic locus.
In contrast to Matessi et al. (2001), we do not use a weak-
selection approximation for the underlying fitness func-
tions. This allows us to analyze a larger parameter space
and selection pressures of any size. As it turns out, much
more of the complexity of the original Dieckmann and
Doebeli (1999) model is maintained in this way.

As our main analytical tool, we develop a simple in-
vasion criterion that enables us to study the evolution of
assortative mating in the entire parameter space. In ad-
dition, by comparing versions of the model with and with-
out sexual selection, we clarify the roles of sexual and
natural selection for competitive speciation. Our analysis
reveals a remarkably complex structure: if the ecological
locus remains polymorphic, there are five qualitatively dif-
ferent evolutionary regimes, including two regimes pre-
viously described by Matessi et al. (2001). Our results show
that predictions about the likelihood of competitive spe-
ciation require a detailed understanding of the underlying
genetic and ecological factors—in models as well as in
natural systems.

Model Description

We consider a population of sexually reproducing her-
maphrodites, which are characterized by two quantitative
traits: an ecological trait that determines competition and,
in the absence of competition, is under stabilizing selec-
tion, and a mating trait that determines the tendency for
assortative mating with respect to the ecological trait. The
timescale is chosen such that, per unit of time, each in-

dividual participates on average in one mating (playing
either the male or the female role).

Stabilizing Selection and Competition

Stabilizing selection in our model is the consequence of a
carrying capacity K that depends on the ecological phe-
notype X. We assume that K(X) is maximal for ,X p 0
but its shape can be quite general otherwise. In the original
Roughgarden model (e.g., Roughgarden 1972; Dieckmann
and Doebeli 1999), K(X) has a Gaussian shape, that is,

2X
K(X) p K exp � , (1)0 2( )2jK

where is the variance and the scaling parameter K0 is2jK

the carrying capacity for individuals with phenotype
. An alternative choice for K is a (truncated) qua-X p 0

dratic function (Matessi et al. 2001).
Competition between a pair of individuals with phe-

notypes X and Y is described by a symmetric function
. Many models assume that g dependsg(X, Y ) p g(Y, X)

only on the phenotypic distance , as in the stan-FX � YF
dard Gaussian competition function

2(X � Y )
g(X, Y ) p exp � (2)

2[ ]2jc

with variance , but we will also consider more general2jc

shapes. The total amount of competition experienced by
an individual with phenotype X is

C(X) p g(X, Y )N(Y ), (3)�
Y

where N(Y) is the number of individuals with phenotype
Y. The function C(X) can be seen as the ecologically ef-
fective population size experienced by the focal individual.

Assortative Mating

Assortative mating is modeled as female choice (more pre-
cisely, choice by hermaphrodites in their female role) and
is based on phenotypic similarity with respect to the eco-
logical trait (Dieckmann and Doebeli 1999; Matessi et al.
2001; Bürger and Schneider 2006; Bürger et al. 2006). The
probability m(X, Y) that an encounter between a male and
a choosy female leads to mating depends only on their
phenotypic distance, . We setm(X, Y ) p m(FX � YF)

for normalization and assume (i.e., wem(0) p 1 m(x) ≤ 1
do not allow for disassortative mating). The shape of the
mating probability function depends on one or several
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variables that measure the degree of female choosiness.
For most of our results, we will use a Gaussian mating
function,

2(X � Y )
m(FX � YF) p exp � , (4)

2[ ]2jm

where the shape is determined by a single parameter for
the variance . Here, small corresponds to strong2 2j jm m

choosiness. The value(s) of the shape parameter(s) depend
on the female mating genotype and can evolve.

Even though the aim of this study is to understand the
evolution of female choosiness (i.e., the evolution of the
shape of the mating probability function), most of the fol-
lowing analysis will be concerned with populations that are
monomorphic with respect to the mating genotype. Poly-
morphic populations will appear only in the invasion anal-
ysis in appendix B, where the fate of rare mutants with a
modified mating genotype is studied. To simplify our no-
tation, we will therefore not include the explicit dependence
on the mating genotype in the definition of the population-
level variables. An appropriate notation to deal with dif-
ferent mating genotypes will be defined in appendix B where
it is needed.

We assume (for now) that the population is mono-
morphic for the mating genotype. Even in this case, as-
sortative mating may lead to genotype-specific mating
rates on the population level, wheref p (f � f )/2female male

female and male mating rates are separately defined as

f (X) p N(Y )m(X, Y )M(X), (5a)�female
Y

f (X) p N(Y )m(X, Y )M(Y ). (5b)�male
Y

(Note that Matessi et al. [2001] use the term “mating rate”
in a different sense.) Here, we have introduced additional
factors M(X), which describe female mating activity. The
idea is that females with different genotypes may have
different encounter rates with males. In general, M may
also depend on the genotype distribution in the popula-
tion. By different choices of M, we can model different
types of assortative mating in a common framework.

In particular, we will consider two models. Both models
assume that choosiness has no direct costs for females.
This means that the mating rate of an individual female
does not depend on her mating genotype because differ-
ences in the mating probabilities m are compensated by
differences in the mating activities M. Even with this as-
sumption, assortative mating may or may not lead to sex-

ual selection, depending on whether the mating rates f

differ between the ecological genotypes.
Model 1: no sexual selection. In our first model, assor-

tative mating does not lead to sexual selection on the
ecological trait. The mating activity factors M(X) are cho-
sen such that all phenotypes contribute to the offspring
pool according to their frequency in the mating popula-
tion. This is achieved by setting for all X andf(X) p 1
solving the resultant linear equation system (see app. A).

Model 2: sexual selection against rare males. Our second
model follows Dieckmann and Doebeli (1999). Here,
M(X) is chosen such that all females have the same nor-
malized mating rate (see app. A). Thisf (X) p 1female

means that each female is guaranteed to eventually find a
mate whom she does not reject. In contrast, male mating
rates are not normalized but depend on X. Therefore,
female choice entails sexual selection on males and leads
to a disadvantage for rare ecological phenotypes. Note that
in this article, we study only sexual selection that arises
as a consequence of assortative mating based on the eco-
logical trait (see Gourbière 2004; Kirkpatrick and Nuismer
2004). We do not consider sexual selection due to female
preference for male display traits, which by itself has been
discussed as a potential cause of sympatric speciation via
Fisherian runaway processes (Higashi et al. 1999; Arnegard
and Kondrashov 2004; van Doorn et al. 2004).

Population Dynamics and Fitness

In the following analysis, we assume that time is contin-
uous (generations are overlapping) and population sizes
are large enough to allow us to ignore stochastic processes
such as genetic drift. All mated individuals are assumed
to produce an equal number of offspring, r. Therefore, the
fertility of individuals with phenotype X is rf(X); that is,
all differences in fertility are due to differences in mating
rates. While fertility is the rate at which a phenotype gives
birth, the birth rate B(X) is the rate at which individuals
with phenotype X are born. For our model,

B(X) p r N(Y )N(Z)m(Y, Z)M(Z)R , (6)� YZrX
Y, Z

where is the probability (depending on ge-R p RYZrX ZYrX

netic details) that a mating between Y and Z individuals
produces X offspring.

We can now write down the population dynamics,
which follow a Lotka-Volterra model,

Ṅ(X) p B(X) � N(X)d(X), (7)

where the per capita death rate is equal to the ratiod(X)
of the effective population size and the carrying capacity,
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C(X)
d(X) p . (8)

K(X)

This model is commonly interpreted in terms of com-
petition among phenotypically variable consumers for a
continuum of (demographically rapid) resources (e.g.,
MacArthur 1969; Ackermann and Doebeli 2004). The ca-
nonical example is birds with different beak sizes special-
izing on different-sized seeds (Schoener 1965). Then, K(X)
describes the availability of resources favored by consum-
ers with phenotype X, and g(X, Y) describes the overlap
in resource use between two individuals with phenotypes
X and Y. The standard deviation jc determines the range
of resources used by a single individual, that is, the in-
dividual niche width (Bolnick et al. 2003). If jc is small,
selection arising from competition is strongly frequency
dependent.

Finally, the (Malthusian) fitness of individuals with phe-
notype X is given by the rate at which individuals give
birth minus the rate at which they die, that is, by

W(X) p rf(X) � d(X). (9)

In other words, fitness can be separated into two com-
ponents, one related to mating success and one to survival.
In the following, we will use the notion that d(X) describes
natural selection due to stabilizing selection and resource
competition, whereas f(X) describes sexual selection due
to female choosiness. Equation (9) will be the basis for
the invasion analysis that allows us to study the evolution
of female choosiness. In the remainder of this article, we
will set . This is without loss of generality becauser p 1
a different value of r can be accounted for by changing
the timescale in equation (7) and rescaling the carrying
capacity parameter K0 to rK0.

Genetics

To allow for a detailed analytical treatment, we now make
the simplifying assumption that the ecological trait is de-
termined by a single diploid locus with two alleles, “�”
and “�.” We ignore environmental variation and assume
that the allelic effects are symmetric with respect to the
maximum of the carrying capacity K(X). Individuals with
genotype (�/�) have phenotype x, individuals with ge-
notype (�/�) have phenotype 0, and individuals with
genotype (�/�) have phenotype �x. We call x the allelic
effect of the ecological locus.

Because there are only three ecological phenotypes, we
can use a simplified notation. We will denote the numbers
of individuals carrying these genotypes by , Nhet, and�Nhom

, respectively, where “hom” and “het” stand for ho-�Nhom

mozygotes and heterozygotes. Similarly, we will use

and and analogous sub-�K p K(�x) K p K(0) p Khom het 0

scripts for the other parameters. Furthermore, we will de-
note average parameter values over both homozygote clas-
ses by, for example, and� �N p (N � N )/2hom hom hom

. The strength of stabilizing selec-� �K p (K � K )/2hom hom hom

tion will be described by two (dimensionless) variables,

�Khom�k p 1 � , (10a)
Khet

and the competition and mating functions by three and
two values, respectively,

�c p 1 � g(�x, 0), (10b)

′c p 1 � g(�x, x), (10c)

m p 1 � m(x), (10d)

′m p 1 � m(2x). (10e)

Frequency dependence induced by competition increases
with c� and c ′, which parameterize the niche shape. Female
choosiness increases with m and m′, which measure the
probabilities for females to reject males with a different
phenotype. This parametrization makes it possible to con-
sider very general shapes of the functions K, g, and m. All
we assume in our analytical derivations is that

and that is a nondecreasing� � ′ ′ ′k , c , c , m, m � [0, 1] m
function of m that extends from for to′m p 0 m p 0

for . This implies that mating modifiers′m p 1 m p 1
cannot change m and m′ in opposite directions. (For all
figures, a Gaussian mating function with ′(1 � m ) p

is assumed.) Explicit expressions for the mating4(1 � m)
rates and fitness components in terms of these parameters
are given in appendix A, and table 1 summarizes the
parameters.

For simplicity, we will restrict our presentation in the
body of this article to symmetric cases with � �k p k p

and . Furthermore, if not otherwise stated,� �k c p c p c
we will employ the Gaussian functions (2) and (4) for g

and m, where and .′ 4 ′ 4c p 1 � (1 � c) m p 1 � (1 � m)
The general asymmetric case is treated in appendixes B
and E. A major simplification arising from the symmetry
assumption is that in a population with a monomorphic
mating genotype, the polymorphic equilibrium of equa-
tion (7) is also symmetric with . At� �N p N p Nhom hom hom

this equilibrium, the genotype distribution is fully de-
scribed by the ratio of heterozygotes to homozygotes,

Nhetn p , (11)
Nhom
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Table 1: Major model parameters

Parameters Definition

, Bhet,
� �B Bhom hom Birth rates of the three genotype classes

, Chet,
� �C Chom hom Total amount of competition felt by a genotype (ecologically effective population size)

, Khet,
� �K Khom hom Genotype-specific carrying capacities

, Nhet,
� �N Nhom hom Number of individuals in the three genotype classes

, Mhet,
� �M Mhom hom Genotype-specific female mating activities

, Whet,
� �W Whom hom Genotype fitnesses

c�, c� Strength of competition between a heterozygote and one of the homozygotes
c ′ Strength of competition between opposite homozygote individuals

, dhet,
� �d dhom hom Death rates

k�, k� Strength of stabilizing selection acting on the two homozygotes
m Probability that a heterozygote female rejects a homozygote male or vice versa
m′ Probability that a homozygote female rejects an opposite homozygote male
n Ratio of heterozygote to (average) homozygote population size (Nhet/Nhom)
x Allelic effect of the ecological locus
g(X, Y) Strength of competition between phenotypes X and Y
m(F F)X � Y Probability that mating takes place between X and Y if they meet
jk, jc, jm Standard deviations of carrying capacity, competition, and mating probability functions

in the Gaussian model
, fhet,

� �f fhom hom Genotype-specific mating rates
fmale, ffemale Male and female mating rates

Note: Indexes “hom” and “het” always apply to the ecological locus. Averages over the two homozygote classes are expressed

by corresponding parameters without a “�” index, for example, .� �N p (N � N )/2hom hom hom

which equals 0 for complete reproductive isolation and 2
at Hardy-Weinberg equilibrium.

Parameters of assortative mating are determined by the
alleles at (one or several) modifier loci. Since we assume
that there is no cost of choosiness, modifier alleles do not
change the fitness of their carriers. They are therefore pure
modifiers in the sense of classical modifier theory (Karlin
and McGregor 1974). In our analytical treatment, we as-
sume that modifier mutations are rare and that at most a
single mating modifier (at recombination distance r from
the ecological locus) segregates at a given time. We also
assume that individual modifiers have a small effect, but
we do not need to specify the genetic basis of the mating
trait any further at this point.

Analytical Methods

The main goal of this study is to understand the evolution
of female choosiness. To this end, we use an invasion
fitness approach for mating modifiers (Karlin and Mc-
Gregor 1974; Metz et al. 1992) and ask when a rare mutant
with higher or lower choosiness can invade a resident pop-
ulation with a monomorphic mating genotype. Our main
tool is the following invasion criterion.

Invasion criterion. Assume that the population is at a
(symmetric or asymmetric) polymorphic equilibrium of
the ecological locus. A mutant modifier allele for stronger
female choosiness (larger m and m′) is able to invade a
resident population with monomorphic mating genotype

if and only if the homozygote residents have higher fitness
than the heterozygote residents, . Conversely,W 1 Whom het

a mutant with smaller m and m′ is able to invade if and
only if .W ! Whom het

Thus, the direction of selection on female choosiness is
determined by the sign of , and an evo-D p W � WW hom het

lutionary equilibrium is reached if . This criterionD p 0W

is independent of potential linkage between mating mod-
ifiers and the ecological locus. A formal proof is given in
appendix B. Intuitively, the idea is as follows: Since we
have assumed that there is no cost of choosiness, the mat-
ing strategy of the mutant has no direct influence on its
fitness. However, the mating genotype of females deter-
mines the distribution of mutant genotypes in the next
generation (and beyond). Since females with a higher
choosiness than the residents will have proportionally
more homozygous offspring (with respect to the ecological
genotype), corresponding mutants are favored for D 1W

, and vice versa. In accordance with equation (9), can0 DW

be written as the sum of two components stemming from
sexual and natural selection, respectively,

D p D � D , (12)W f d

where and .D p f � f D p �(d � d )f hom het d hom het

Simulation Methods

In addition to the invasion analysis, we carried out in-
dividual-based simulations. The aim of the simulations
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was twofold: first, to check the validity of the analytical
results for finite populations (i.e., in the presence of genetic
drift and demographic stochasticity), and second, to see
how the likelihood of speciation depends on the genetic
architecture of the mating trait. For this purpose, we now
specify that female choosiness is determined by one dip-
loid, additive locus with a continuum of possible alleles.
New alleles are created by mutations occurring at rate u
per individual and generation and follow a stepwise mu-
tation model at the scale of m (e.g., if the step size is 0.1,
an allele coding for can mutate to orm p 0.5 m p 0.4

, which of course leads to a nonconstant step sizem p 0.6
at the scale of jm). There are no mutations at the ecological
locus. The ecological locus and the choosiness locus are
unlinked. Initial populations are polymorphic at the eco-
logical locus (with allele frequencies 0.5) but monomor-
phic at the choosiness locus. Gaussian functions for K, g,
and m are assumed throughout. Simulations are run for a
maximum of 100,000 generations, where one generation
is defined by 2N birth or death events (where N stands
for total population size). Speciation, in the simulations,
is defined as the absence of heterozygotes.

Results

In this section, we investigate the evolution of female
choosiness, starting with the symmetric model without
sexual selection. We find three evolutionary regimes, which
are then complemented by two further regimes identified
in the symmetric model with sexual selection. Next, we
examine the stability of ecological polymorphisms and the
implications of non-Gaussian competition functions, be-
fore presenting simulation results to corroborate and com-
plement our analytical findings. Results for asymmetric
models are presented in appendix E.

Evolution of Female Choosiness in the Model
without Sexual Selection

In the model without sexual selection (i.e., with ),f p 1
the evolution of female choosiness is determined by nat-
ural selection alone. As shown in “Analysis of the Sym-
metric Model without Sexual Selection” in appendix C,
for each parameter combination, natural selection favors
a unique value of the heterozygote-to-homozygote ration̂
n (eq. [C1]). Female choosiness then evolves in such a
way that n matches , within the constraints that m andn̂
m′ must be between 0 and 1 (because we do not allow for
disassortative mating). This leads to three qualitatively dif-
ferent evolutionary regimes (fig. 1A, 1B):

Random-mating (R) regime. The population evolves to
random mating ( ) if , that is, if′ ˆm p m p 0 n ≥ 2

′c
k ≥ (13)

4 � 2c

(solid lines in fig. 1A, 1B). This is the case if stabilizing
selection is strong (k, x large) or competition induces weak
frequency dependence (c small, jc large). Random mating
is stable for any value of c if , that is, if the carryingk 1 0.5
capacity of homozygotes is less than half that of
heterozygotes.

Complete-isolation (C) regime. The population evolves
to complete reproductive isolation ( ) if′ ˆm p m p 1 n ≤

, that is if0

′c � 2c
k ≤ (14)

2 � 2c

(dashed lines in fig. 1A, 1B). This is the case if stabilizing
selection is weak (k, x small) and competition induces
moderate frequency dependence (intermediate c and jc).

Partial-isolation (P) regime. If neither condition (13) nor
condition (14) is fulfilled, the population evolves to an
intermediate level of choosiness, entailing partial repro-
ductive isolation.

Two observations from figure 1 are noteworthy. First,
the often-cited condition for the emergence of frequency-
dependent disruptive selection in the Gaussian model,

(or, equivalently, ; Christiansen and Loeschckej ! j c 1 kc K

1980; Dieckmann and Doebeli 1999), is necessary but not
sufficient for complete (or even partial) isolation in this
model. The reason is the rigid genetic architecture that
results from the allelic effect x being constant: even if
disruptive selection favors lineage splitting in a continuous
genotype space, this will not happen if x is too large and,
consequently, stabilizing selection against homozygotes is
too strong. The above condition is reproduced in the limit

, as can be seen from equations (13) and (14) withx r 0
. Second, partial isolation replaces′ 4c p 1 � (1 � c) r 4c

complete isolation if competition induces strong frequency
dependence (large c). This is because if competition among
homozygotes and heterozygotes becomes very weak, het-
erozygotes will occupy a third ecological niche.

Evolution of Female Choosiness in the Model
with Sexual Selection

In the model with sexual selection, homozygote and het-
erozygote males may differ in their mating rates. Therefore,
evolution of choosiness is determined by both natural and
sexual selection. We analyze the evolutionary equilibria us-
ing the invasion criterion based on the sign of D pW

(fig. 2); all derivations for this section are givenW � Whom het

in “Analysis of the Symmetric Model with Sexual Selection”
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Figure 1: Evolutionary regimes for female choosiness in the Gaussian models without and with sexual selection. A and C show the results as a
function of k and c (which are direct measures of selection strength), whereas B and D show the same results in the alternative parameter space
spanned by the ecological parameter jc and the genetic parameter x. Note that the orientation of the jc axis is downward. All plots assume j pK

(without loss of generality) and Gaussian fitness and mating functions (eqq. [1], [2], [4]). In the model without sexual selection (A, B), there are1
three regimes: complete isolation (C), partial isolation (P), and random mating (R). The boundaries of the R regime (solid lines) and the C regime
(dashed lines) are defined by equations (13) and (14). With sexual selection (C, D), there are two additional bistable regimes: the R/C regime, where,
depending on initial conditions, the population evolves either random mating or complete isolation, and the P/C regime, where it evolves either
partial or complete isolation. Local stability of random mating (right of solid lines) is identical to the case without sexual selection. Stability of
complete isolation (left of thick dashed lines) is now given by equation (15). In the hatched area, the polymorphic equilibrium at the ecological locus
is unstable for intermediate values of choosiness. To the left of the thin dotted lines, the monomorphic equilibria are locally stable if choosiness is
sufficiently large (see eq. [18]).

in appendix C. As in the model without sexual selection,
evolutionary equilibria can be characterized by random
mating, partial isolation, or complete isolation. Random
mating is evolutionarily stable under the same condition as
in the model without sexual selection, given by inequality
(13), because sexual selection does not act if mating is ran-
dom. Complete isolation ( ) is stable if′m p m p 1

′ ′ �( )2 � 4c � c � (2 � c ) 1 � 2/k � 1 k
k ! , (15)

4 � 4c

where . For a Gaussian′k p lim (1 � m )/(1 � m)′m, m r1

mating function with , , and′ 4(1 � m ) p (1 � m) k p 0
condition (15) is considerably less strict than condition

(14) in the model without sexual selection (cf. thick dashed
lines in fig. 1C, 1D with those in fig. 1A, 1B). In general,
inequality (15) shows that the evolutionary equilibria de-
pend on the shape of the mating function. Finally, the
invasion analysis reveals that, in addition to the random-
mating (R), partial-isolation (P), and complete-isolation
(C) regimes, where there is only one possible evolutionary
outcome, the model with sexual selection has two addi-
tional bistable regimes (fig. 1C, 1D; figs. 2, 3).

Bistable regime with random mating or complete isolation
(R/C). In a large part of parameter space (small c and
intermediate k), random mating and complete isolation
are both locally stable. The evolutionary outcome then
depends on the initial level of choosiness.
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Figure 2: Selection on female choosiness in the five evolutionary regimes of the model with sexual selection. The plots show the fitness advantage
of homozygotes, (thick solid lines) as a function of female choosiness m. The parameter is the sum of two components,D p W � W DW hom het W

(thin solid lines) and (dashed lines), which describe the direction of sexual selection and natural selection,D p f � f D p �(d � d )f hom het d hom het

respectively. Arrows indicate the resultant direction of selection on m. Parameters: , (R); , (P); ,x p 1.2 j p 0.9 x p 0.4 j p 0.2 x p 0.3 j pc c c

(C); , (R/C); , (P/C). Fitness and mating functions are assumed to be Gaussian.0.3 x p 0.7 j p 0.9 x p 0.5 j p 0.4c c

Bistable regime with partial isolation or complete isolation
(P/C). In part of the parameter region where random mat-
ing is unstable and complete isolation is stable, there are
two additional intermediate equilibria, one stable and one
unstable. A population that starts at random mating and
whose choosiness evolves in small steps will reach the sta-
ble intermediate equilibrium, and only a population that
starts with an already high level of choosiness (or evolves

in large steps) can evolve to complete isolation. This
threshold phenomenon has previously been described by
Doebeli (1996) and Matessi et al. (2001).

Natural versus Sexual Selection

To understand the evolution of female choosiness in this
model, we need to consider the joint action of natural and
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Figure 3: Stability of the ecological polymorphism and evolutionary equilibria of female choosiness m as a function of the allelic effect x (assuming
Gaussian fitness and mating functions). In the dark gray areas, the polymorphic equilibrium is unstable. To the left of the dashed line, the monomorphic
equilibrium is locally stable (see inequality [18]). Shades of gray indicate the size of the domain of attraction of the polymorphic equilibrium in
terms of the frequency of the “�” allele ( equilibrium is globally stable; dark equilibrium is unstable).white p polymorphic gray p polymorphic
Black lines show stable equilibria and gray lines unstable equilibria for m. Arrows indicate the direction of selection on m. Each plot illustrates the
succession of evolutionary regimes along a horizontal line in figure 1D. For example, the complete isolation regime exists for intermediate x if

but not if . Note that evolution of m will come to a halt if the population moves into the dark gray area, where the polymorphismj p 0.5 j p 0.7c c

at the ecological locus is unstable.

sexual selection as the population moves from random
mating to complete isolation. Natural selection for ho-
mozygotes (favoring assortative mating) is described by
Dd (eqq. [12], [A8]), which satisfies

′D ∝ (c � k)n � c � 2c � 2k(1 � c). (16)d

For , selection on the ecological phenotype is disrup-c 1 k
tive, and Dd is monotonically increasing with n (i.e., se-
lection for homozygotes increases with the frequency of
heterozygotes). This means that competition leads to neg-
ative frequency dependence, so that rare phenotypes are
favored. Since n generally decreases with increasing m and
m′, this explains the shape of Dd in figure 2 (where c 1 k
is always fulfilled). In contrast, for , natural selectionc ! k
on the ecological phenotypes has a net stabilizing effect,
and Dd is decreasing with n. Intuitively, this means that
an increase in the number of heterozygotes has a stronger
negative effect on the homozygotes (which have a lower
carrying capacity) than on the other heterozygotes. In
other words, natural selection in this case induces positive
frequency dependence.

Sexual selection on the ecological phenotype is always
positively frequency dependent (frequent phenotypes are
more likely to find a mate). It favors homozygotes when
they are common and disfavors them when they are rare.
For given n, Df (see eq. [12]) is positive (favoring ho-
mozygotes) if and only if

′m
n ! 2 � . (17)

m

Under the reasonable assumption that , assortative′m ≥ m
mating must be strong enough for the phenotype distri-
bution to become bimodal ( ) before sexual selectionn ! 1
favors increased choosiness. Similarly, increased choosi-
ness is never favored as long as the mating function is
concave ( , which is possible only for ).′m 1 2m m ! 0.5

The thin solid lines in figure 2 show the fitness difference
caused by sexual selection, Df, as a function of m (and at
the equilibrium value of n). The value of Df is 0 at random
mating and initially decreases (i.e., becomes negative) with
increasing m, thus acting against further increase in choos-
iness. This is because at low m, heterozygotes are suffi-
ciently common to be favored by sexual selection. Near
complete isolation, however, where n is small and m and
m′ are close to 1, Df is always positive. For parameter values
where complete isolation is evolutionarily stable (and as-
suming a Gaussian mating function), it reaches its max-
imal possible value of 1/2 at . For parameter′m p m p 1
values where complete isolation is unstable, Df at m p

drops back to 0 (see “Analysis of the Symmetric Model1
with Sexual Selection” in app. C for more details).

Thus, sexual selection can have two different effects (see
fig. 2). (1) For low m and m′, sexual selection creates a
barrier against further increase of choosiness. For complete
reproductive isolation to evolve, natural selection from
competition must overcome this barrier. Otherwise, the
population gets stuck at an intermediate equilibrium (as
in the P/C regime), where natural selection (favoring in-
creased choosiness) balances with sexual selection (favor-
ing decreased choosiness). (2) For already high levels of
choosiness (leading to a bimodal phenotype distribution),
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sexual selection is a potent force that can drive populations
toward complete reproductive isolation. Since Df reaches
a maximum at for , whereas Dd de-′m p m p 1 n r 0
creases (assuming ), the relative importance of sexualc 1 k
versus natural selection increases toward this limit. This
is particularly evident in the R/C regime, where sexual
selection can maintain complete isolation even though nat-
ural selection favors random mating.

Stability of the Ecological Polymorphism

So far, we have assumed that the ecological locus is always
at a polymorphic symmetric equilibrium, with the pro-
portion of heterozygotes determined by female choosiness.
This equilibrium is, indeed, always favored by natural se-
lection (for by frequency-dependent disruptive se-c 1 k
lection and for due to heterozygote advantage). How-c ! k
ever, monomorphic equilibria (containing either only the
“�” or only the “�” allele) may become stable as a result
of the positive frequency dependence of sexual selection.
Obviously, evolution of complete isolation is only possible
if the ecological locus remains polymorphic. In “Analysis
of the Symmetric Model with Sexual Selection” in appen-
dix C, we show that the monomorphic equilibria are locally
stable if

m
1 c � k � ck, (18)

2

that is, if sexual selection from female choosiness is strong
enough relative to natural selection (thin dotted lines in
fig. 1C, 1D).

Whether the polymorphic equilibrium is locally stable
can be determined numerically by standard linear stability
analysis (i.e., by numerically calculating the eigenvalues of
system [A10]). When the polymorphic and monomorphic
equilibria are both locally stable, their respective domains
of attractions can be estimated by iterating system (A10a)
with different initial allele frequencies. The polymorphic
equilibrium is unstable for small x and intermediate m (dark
gray areas in fig. 3; Bürger and Schneider 2006; Bürger et
al. 2006). This parameter range does not overlap with the
domain of the complete isolation regime (see the hatched
areas in fig. 1C, 1D). A polymorphic population evolving
in the complete isolation regime may enter an area where
the monomorphic equilibria are locally stable. However,
their domain of attraction is very small (very light gray areas
to the left of the dashed lines in fig. 3). Therefore, a suf-
ficiently large population will almost certainly remain poly-
morphic and safely reach complete isolation. For the P/C
regime, our numerical analysis for the Gaussian model
shows that a polymorphic population starting from random
mating and evolving in small steps will always reach the

stable intermediate value of m before the monomorphic
equilibria become locally stable (see fig. 3, where the thick
black lines lie below the gray areas). Matessi et al. (2001)
found similar results for a quadratic model.

Non-Gaussian Competition Functions

Figures 1–3 are based on the Gaussian functions (1), (2),
and (4), but the analytical results in equations (13)–(18)
hold for arbitrary symmetric fitness functions. In this sec-
tion, we analyze, in more detail, the influence of the shape
of the competition function. In the symmetric model, this
shape is characterized by the two parameters c and c ′. In
the Gaussian model (eq. [2]), , but other′ 41 � c p (1 � c)
relationships are no less possible. Assuming that the
strength of competition does not increase with phenotypic
distance ( ), two extreme cases are given by′ ′c ≥ c c p c
and . In the first case, different homozygotes com-′c p 1
pete as strongly with each other as they do with the het-
erozygotes. Therefore, competition induces weaker fre-
quency dependence than in the Gaussian model. In the
second case, different homozygotes do not compete at all,
and competition induces stronger frequency dependence
than in the Gaussian model.

As one should expect, weaker frequency dependence
( ) makes reaching complete isolation less likely. In-′c p c
deed, in this case, the complete-isolation regime is entirely
missing (fig. 4A, 4C). In contrast, if frequency-dependent
selection is stronger than in the Gaussian model ( ),′c p 1
the domain of the complete-isolation regime expands (fig.
4B, 4D) and now includes areas with arbitrarily small c.
Furthermore, a bistable regime (R/C) exists also in the
absence of sexual selection (but only for ). The bi-c ! k
stability can be explained by the fact that for , naturalc ! k
selection induces positive frequency dependence (see
“Natural versus Sexual Selection”). Finally, the polymor-
phic equilibrium of the ecological locus is always locally
stable. A more general analysis for arbitrary values of c
and c ′ is given in appendix D. The influence of asymmetry
in the carrying capacity and the competition function is
discussed in appendix E.

Simulation Results

Our analytical results for the model with sexual selection
are qualitatively confirmed by the individual-based sim-
ulations. In particular, we did not find any new equilibria
or evolutionary regimes. In the random-mating, partial-
isolation, and complete-isolation regimes, the expected
equilibrium was always reached, independent of initial
conditions. For the complete-isolation regime, simulations
with different parameter combinations showed that for
given mutational step size, the time required for reaching
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Figure 4: Evolutionary regimes for female choosiness with non-Gaussian competition functions. In A and C, competition between different
homozygotes is as strong as competition between homozygotes and heterozygotes ( ). Without sexual selection, complete isolation cannot be′c p c
evolutionarily stable. With sexual selection, complete isolation can be an evolutionarily stable state, but it cannot evolve from random mating in
small steps (i.e., the C regime is absent, and only the bistable R/C and P/C regimes exist). In B and D, homozygotes with different phenotypes do
not compete with each other ( ). The parameter range corresponding to the complete-isolation regime is larger than in the Gaussian model.′c p 1
For more details, see figure 1.

complete isolation depends only on the product of pop-
ulation size and mutation rate (results not shown), as pre-
dicted by the canonical equation of adaptive dynamics
(Dieckmann and Law 1996). In the bistable R/C regime,
the outcome of the simulations depends on initial con-
ditions, as predicted by our analytical results.

In the P/C regime, a finite population that starts at ran-
dom mating can evolve toward three possible equilibria: (1)
it can lose the polymorphism at the ecological locus, (2) it
can end up at the stable equilibrium with intermediate m,
and (3) it can end up at the stable equilibrium correspond-
ing to complete isolation ( ), thereby jumping overm p 1
the unstable intermediate equilibrium (see fig. 2). For a very
small population ( ), the polymorphism at the eco-K p 5000

logical locus is always lost for parameter combinations for
which the polymorphic equilibrium becomes unstable for
intermediate m (fig. 5; see also the hatched areas in fig. 1C,
1D). Outside of these areas, the population often evolves
to an intermediate degree of choosiness. Evolution of com-
plete isolation is most likely for parameter combinations

close to the complete-isolation regime. At these parameters,
the valley of m values within which selection acts against
homozygotes (i.e., against an increase in choosiness; D !W

) is narrow, so that the jump needed to reach complete0
isolation is relatively easy. The probability of reaching com-
plete isolation in this manner also strongly depends on the
mutational parameters. In our model, reaching complete
isolation requires high mutation rates and relatively large
mutational effects (fig. 6). Furthermore, for given muta-
tional parameters, the probability of jumping does not in-
crease with increasing population size (results not shown).

Discussion

Under what conditions can intraspecific competition lead
to sympatric speciation? This question has been at the
focus of much recent debate (Doebeli and Dieckmann
2005; Doebeli et al. 2005; Gavrilets 2005; Polechová and
Barton 2005; Waxman and Gavrilets 2005b). In this article,
we have studied a genetically simplified version of the
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Figure 5: Alternative evolutionary outcomes in the P/C regime (model 2), and fitness advantage of homozygotes, for various values of x and jc.
The rectangular panels show as a function of female choosiness m (as in fig. 2). The pie charts are based on 20 simulation runsD p W � WW hom het

each and show the probability that the polymorphism at the ecological locus is lost (gray), that complete isolation is reached within 100,000
generations (white), or that the population is “stuck” at the stable intermediate equilibrium for m (black). Other parameters: , mutationK p 5000

rate , mutational step .�4u p 4 # 10 size p 0.1

Figure 6: Probability of reaching complete isolation in the P/C regime
(model 2) within 100,000 generations, depending on the mutation rate
and the mutational step size. The number of steps between random
mating and complete isolation is 1/(step size) and ranges from 4 to 20.
The population was assumed to be at complete isolation when there were
no heterozygotes left. Other parameters: , , .j p 0.4 x p 0.5 K p 500c 0

As can be seen from the corresponding panel in figure 2, the width of
the fitness valley that must be crossed is about 0.4.

model by Dieckmann and Doebeli (1999) where the evo-
lution of assortative mating is governed by the relative
fitness of homozygotes and heterozygotes. This simple cri-
terion allowed us to gain a detailed overview of what can
happen in a model of competitive speciation, along with
a mechanistic understanding of the relevant selection pres-
sures. Our analysis leads to three major conclusions.

First, we find that evolution of complete reproductive
isolation—and, as a consequence, sympatric speciation—
is possible in a relevant area of parameter space under
biologically realistic conditions. In the complete-isolation
(C) regime, speciation does not require any unusual as-
sumptions about the strength of selection, nor does it
depend on extreme initial conditions or unrealistically high
mutation rates and mutational effects (Waxman and Gav-
rilets 2005a).

Second, we find that another frequent evolutionary out-
come is partial reproductive isolation (see Doebeli 1996;
Matessi et al. 2001). Partial isolation evolves if selection
against intermediate phenotypes stops once they are suf-
ficiently rare. It can be either locally or globally stable. At
partial isolation, heterozygotes are still present in the pop-
ulation, but they are less frequent than at Hardy-Weinberg
equilibrium. For most parameter combinations, the phe-
notypic distribution at the partial isolation equilibrium is
still unimodal (results not shown). For parameters close
to the domain of the complete isolation regime, however,
the phenotypic distribution becomes bimodal, and isola-
tion may be strong enough to imply, or eventually cause,
speciation. We note that strong, but not complete, isolation

is also a common outcome of the Dieckmann and Doebeli
(1999) model (see fig. 3 in Dieckmann and Doebeli 1999
and fig. 2 in Doebeli and Dieckmann 2003). In general,
we suggest that the possibility of partial isolation as a stable
outcome of frequency-dependent disruptive selection de-
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serves more attention than it currently receives. In par-
ticular, partial isolation between natural populations (e.g.,
Knudsen et al. 2006; Strecker 2006) does not necessarily
imply incipient speciation (see also Bolnick 2006).

Finally, we find that whether competition leads to spe-
ciation depends on the combination of many parameters,
both ecological and genetic. For example, for complete iso-
lation to evolve in small steps, frequency-dependent selec-
tion due to competition must be neither too weak nor too
strong, and speciation can be either facilitated or inhibited
by sexual selection, the shape of the competition and mating
functions, and the genetics of the mating trait. Therefore,
conclusive quantitative predictions about the likelihood of
various evolutionary outcomes cannot be made without
good knowledge about the distribution of parameter values
in nature. Simple comparisons of the size of various evo-
lutionary regimes can be misleading. To emphasize this
point, note that the hatched area corresponding to loss of
polymorphism looks much more impressive in figure 1C
than in figure 1D, but the differences between the two plots
are brought about solely by a change in the parameters used
to define the axis. Unfortunately, relevant data are difficult
to obtain and largely absent to date. Given the multitude
of parameters that jointly play a role, it may in fact be
impossible to ever know all the relevant details for a specific
empirical system. A more viable approach is to test statistical
model predictions for the influence of various factors in a
multispecies comparison.

Natural and Sexual Selection

In our model, evolution of assortative mating shows a re-
markably complex equilibrium structure that results from
the interplay of natural and sexual selection. Natural selec-
tion includes stabilizing selection due to the dependence of
carrying capacity on phenotype and frequency-dependent
selection due to competition. In the model without sexual
selection, evolution of complete reproductive isolation is
possible if the resource supply for both homozygote classes
is sufficiently high and their overlap in resource use is suf-
ficiently low. If both conditions are satisfied, the two evolv-
ing species can occupy two distinct ecological niches. If,
however, the competition function is too narrow, a third
niche at an intermediate phenotype opens up that is filled
by the heterozygotes, thus preventing complete isolation.
The size of this third niche determines the “optimal” ratio
of heterozygotes to homozygotes in the population, and
female choosiness then evolves to such a value that this
optimal ratio is produced. If the niche for heterozygotes gets
sufficiently large, natural selection stabilizes random mating.
As long as natural selection is disruptive ( ), it favorsc 1 k
a unique evolutionary equilibrium, and the ecological poly-
morphism is always stable. We therefore find three evolu-

tionary regimes: complete isolation (C), partial isolation (P),
and random mating (R).

Sexual selection against rare males can either enhance or
oppose the effects of natural selection. It favors heterozy-
gotes when they are common and disfavors them when they
are rare. Thus, sexual selection promotes speciation if female
choosiness is already high but impedes it as long as choos-
iness is low. This positive frequency dependence can cause
bistability of the evolutionary equilibria: in the R/C regime,
natural selection favors random mating, but sexual selection
can maintain complete isolation once it has been estab-
lished. In the P/C regime, natural selection favors partial or
complete isolation, but sexual selection favors heterozygotes
at low levels of choosiness and creates a barrier against the
evolution of stronger assortative mating. An intermediate
equilibrium is reached if natural and sexual selection bal-
ance. This equilibrium has previously been observed by
Doebeli (1996) and Matessi et al. (2001), but these authors
did not provide a mechanistic explanation. As a conse-
quence of the above barrier, sexual selection does not in-
crease the area where complete isolation can evolve from
random mating in small steps, although it usually increases
the area in parameter space where complete isolation is
locally stable (fig. 1). In addition, sexual selection can lead
to the loss of the ecological polymorphism, as previously
described by Gourbière (2004), Kirkpatrick and Nuismer
(2004), Bürger and Schneider (2006), and Bürger et al.
(2006). This is most relevant for small populations where
frequency-dependent selection due to competition is weak
and a monomorphic equilibrium is almost always reached
(see fig. 5).

In summary, there are three mechanisms that can pre-
vent the evolution of complete reproductive isolation, even
if selection is disruptive: (1) natural selection can stabilize
a sufficiently small proportion of heterozygotes in a third
niche, (2) sexual selection can favor heterozygotes while
they are common, and (3) sexual selection can cause the
loss of the ecological polymorphism. The distinction be-
tween the latter two mechanisms has not always been made
clear. For example, Bürger and Schneider (2006) described
the loss of polymorphism as a consequence of the evo-
lution to an intermediate optimum for female choosiness.
However, our analysis shows that these phenomena are
based on different mechanisms. An infinite population
that takes small mutational steps will always evolve to
partial isolation without losing the polymorphism (see fig.
3). A finite population, however, can (and often will) lose
the polymorphism if it moves past the stable intermediate
equilibrium by drift (fig. 5).

Discussion of the Modeling Approach

Our approach in this study was to analyze a simplified
version of the model by Dieckmann and Doebeli (1999).
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This approach allowed us (1) to derive a simple invasion
criterion that yielded general analytical results and enabled
us to exhaustively analyze the model in a seven-dimen-
sional parameter space, (2) to gain a detailed and intuitive
understanding of the interaction between the various se-
lective forces, and (3) to unify, in a single model, a large
number of phenomena that have been studied or described
only in separate studies. The latter include (1) the roles
of natural versus sexual selection (see Gourbière 2004;
Kirkpatrick and Nuismer 2004), (2) conditions for the
maintenance or loss of the ecological polymorphism (see
Kirkpatrick and Nuismer 2004; Bürger and Schneider
2006; Bürger et al. 2006), (3) potential evolutionary sta-
bility of incomplete isolation (Doebeli 1996; Matessi et al.
2001), and (4) the importance of ecological niches and
the resulting nonlinear relationship between niche width
and the likelihood of speciation (Seger 1985; Dieckmann
and Doebeli 1999; Gourbière 2004; Bolnick 2006; Bürger
et al. 2006).

In addition, our approach allowed us to analyze fitness
functions of different shape. Many previous models have
used Gaussian functions like those in equations (1), (2),
and (4), but this is more for mathematical than biological
reasons. Indeed, several authors have pointed out that the
Gaussian version of the Roughgarden (1972) model can
show nongeneric behavior (e.g., Sasaki and Ellner 1995;
Sasaki 1997; Gyllenberg and Meszéna 2005; Polechová and
Barton 2005; Doebeli et al. 2007). Therefore, it is important
to know how the likelihood of speciation depends on the
Gaussian assumption. In our model, the shape of the com-
petition function determines which regimes are possible.
For example, in the absence of sexual selection, complete
isolation is evolutionarily stable if and only if the compe-
tition function is convex (i.e., if the strength of competition
decreases more than linearly with phenotypic distance).

Matessi et al. (2001) used a quadratic competition func-
tion, which can be seen as a weak-selection approximation
of more complex functions. Under this approximation, het-
erozygotes always have the highest death rate and (for c 1

) complete isolation is always locally stable. Therefore, Ma-k
tessi et al. (2001) found only two of our five regimes, com-
plete isolation and P/C. It is in the regions where the weak-
selection approximation is not valid that we find the other
three regimes. It is worth pointing out that in the absence
of sexual selection, neither the quadratic nor the Gaussian
function captures the full complexity of the model (see fig.
D1A). Indeed, even for weak selection, where the two func-
tions approximate each other, the quadratic function does
not allow for the partial-isolation regime, whereas the Gaus-
sian function does not allow for the R/C regime (at ).c ! k
This shows that apparently small details can have a quali-
tative influence on the behavior of the model and that it is
important to study the complete parameter space. Re-

markably, potential asymmetries of the competition and
carrying capacity functions seem to have a relatively small
effect on the regime pattern (see app. E).

The key to our analysis is the invasion criterion, according
to which choosiness increases evolutionarily whenever ho-
mozygotes have a higher fitness than heterozygotes. This
criterion can be shown to hold true for different modes of
sexual selection, and the approach can be readily extended,
for example, to cases in which males also are choosy. How-
ever, the criterion is not valid if there is a direct cost of
choosiness. In this case, the fitness of a mutant depends not
only on the mating strategies in the resident population but
also on the strategy of the mutant itself. Costs of choosiness
can arise, for example, if choosy females must spend more
energy during mate choice or if they are less likely to find
a suitable mate eventually. Considerable debate has focused
on whether costs of choosiness are likely to prevent com-
petitive speciation (Doebeli and Dieckmann 2003, 2005;
Bolnick 2004b; Gavrilets 2005; Waxman and Gavrilets
2005a, 2005b). Some recent models indicate that moderate
costs of choosiness are not necessarily detrimental for the
possibility of speciation (Doebeli and Dieckmann 2003,
2005; Schneider and Bürger 2005; Bürger and Schneider
2006; Doebeli et al. 2007). Nevertheless, including costs of
choosiness would be an important extension of our model.
One way to do so might be by a direct derivation of the
invasion fitness in a modified model along the lines of that
in appendix B.

The key simplification in our model is the assumption
that the ecological trait is determined by a single locus
with two alleles. How general are our results with regard
to this genetic architecture? On the one hand, it seems
reasonable to expect that the five regimes that we have
described here are also generic for other genetic architec-
tures because the interplay of natural and sexual selection
should be qualitatively independent of genetic details. This
intuition is supported by the observation that a behavior
similar to the P/C regime has also been found in a mul-
tilocus model by Doebeli (1996). Furthermore, evolution
of strong reproductive isolation (leading to a multimodal
phenotype distribution) has been demonstrated in a num-
ber of models with very different genetic assumptions,
spanning the whole range from one-locus models (Matessi
et al. 2001; this study), to multilocus models (Doebeli
1996; Dieckmann and Doebeli 1999; Bolnick 2006), and
finally to quantitative genetic models that are based on an
effectively infinite number of loci (Doebeli et al. 2007).

On the other hand, the one-locus assumption has the
obvious consequence that intermediate phenotypes can
exist only as heterozygotes. Therefore, whenever more than
two phenotypes can potentially coexist (i.e., whenever
there are more than two ecological niches), natural selec-
tion tends to move the population toward partial isolation
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or random mating. In a model with a different genetic
architecture, the evolution of assortative mating might in-
stead lead to more than two reproductively isolated species
(Bolnick 2006; Bürger et al. 2006). In addition, mono-
morphic equilibria could play a more prominent role if
they exist very close to the fitness optimum (Bürger et al.
2006). The one-locus assumption is also essential for the
behavior of the model in the parameter range where sta-
bilizing selection dominates over competition ( , orc ! k

in the Gaussian case). In a multilocus model, nat-j 1 jc K

ural selection will then usually remove genetic variation
from the ecological locus and keep at most one locus poly-
morphic (Christiansen and Loeschcke 1980; Spichtig and
Kawecki 2004; Bürger 2005). In a single-locus model, how-
ever, this transition is not clearly visible because hetero-
zygote advantage guarantees the polymorphism of the lo-
cus even for .c ! k

A related question concerns the genetic architecture of
female choosiness. Part of the controversy about sympatric
speciation has centered on how the likelihood of speciation
depends on the choice of mutational parameters for the
loci determining assortative mating (Doebeli and Dieck-
mann 2005; Waxman and Gavrilets 2005b). In our sim-
ulations, we assumed that choosiness is based on a single
additive locus with a continuum of possible alleles, and
we have varied the mutation rate and mutational step size.
Our results lead to two conclusions. First, in the complete-
isolation regime, where speciation is possible from random
mating in small steps, the evolutionary outcome should
be independent of genetic details. In particular, for a given
mean mutational step size, the time to reach complete
isolation depends only on the product of mutation rate
and population size. Second, in the bistable P/C regime,
the likelihood of speciation does, indeed, depend on the
genetic architecture of the mating trait. In populations
evolving in small mutational steps, the intermediate equi-
librium for female choosiness forms a “barrier” against
the evolution of complete isolation. However, our simu-
lations suggest that a population can jump over this barrier
if mutation rates and mutational effects are sufficiently
high (fig. 6). Probably, this is most likely in small popu-
lations under the influence of genetic drift.

For more general genetic architectures, the likelihood
of jumping the intermediate equilibrium is still an open
question. For example, in the infinitesimal model of Doe-
beli et al. (2007), degrees of female choosiness are assumed

to be normally distributed in the population, and the tail
of this distribution contains individuals with very high
choosiness, which might initiate the jump to higher de-
grees of isolation. A similar conclusion appears to hold in
multilocus models, in which recombination can create an
analogous tail (Dieckmann and Doebeli 1999). We, there-
fore propose the following hypothesis: speciation in the P/
C regime is possible either if choosiness has a simple ge-
netic basis, so that complete isolation can be reached in
a small number of mutational steps, or if it is determined
by a large number of loci that help maintain a high degree
of genetic variation for choosiness.

Finally, another important assumption of our model is
that the allelic effect of the ecological locus as well as the
niche shape are constant. In principle, they might also be
subject to selection (Kisdi and Geritz 1999; Geritz and Kisdi
2000; Ackermann and Doebeli 2004; Kopp and Hermisson
2006; van Doorn and Dieckmann 2006; Schneider 2007).
The joint evolution of assortative mating with genetic ar-
chitecture and/or individual specialization (Ackermann and
Doebeli 2004; Rueffler et al. 2006) is an interesting avenue
for future studies. As a final note, we would like to mention
that models similar to the one presented here are indepen-
dently being studied by M. A. R. de Cara, N. H. Barton,
and M. Kirkpatrick and by S. P. Otto, M. Servedio, and S.
L. Nuismer.
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APPENDIX A

Equations for the One-Locus, Two-Allele Model

In this appendix, we spell out the equations for the one-locus, two-allele model (assuming all females are equally
choosy). The male mating rates (see eq. [5b]) are given by
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� � � ′ � �f p N M � (1 � m)N M � (1 � m )N M , (A1a)male, hom hom hom het het hom hom

� � � �f p (1 � m)N M � N M � (1 � m)N M , (A1b)male, het hom hom het het hom hom

and the female mating rates (eq. [5a]) are given by

� � � � ′ � �f p N M � (1 � m)N M � (1 � m )N M , (A2a)female, hom hom hom het hom hom hom

� �f p (1 � m)N M � N M � (1 � m)N M . (A2b)female, het hom het het het hom het

In the model with sexual selection, for all genotypes, which is satisfied by the mating activity factorsf p 1female

�1� � ′ �M p N � (1 � m)N � (1 � m )N , (A3a)[ ]hom hom het hom

�1� �M p (1 � m)N � N � (1 � m)N . (A3b)[ ]het hom het hom

In the model without sexual selection, for all genotypes. The activity factors for a pop-f p 1/2(f � f ) p 1male female

ulation that is monomorphic at the mating locus can be derived from the linear equation system .f p f p 1hom het

For the symmetric case, where , we find from equations (A1) and (A2),� �N p N p Nhom hom hom

M � Mhom het′f p (2 � m )N M � (1 � m)N p 1, (A4a)hom hom hom het 2

f p N M � (1 � m)N (M � M ) p 1, (A4b)het het het hom hom het

yielding

n � (1 � n/2)(1 � m)
M p , (A5a)hom ′ 2N [(2 � m )(n � 1 � m) � n (1 � m)/2]hom

′2 � m � (1 � n/2)(1 � m)
M p . (A5b)het ′ 2N [(2 � m )(n � 1 � m) � n (1 � m)/2]hom

For a general polymorphic population, the activity factors follow from the additional condition that female mating
rate should not depend on the degree of choosiness but only on the ecological genotype (see app. B for the case of
invasion fitness).

The genotype-specific birth rates (eq. [6]) for both models are

�( ) ( )1 � m N 1 � m Nhet hom Nhet� � � �B p N N � M � N � M , (A6a)hom hom hom hom het het[ ] [ ]2 2 4

( )1 � m Nhet Nhet� ′ � � � �( ) ( ) ( )B p N � 1 � m N M � 1 � m N � N � 1 � m N M[ ]het hom hom hom hom het hom het[ ]2 2

( )1 � m Nhet
� ′ � �( )� N 1 � m N � M . (A6b)hom hom hom[ ]2
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Furthermore, the effective population sizes with respect to competition (see eq. [3]) are given by

� � � ′ �C p N � (1 � c )N � (1 � c )N , (A7a)hom hom het hom

� � � �C p (1 � c )N � N � (1 � c )N , (A7b)het hom het hom

and the death rates (see eq. [8]) are given by

�C hom�d p ,hom �Khom

C hetd p . (A8)het Khet

With these definitions, the fitness functions of the three ecological genotypes (according to eq. [9]) can be written
as

1
� � � �W p (f � f ) � d , (A9a)hom female, hom male, hom hom2

1
W p (f � f ) � d . (A9b)het female, het male, het het2

Finally, the dynamics of genotype frequencies (see eq. [7]) are given by

� � � �Ṅ p B � N d , (A10a)hom hom hom hom

Ṅ p B � N d . (A10b)het het het het

APPENDIX B

Invasion Analysis

Here, we prove for the general asymmetric model that a mutant with stronger female choosiness (higher m and m′)
than the resident will be able to invade the population at the polymorphic equilibrium of the resident if and only if

. Conversely, a mutant with weaker assortative mating will invade if and only if . Rare assortmentW 1 W W ! Whom het hom het

modifiers are neutral (i.e., have zero invasion fitness) if and only if .� �W p W p W p 0hom het hom

Note first that at equilibrium, and always have the same sign and Whet has the opposite sign. This is a� �W Whom hom

direct consequence of the equilibrium condition for “�” and “�” alleles in the population,

� �2N W � W N p 0, (B1a)hom hom het het

� �2N W � W N p 0, (B1b)hom hom het het

which implies .� � � �N W p N Whom hom hom hom

Consider now a resident population with choosiness m and m′ and a rare mutant allele at the choosiness locus that
leads to larger (or smaller) values and . Because the mutant allele is rare, an individual carries at most one copy,′˜ ˜m m
and matings among mutants can be ignored. For simplicity, we will first treat the case of free recombination between
the ecological locus and the mating locus (recombination rate ). We can then identify the two types of doubler p 1/2
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heterozygotes and denote their number by nhet. Similarly, and are the numbers of ecological (�/�) and (�/� �n nhom hom

�) homozygotes that carry the mutant choosiness allele.
The dynamics of the mutant population is then governed by the following equations:

˜ ˜ṅ p B � B � n d , (B2)het hetRfemale hetRmale het het

� � � � �˜ ˜ṅ p B � B � n d , (B3)hom homRfemale homRmale hom hom

where the dot denotes the time derivative. Here, for example, is the birth rate of heterozygote mutants thatB̃hetRfemale

have inherited the mutant allele from their mother. Note that for a female parent, but not for a male parent, these
rates depend on the mutant choosiness. Explicitly,

1 1 ′ � � � � � �˜ ˜ ˜ ˜˜B p N n M � (1 � m )(N n M � N n M )hetRfemale het het het hom hom hom hom hom hom4 2

1
� � � � � �˜ ˜ ˜˜� (1 � m) N (n M � n M ) � (N � N )n M , (B4)[ ]het hom hom hom hom hom hom het het4

1 1 ′ � � � � � �B̃ p N n M � (1 � m )(N n M � N n M )hetRmale het het het hom hom hom hom hom hom4 2

1
� � � � � �� (1 � m) N (n � n )M � (N M � N M )n , (B5)[ ]het hom hom het hom hom hom hom het4

1 1
� �˜ ˜ ˜˜B p N n M � (1 � m)N n MhomRfemale het het het hom het het8 4

1 1
� � � � �˜ ˜˜� N n M � (1 � m)N n M , (B6)hom hom hom het hom hom2 4

1 1
� � �B̃ p N n M � (1 � m)N n MhomRmale het het het hom het hom8 4

1 1
� � � �� N n M � (1 � m)N n M . (B7)hom hom hom het hom het2 4

Here, it was taken into account that only half of the offspring of a choosiness heterozygote carry the mutant choosiness
allele. The parameters M and denote the activity factors of female residents and mutants, respectively. We can writeM̃
the mutant dynamics in matrix form, ,ṅ p An

� �ṅ a a a n hom 11 12 13 hom   
ṅ p a a a # n . (B8)het 21 22 23 het     
� �ṅ a a a n     hom 31 32 33 hom

The matrix depends on the mating genotypes of the residents and the mutants, , where denotes′A p A m p (m, m )˜m, m

the vector of mating parameters. For the following, it will be convenient to express the elements aij of (partly)A ˜m, m

in terms of the mating rates and . We can then use the� � �f p (f � f )/2 f p (f � f )/2hom male, hom female, hom het male, het female, het

fact that the mating rates of invading mutants are equal to the equilibrium mating rates of the resident. For the male
mating rates fmale, this is simply because mutant females are rare. For the female mating rates, it is a consequence of
our assumption that changes in choosiness come without direct costs. In particular, the mating genotype does not
affect the female mating rate (we have for model 1 and for model 2).f p 1 � f p constant f p 1female male female

Explicitly, we obtain
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� � �( ) ( )1/2 f � d � Q 1/4 f � R 0hom hom het 
� � � �( ) ( ) ( )A p 1/2 f � Q 1/2 f � d 1/2 f � Q (B9)˜m, m hom het het hom 

� � �( ) ( )0 1/4 f � R 1/2 f � d � Q het hom hom

with

1
� � � ′ � � � ′ � �˜˜ ˜Q (m, m) p M N � (1 � m )N � M N � (1 � m )M N , (B10){ [ ] [ ]}hom hom hom hom hom hom hom4

1
� � � � � �˜˜ ˜R(m, m) p M (1 � m)(N � N ) � (1 � m)(N M � N M ) . (B11)[ ]het hom hom hom hom hom hom8

In both R and Q, the first and second terms correspond, respectively, to cases where the mutant allele is carried by
the female or the male partner. Before we proceed, we note several elementary facts.

1. Let be the identity matrix. Then all elements of the matrix are nonnegative (and� �ˆ� A p A � (d � d � d )�hom het hom

the elements of Â2 are strictly positive). According to the Perron-Frobenius theorem, Â has a unique dominant eigenvalue
and the corresponding left and right eigenvectors have strictly positive entries. Since A and Â have the same eigenvectors,
the same is true for A.

2. The columns of sum up to the genotype fitnesses; that is, , ,�A W p a � a � a W p a � a � a˜m, m hom 11 21 31 het 12 22 32

and .�W p a � a � ahom 13 23 33

3. For , the matrix reproduces the population dynamics of the resident population (eq. [A10]). The˜m p m Am, m

dominant eigenvalue of this “resident matrix” is 0, and the corresponding right eigenvector is proportional toAm, m

the equilibrium distribution ( , Nhet, ).� �N Nhom hom

For the next step, we consider the leading left eigenvector of the resident matrix , which describes the “repro-Am, m

ductive values” of the three ecological genotypes (see Caswell 2000, p. 92). Denote this eigenvector by v : p
. Without loss of generality, we can set . Then� �(v , v , v ) v p 1het het

�a a 2N a21 21 hom 21�v p � p � p , (B12)
� �a W � a 2N a � W N11 hom 21 hom 21 het het

�a a 2N a23 23 hom 23�v p � p � p , (B13)
� �a W � a 2N a � W N33 hom 23 hom 23 het het

where we use equation (B1a). Since , we conclude that�W � 0 ⇔ W � 0hom het

� �v � v ⇔ W � W . (B14)hom hethet

To establish the rank order of and , we use the explicit expressions for a21 and a23 (eq. [B9]) to obtain� �v v

� � � � � � � �N a � N a ⇔ N (M � M ) � N (M � M ) ⇔ N � N , (B15)hom 21 hom 23 hom hom het hom hom het hom hom

where we use the fact that in both of our models. Using� � � � � � � �N M ≤ N M ⇔ N ≤ N N W phom hom hom hom hom hom hom hom

,� �N Whom hom

d x W Nhet hetp (B16)
2dx x � W N (x � W N )het het het het

and the fact that the sign of is opposite to the sign of , we conclude that�W Whom het

� � � �v � v ⇔ W � W . (B17)hom hom

Denote, now, the dominant eigenvalue of the full mutant matrix as . In the terminology of adaptive˜A l(m, m)˜m, m

dynamics theory (Metz et al. 1992; Dieckmann and Law 1996; Geritz et al. 1998), l is the invasion fitness. The mutant
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can invade the resident whenever . Let be the leading right eigenvector of the mutant matrix� �l 1 0 w : p (w , w , w )het

(whereas is defined as the leading left eigenvector of the resident matrix ). We can then express l asA v A˜m, m m, m

vA w v(A � A )w˜ ˜m, m m, m m, m˜l(m, m) p p
vw vw

� � � ��1 � � � �˜ ˜ ˜p (vw) w (v � v )DQ (m, m) � w (v � v )DQ (m, m) � w (v � v )DR(m, m) , (B18)[ ]hethet het

with

� � �˜ ˜DQ (m, m) p Q (m, m) � Q (m, m)

1
� � ′ � � � ′ �˜ ˜p M N � (1 � m )N � M N � (1 � m )N , (B19){ [ ] [ ]}hom hom hom hom hom hom4

˜ ˜DR(m, m) p R(m, m) � R(m, m)

1
� � � �˜ ˜p M (1 � m)(N � N ) � M (1 � m)(N � N ) . (B20)[ ]het hom hom het hom hom8

The activity factors of female mutants, and , must be calculated for rare mutant invaders. Using the condition�˜ ˜M Mhom het

that the mutant allele does not change the female mating rate, we obtain from equation (A2)

� ′ �N � (1 � m )N � (1 � m)Nhom hom het� �M̃ p M , (B21)hom hom� ′ �˜ ˜N � (1 � m )N � (1 � m)Nhom hom het

� �(1 � m)(N � N ) � Nhom hom hetM̃ p M . (B22)het het� �˜(1 � m)(N � N ) � Nhom hom het

Note that in general, depends on both m and (e.g., for our model 1; for model 2, the m dependence cancels).˜ ˜M m
Therefore, the activity factor of invading mutants deviates from the activity factor in a monomorphic mutantM̃
population. We can now derive the change of DQ� and DR with the mutant variables,

� � ′ �˜ ˜M N N � (1 � m )N Nhom hom het hom het� ˜ ˜�(DQ )(m, m) p �m
� ′ �[ ˜ ˜4 N � (1 � m)N � (1 � m )Nhom het hom

� � �˜2N N � (1 � m)N Nhom hom hom het ′˜� �m , (B23)
� ′ � ]˜ ˜N � (1 � m)N � (1 � m )Nhom het hom

� �M̃ �(N � N )Nhet hom hom het˜ ˜�(DR)(m, m) p �m. (B24)
� �˜8 (1 � m)(N � N ) � Nhom hom het

For a Gaussian mating function with and , we see from equation (B23) that′ 4 ′ 3(1 � m ) p (1 � m) �m p 4(1 � m) �m
DQ� is strictly monotonically increasing with increasing choosiness. Since , this implies for� �DQ (m, m) p 0 DQ � 0

. Similarly, equation (B24) implies for if and only if , and hence . If� � � �˜ ˜m � m DR � 0 m � m N ! N W 1 Whom hom hom hom

, DR has the opposite sign. Note that we reach the same conclusions for many alternative (non-Gaussian)� �W ! Whom hom

choices of the mating function (such as ). With some obvious adjustments it is even possible to allow for′m p m
different mating preferences of heterozygotes with (�/�) and (�/�) homozygotes.

We now have available all the ingredients to complete our proof. Assume that and (without re-�W 1 0 1 Whom het

striction) . We have shown that in this case and DQ�, for a modifier that increases� �� �W 1 W v 1 v 1 v DR 1 0hom hom het

female choosiness. Since all elements of the vectors and w must be positive, equation (B18) implies that the leadingv
eigenvalue of is positive. Hence, the modifier will invade. Similarly, it follows that implies that�A W ! 0 ! W˜m, m hom het

modifiers for weaker choosiness will invade. Finally, for we find , and the invasion� �� �W p W p W v p v p vhom hom het het

fitness of all modifiers vanishes.
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These results can be extended to a model in which the ecological and mating loci are linked. We then need to split
the heterozygote mutant individuals nhet into two classes, , depending on whether the mutant allele at the mating�nhet

locus is associated with the � or the � allele at the ecological locus. Let be the recombination rate between ther 1 0
two loci. Then the dynamical equations can again be given in matrix form, , with the four-dimensional(4)ṅ p A n˜m, m

mutant vector and the transition matrix� � � �n p (n , n , n , n )hom het het hom

4( )A p˜m, m

1 1 � r r
� � �f � d � Q (f � 4R) (f � 4R) 0hom hom het het2 2 2
1 1 � r r

� �f � Q (f � 4R) � d (f � 4R) 0hom het het het2 2 2 , (B25)
r 1 � r 1

� �0 (f � 4R) (f � 4R) � d f � Qhet het het hom2 2 2( )
r 1 � r 1

� � �0 (f � 4R) (f � 4R) f � d � Qhet het hom hom2 2 2

with Q� and R as defined above. The crucial observation now is that if is the dominant right� �w p (w , w , w )het

eigenvector of the three-dimensional matrix as defined in equation (B9), then is(4) � �A w p (w , w /2, w /2, w )˜m, m het het

the dominant eigenvector of the four-dimensional matrix with the same eigenvalue . Neither the dominant(4) ˜A l(m, m)˜m, m

eigenvalue nor the corresponding eigenvector depends on r. We thus find that the invasion properties are independent
of the recombination rate. This is consistent with similar findings by Matessi et al. (2001) for the symmetric model
and weak selection. Consequently, our above results, which were derived for , apply equally for any value ofr p 0.5
r.

Note that the preceding analysis is valid for mating modifiers of arbitrary size. However, only for small modifiers
are invading mutants also guaranteed to reach fixation (unless the population is at an evolutionary equilibrium; Geritz
et al. 2002; Geritz 2005). Furthermore, at a stable equilibrium with intermediate m, the invasion fitness for all modifiers
is 0. Since this implies that the second derivative of the invasion fitness in the mutant direction is also 0, this is a
nongeneric case of an evolutionary singularity according to the classification of Geritz et al. (1998). In particular,
polymorphisms of m may be maintained in the vicinity of the singularity, but there is no “evolutionary branching.”

APPENDIX C

Evolutionary Equilibria

Analysis of the Symmetric Model without Sexual Selection

Here we show how to derive the evolutionary equilibrium with respect to female choosiness in the symmetric model
without sexual selection. From equation (A9) (and because ), the equilibrium condition for intermediatef p fhom het

levels of choosiness ( ), (app. B), requires . Using equation (A8), this latter′0 ! {m, m } ! 1 W p W d p dhom het hom het

condition is fulfilled if

′2(c � k � ck) � c
ˆn p n p . (C1)

c � k

The resulting phenotypic distribution is bimodal (i.e., ) if . Note that is the ratio that would′ ˆn ! 1 k ! (c � c)/(3 � 2c) n
be reached in an asexual population of three competing clones with phenotypes �x, 0, and x. In the sexual case,

can be reached if assortative mating can evolve. To obtain the equilibrium value for m and m′, observe firstˆn p n
that mean fitness at the equilibrium must be 0. We thus find and therefore , usingd p 1 B p N p N fhom hom hom hom hom

equation (A10a) and the fact that . Using equations (A4a) and (A6a), this condition can be expressed asf p 1hom
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2n′N (m � 1)M � M p 0. (C2)hom hom het[ ]4

Plugging in the expression for Mhom and Mhet (eq. [A5a]) and rearranging leads to

2 ′ 2( )n /4 � (1 � m ) n /4 � n
1 � m p . (C3)

2 ′( ) ( )n /4 � 1 � m 1 � n/2

For , this condition can be solved numerically (for a given functional relationship between m and m ′) to0 ! n ! 2
yield the evolutionarily stable value of m. Assuming that m ′ is an increasing function of m, the left-hand side of
equation (C3) decreases with m, whereas the right-hand side increases with m (because ). Therefore, there2n /4 � n ! 0
can be only one intersection point, and the solution is always unique. For in equation (C1), , and′n̂ ≤ 0 m p m p 1
for , .′n̂ ≥ 2 m p m p 0

Analysis of the Symmetric Model with Sexual Selection

Our aim here is to derive an analytical expression for as a function of the mating parameters m andD p D � DW f d

m ′ at the symmetric equilibrium. Using and , we obtainf p 1 f [n/(2 � n)] � f [2/(2 � n)] p 1female male, het male, hom

1 2 � n
D p (f � f ) p (1 � f ), (C4)f male, hom male, het male, het2 4

and with equation (A10),

B Bhet hom
D p �(d � d ) p � . (C5)d hom het N Nhet hom

Using equations (A4) and (A6), these are functions of m, m ′, and . We therefore need a solution for nn p N /Nhet hom

at the ecological equilibrium. Using and (from eq. [A10]), we findB p N d B p N dhom hom hom het het het

d B K C Bhom het het hom hetn p p # #
d B K C Bhet hom hom het hom

′ ′1 2 � c � (1 � c)n 2m
p # # 2 � . (C6)′{ }[ ]1 � k 2 � 2c � n 2 � (1 � m)n � 2 � m � (1 � m)n n/2

This is a fourth-order equation in n that can be solved analytically (e.g., by using Mathematica). For most of the
parameter space, only a single positive solution exists. In some rare cases (in our example with with very low′c p 1
c and high m and m ′) there are three positive solutions and the ecological system (A10) is bistable. However, only a
single solution for n was found at the evolutionary equilibrium for m and m ′ in all cases considered. Evolutionary
equilibria at random mating and complete isolation can be found analytically (see below). For equilibria with partial
isolation, the condition is solved numerically for m and m ′.′D (m, m ) p 0W

Sexual selection and mating rates. According to equation (C4), sexual selection is determined by fmale, het, the mating
rate of heterozygous males, which, at the symmetric equilibrium, can be written as

2(1 � m) n
f p � . (C7)male, het ′2 � n(1 � m) � m 2(1 � m) � n

Sexual selection disfavors heterozygotes (and thus favors homozygotes) if , which is the case if equationf ! 1male, het

(17) is true.
Stability of complete isolation. Complete isolation is characterized by . Note that this does not yet imply′m p m p 1
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. For , we find and and obtain an ecological equilibrium withn p 0 N 1 0 B p N � N /4 B p N /2het hom hom het het het

and . However, since as well, this implies . The equilibriumd p 1 � n/4 d p 1/2 f p f p 1 D ! 0hom het male, het male, hom d

is therefore evolutionarily unstable.
For , we obtain and . For ecological and evolutionary stability, we need to considern p 0 d p f p 1 W p 0hom hom hom

the limits and . To leading order, we obtain and thus, from equation′ ′m, m r 1 n r 0 B p 2(1 � m )N � N /2het hom het

(A10b), that is ecologically stable for if and only if . Evolutionary stability with respect to′N p 0 m r 1 d 1 1/2het het

the invasion of modifiers for decreased choosiness is given if and only if . For m ′W p (1 � f )/2 � d ! 0het male, het het

and m near 1, equation (A10b) implies at the ecological equilibrium. Using this value for′n p 4(1 � m )/(2d � 1)het

n in equation (C7), the mating rate of heterozygote males is

′1 � m
f p lim . (C8)male, het ′′ (d � 1/2)(1 � m) � (1 � m )m, m r1 het

Defining , we obtain the following condition for the evolutionary stability of complete′lim (1 � m )/(1 � m) p k′m, m r1

isolation:

1
2�d 1 1 � k � k � 2k . (C9)( )het 2

With and (from ), we obtain the stability condition (15).′d p (2 � 2c)N /K N /K p (1 � k)/(2 � c ) d p 1het hom 0 hom 0 hom

Stability of monomorphic equilibria at the ecological locus. The local stability of a monomorphic equilibrium (say,
with the � allele fixed) can be determined analytically by focusing on the fitness of an invading (mutant) � allele.
As long as this allele is rare, it will occur almost exclusively in heterozygotes. The monomorphic equilibrium is stable
if the mutant allele cannot invade, which is the case if . It is easy to see (from eqq. [A1b] and [A8] forW ! 0het

and ) that and . Together with equation (A9b), this leadsN p K N r 0 f p 1 � m d p (1 � c)(1 � k)hom hom het male, het het

to condition (18).

APPENDIX D

General Non-Gaussian Competition Functions

In figure 4, we analyzed the model for two extreme cases of non-Gaussian competition functions ( and′ ′c p c c p
). Here we present a general analysis of what stable evolutionary equilibria are possible in the symmetric model for1

arbitrary choices of c and c ′.

Model without Sexual Selection

In the model without sexual selection (fig. D1A), the complete-isolation equilibrium is stable if condition (14) is true.
This is possible only if the numerator on the right-hand side is positive, which is the case if

′c 1 2c. (D1)

Furthermore, the partial-isolation regime requires that, for some k, neither of conditions (13) and (14) is fulfilled.
This is possible only if the right-hand side of inequality (13) is greater than the right-hand side of inequality (14),
which is the case if

′ 2c ! 4c � 2c . (D2)

Plugging this conditions into inequality (14), we see that in this case, complete isolation is stable if and only if c 1

. Conversely, the bistable R/C regime is possible only if . Using condition (13), we see that for c ′ larger′ 2k c 1 4c � 2c
than this value, random mating is stable if and only if . Thus, the partial-isolation regime can exist only fork 1 c

and the R/C regime only for , showing that the situation in figure 4A is generic for the model without sexualk ! c k 1 c
selection.
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If the competition function is quadratic (as in Matessi et al. 2001), then (possible only for ). Because′c p 4c c ! 1/4
, the partial-isolation regime is never possible for this function, complete isolation is always locally stable,24c 1 4c � 2c

and random mating can be stable only for . It can be shown that these conclusions also hold for the model withk 1 c
sexual selection.

Finally, in the model without sexual selection, there is no P/C regime. This is because the equilibrium condition
is never fulfilled for more than one value of m (see “Analysis of the Symmetric Model without SexualDW p 0

Selection” in app. C).

Model with Sexual Selection

In the model with sexual selection (fig. D1B), the complete isolation equilibrium is stable if condition (15) is true.
This is possible only if the numerator on the right-hand side is positive, which is the case if

′c 1 4c � 2. (D3)

This condition is always fulfilled if the competition function is convex, that is, if . Furthermore, the partial-′c 1 2c
isolation regime requires that for some k, neither of conditions (13) and (15) is fulfilled, which is possible only if

1′c ! 10 � 4 � c . (D4)( )c

The reverse condition holds for the R/C regime.
The above results are summarized in figure D1. Several observations are of interest. (1) Stability of complete isolation

is favored by large c ′ but disfavored by large c. In particular, without sexual selection, complete isolation can be stable
only if the competition function is convex ( ). (2) For some combinations of c and c ′, either the partial isolation′c 1 2c
or the R/C regimes are impossible. In particular, the partial-isolation regime does not exist for quadratic competition
functions (which is why it was not found by Matessi et al. [2001]), whereas the R/C regime does not exist in the absence
of sexual selection for Gaussian competition functions (fig. 4B, 4D). (3) For the model without sexual selection, the
partial-isolation and R/C regimes can exist only for disruptive selection ( ) and stabilizing selection ( ), respectively.c 1 k c ! k

Figure D1: Possible evolutionary equilibria of female choosiness m as a function of the competition parameters c and c ′. The dashed lines correspond
to a Gaussian competition function (eq. [2]) and the dotted lines to a quadratic one (as in Matessi et al. 2001). The dash-dotted lines represent
the case (see fig. 4A, 4C) and the upper boundary of the graph the case (see fig. 4B, 4D). For each point, the gray scale indicates′ ′c p c c p 1
which evolutionary equilibria occur for different choices of the parameter k (i.e., along a horizontal line in figs. 1 and 4). There are three different
domains with increasing stability of complete isolation. In the white domain, complete isolation cannot be stable, and the only possible regimes are
R and P. In the light gray domain, complete isolation cannot be stable if random mating is stable, and therefore the bistable R/C regime does not
exist. For the model without sexual selection, stability of complete isolation further requires disruptive selection ( ). In the dark gray domain,c 1 k
complete isolation is stable whenever random mating is unstable, and thus the P regime does not exist. Furthermore, in the model without sexual
selection, stability of random mating is restricted to .c ! k
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APPENDIX E

Asymmetric Model

So far, we have assumed a symmetric shape of the carrying capacity K(X) around the heterozygote phenotype at
. Both homozygote phenotypes thus have the same carrying capacity. As a consequence, the two homozygoteX p 0

classes can be lumped at the symmetric polymorphic equilibrium, which simplifies the analysis. In the following
analysis, we relax this assumption. In addition to the parameter k that measures the average strength of stabilizing
selection, we introduce an additional asymmetry parameter Dk that determines the difference of the selection parameters
for opposite homozygotes k� and k�,

�k p k(1 � D ). (E1)k

Similarly, we can also use an asymmetric competition function and define

�c p c(1 � D ). (E2)c

Our general invasion analysis in appendix B shows that a vanishing invasion fitness is characterized by the (necessary
and sufficient) condition . Below, we will use this condition to derive the boundary lines� �W p W p W p 0hom het hom

for the stability of random mating and complete isolation. Also, the conditions for stability of the monomorphic
equilibria are easily extended. A complication for the asymmetric model arises from the fact that for intermediate
values of female choosiness, a full analytical solution of the population dynamical equations (A10) is no longer possible.
We therefore need to rely more extensively on numerical analysis.

The boundary line for the stability of random mating ( ) can be found from the conditions′ �m p m p 0 d phom

(from eq. [A9]) and (from eq. [A10]). After elimination of and Nhet from this system2 � � �d p 1 N p 4N N Nhet het hom hom hom

(using eq. [A8]), we obtain a lengthy quadratic expression in k that can be solved for arbitrary parameters c, c ′, Dc,
and Dk. For simplicity, we focus on the case and the corresponding solutionD p 0c

′ 2 ′ 2 ′ ′�cc � (4c � 2c � c ) 1 � D c (4c � c ) � 1[ ]k

k p . (E3)
2 ′ 22c(2 � c) � 2D [2c(2 � c) � c ]k

For complete isolation (m, , ) we can follow the derivation in the symmetric case and obtain′m r 1 N p 0het

from . From the definition of the death rates in equation (A8) we then obtain� � �d p 1 B p Nhom hom hom

2ck 2(1 � c)(1 � k)
d p D D � . (E4)het c k′ ′c 2 � c

As in the symmetric case, the condition for stability of complete isolation can be derived from the condition for
in the limit . For model 1, we again find that this is equivalent to ; henceW ≤ 0 N r 0 d ≥ 1het het het

′ ′(c � 2c)c
k ≤ . (E5)′2(1 � c)c � 2cD Dc k

For model 2 and with , we get , again as in the symmetric′ 2 1/2k p lim [(1 � m )/(1 � m)] 2d � 1 p �k � (k � 2k)′m, m r1 het

case. With equation (E4), this translates to

′ ′ ′ ′ �(2 � c � 4c)c � (2 � c )c k( 1 � 2/k � 1)
k ≤ . (E6)′4(1 � c)c � 4cD Dc k

Finally, we obtain two different stability conditions for the two opposite monomorphic equilibria by substituting k
and c in the conditions for the symmetric model with k� and c�, or with k� and c�, respectively. For model 1 without
sexual selection, monomorphic equilibria are stable if and only if
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� �1 � (1 � c )(1 � k ) ≤ 0. (E7)

This is possible only if either or (and hence , i.e., the resource distribution is no longer� � �c ≤ 0 k ≤ 0 K ≥ Khom het

stabilizing). For model 2, the condition is (see eq. [18])

m
� � � �≥ c � k � c k . (E8)

2

Figure E1 shows the evolutionary regimes of the model with an asymmetric carrying capacity ( ), butD p 1/3k

symmetric competition function. The condition for the stability of random mating is changed only slightly as compared
to the symmetric case (eq. [E3]). The stability condition for complete isolation changes only if the competition function
is also asymmetric (eqq. [E5], [E6]). Thus, the structure of the five evolutionary regimes appears to be very robust.
Marked deviations from the symmetric case appear only with regard to the stability of the ecological equilibria in the
model with sexual selection (eq. [E8] and numerical results). Not surprisingly, an asymmetric carrying capacity tends
to increase the stability of the monomorphic equilibrium containing the fitter type of homozygotes. It also increases
the region where a stable polymorphic equilibrium does not exist (hatched area in fig. E1). Whereas in the symmetric
case, the stable polymorphic equilibrium is always at allele frequency , in the asymmetric case, it may approach1/2
the monomorphic equilibrium for intermediate or large m. For some parameter values, no (stable or unstable)
polymorphic equilibrium exists. However, nonexistence or instability of the polymorphic equilibrium is still largely
restricted to parameter combinations with .k k c

Figure E1: Evolutionary regimes for female choosiness in the model with an asymmetric carrying capacity (see fig. 1 for details). The asymmetry
parameter implies that , that is, that stabilizing selection on the (�/�) homozygotes is twice as large as on the (�/�) homozygotes.� �D p 1/3 k p 2kk

The thin dashed line (stability of monomorphic equilibrium) refers to the monomorphic equilibrium with the (�/�) homozygotes. The analogous
curves for the symmetric model ( ; see fig. 1) are shown in red. Note that the condition for stability of complete isolation (thick dashed line)D p 0k

is independent of Dk (see eqq. [E5], [E6]). The boundary of the complete-isolation regime in the model with sexual selection was calculated
numerically and, at this resolution, is indistinguishable from the analogous curve for the symmetric model.
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Gyllenberg, M., and G. Meszéna. 2005. On the impossibility of co-
existence of infinitely many strategies. Journal of Mathematical
Biology 50:133–160.

Higashi, M., G. Takimoto, and N. Yamamura. 1999. Sympatric spe-
ciation by sexual selection. Nature 402:523–526.

Karlin, S., and J. McGregor. 1974. Towards a theory of the evolution
of modifier genes. Theoretical Population Biology 5:59–103.

Kirkpatrick, M., and S. L. Nuismer. 2004. Sexual selection can con-
strain sympatric speciation. Proceedings of the Royal Society B:
Biological Sciences 271:687–693.

Kisdi, E., and S. A. H. Geritz. 1999. Adaptive dynamics in allele
space: evolution of genetic polymorphism by small mutations in
a heterogeneous environment. Evolution 53:993–1008.

Knudsen, R., A. Klemetsen, P.-A. Amundsen, and B. Hermansen.
2006. Incipient speciation through niche expansion: an example
from the arctic charr in a subarctic lake. Proceedings of the Royal
Society B: Biological Sciences 273:2291–2298.

Kopp, M., and J. Hermisson. 2006. The evolution of genetic archi-
tecture under frequency-dependent disruptive selection. Evolution
60:1537–1550.

MacArthur, R. 1969. Species packing, and what interspecies com-
petition minimizes. Proceedings of the National Academy of Sci-
ences of the USA 64:1369–1371.

———. 1972. Niche overlap as a function of environmental vari-
ability. Proceedings of the National Academy of Sciences of the
USA 69:1109–1113.

Matessi, C., A. Gimelfarb, and S. Gavrilets. 2001. Long-term buildup
of reproductive isolation promoted by disruptive selection: how
far does it go? Selection 2:41–64.

Metz, J. A. J., R. M. Nisbet, and S. A. H. Geritz. 1992. How should
we define fitness for general ecological scenarios? Trends in Ecology
& Evolution 7:198–202.
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